Photo Cleavable Polymers for Tissue Engineering

Loading...
Thumbnail Image
Authors
Apostol, Monica
Issue Date
1-May-11
Type
Dissertation
Language
en_US
Keywords
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
We have found that P4VP and PMMA thin films can be etched with UVA radiation. Furthermore, we also found that dermal fibroblasts could be cultured successfully on the P4VP polymer, with a doubling time comparable to tissue culture Petri dish standards. Consequently we were able to grow tissue on P4VP substrates which could easily be lifted using UVA radiation. The cells that were removed were then re-plated at a lower density and a series of assays was performed at 3 and 6 days. While only a small amount of damage was discernable at day 3 nearly complete recovery was observed at day 6. The technique was also used to pattern areas within the tissue, where other types of cells could be inserted. In order to demonstrate the technique, a hybrid tissue layer was produced, where the dermal fibroblasts in a circular area at the center of the sample were removed via exposure through a mask. A keratinocyte layer was inserted which adhere to the fibroblast layer forming a tissue with integrated layers of two distinct cell types. We also investigated the effects of coated TiO2 particles on cells exposed to UVC. We found that as expected, cells were adversely affected by exposure to UVC and died even after exposure to as little as 3.5 J/cm2. Addition of 0.4mg/ml TiO2 particles that were uncoated did not provide protection, and the cells died at the same rate. Addition of 4mg/ml of coated TiO2 on the other hand, did not affect cell viability in the absence of UV light and increased the viability after exposure to UVC radiation. In fact the cells containing the iv coated particles were indistinguishable for the unexposed control samples even after exposure to as much as 7.1J/cm2 of UVC.
Description
Citation
Publisher
The Graduate School, Stony Brook University: Stony Brook, NY.
License
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN