A note on the Zeta Function of a Graph

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-09T18:26:18Z
dc.date.available2018-04-09T18:26:18Z
dc.date.issued1998
dc.descriptionThis article has been published in the November 1998 issue of Journal of Combinatorial Theory Series B.en_US
dc.description.abstractThe number of splanning trees in a finite graph is first expressed as the derivative (at 1) of a determinant and then in terms of a zeta function. This generalizes a result of Hashimoto to non-regular graphs.en_US
dc.identifier.citationNorthshield, S. (1998). A note on the Zeta Function of a Graph. Journal of Combinatorial Theory Series B, 74. http://doi.org/10.1006/jctb.1998.1861en_US
dc.identifier.urihttp://hdl.handle.net/1951/69945
dc.languageen_USen_US
dc.language.isoenen_US
dc.publisherJournal of Combinatorial Theory Series Ben_US
dc.titleA note on the Zeta Function of a Graphen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
109.97 KB
Format:
Adobe Portable Document Format
Description:
full-text
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: