Symplectic geometry of rationally connected threefolds

Loading...
Thumbnail Image
Authors
Tian, Zhiyu
Issue Date
1-May-11
Type
Dissertation
Language
en_US
Keywords
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
We study the symplectic geometry of rationally connected 3-folds. The first result shows that rational connectedness is a symplectic deformation invariant in dimension 3. If a rationally connected 3-fold X is Fano or has Picard number 2, we prove that there is a non-zero Gromov-Witten invariant with two insertions being the class of a point. Finally we prove that many other rationally connected 3-folds have birational models admitting a non-zero Gromov-Witten invariant with two point insertions.
Description
Citation
Publisher
The Graduate School, Stony Brook University: Stony Brook, NY.
License
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN