• Login
    View Item 
    •   DSpace Home
    • SUNY Plattsburgh
    • Faculty Work
    • Mathematics Faculty Work
    • View Item
    •   DSpace Home
    • SUNY Plattsburgh
    • Faculty Work
    • Mathematics Faculty Work
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    On Iterates of Moebius transformations on fields

    Thumbnail
    View/Open
    full-text (129.1Kb)
    Date
    1997
    Author
    Northshield, Sam
    Publisher
    Mathematics of Computation
    Metadata
    Show full item record
    Abstract
    Let p be a quadratic polynomial over a splitting field K, and S be the set of zeros of p. We define an associative and commutative binary relation on G ≡ K ∪ {∞ } -S so that every Moebius transformation with fixed point set S is of the form x plus" c for some c. This permits an easy proof of Aitken acceleration as well as generalizations of known results concerning Newton's method, the secant method, Halley's method, and higher order methods. If K is equipped with a norm, then we give necessary and sufficient conditions for the iterates of a Moebius transformation m to converge (necessarily to one of its fixed points) in the norm topology. Finally, we show that if the fixed points of m are distinct and the iterates of m converge, then Newton's method converges with order 2, and higher order generalizations converge accordingly.
    Description
    This article has been published in the October 1997 issue of Mathematics of Computation.
    URI
    http://hdl.handle.net/1951/69944
    Collections
    • Mathematics Faculty Work [20]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV