Geodesics and Bounded Harmonic Functions on Infinite Graphs

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-09T18:50:34Z
dc.date.available2018-04-09T18:50:34Z
dc.date.issued1991
dc.descriptionThis article has been published in the September 1991 issue of Proceedings of the American Mathematical Society.en_US
dc.description.abstractIt is shown there that an infinite connected planar graph with a uniform upper bound on vertex degree and rapidly decreasing Green's function (relative to the simple random walk) has infinitely many pairwise finitely-intersecting geodesic rays starting at each vertex. We then demonstrate the existence of nonconstant bounded harmonic functions on the graph.en_US
dc.identifier.citationNorthshield, S. (1991). Geodesics and Bounded Harmonic Functions on Infinite Graphs. Proceedings of the American Mathematical Society, 113(1). http://doi.org/10.1090/S0002-9939-1991-1076576-5en_US
dc.identifier.urihttp://hdl.handle.net/1951/69950
dc.languageen_USen_US
dc.language.isoen_USen_US
dc.subjectRandom walken_US
dc.subjectplanar graphsen_US
dc.subjectgeodesic raysen_US
dc.subjectharmonic functionsen_US
dc.titleGeodesics and Bounded Harmonic Functions on Infinite Graphsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
402.09 KB
Format:
Adobe Portable Document Format
Description:
full-text
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: