Putative Role for METTL1 in Human Gliobastoma

Loading...
Thumbnail Image
Authors
Seaman, Jessica
Endres, Lauren
Issue Date
2017-04
Type
Language
Keywords
Glioblastoma multiforme , Cancer genomes , methyltransferase , METTL1 , gene amplification
Research Projects
Organizational Units
Journal Issue
Alternative Title
Poster Presented at 2017 Student Project Showcase at SUNY Polytechnic Institute
Abstract
Glioblastoma multiforme (GBM) is a deadly cancer affecting the late adult and elderly population. Although GBM can be subdivided into a number of distinct types, aberrant methylation effects define certain subtypes, such as the glioblastoma CpG island methylator phenotype (G-CIMP) subtype, and more recently, the proneural subtype. In GBM as a whole, gene amplification of methyltransferases – enzymes that catalyze the transfer of a -CH3 methyl group to nucleic acids - are a common theme. This type of gene amplification event leads to hyper-activity of the enzyme, and contributes to the methylator phenotype; however, the role that the methylator phenotype plays in GBM not completely understood. Here we mined cancer genome datasets for alterations of methyltransferases that target the nucleic acid, transfer RNA (tRNA). METTL1 was identified as the highest amplified tRNA methyltransferase in glioblastomas. METTL1's orthologue in yeast, TRM8, has been studied to some extent, and is known to target several tRNA species (tRNAVAL-AAC, tRNAMET, tRNAPHE, tRNAVAL) as part of the cell’s response to heat shock (REF). Overall, this work suggests a putative role for tRNA methylation in GBM formation through the amplification of METTL1, and suggests that tRNA methylation is an important component of the methylator phenotype. Future work will be to identify which tRNAs are targeted by METTL1 and the role it plays in the development of GBM.
Description
Poster Presented at the 2017 SUNY Polytechnic Institute Student Project Showcase
Citation
Publisher
License
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN