• Login
    View Item 
    •   DSpace Home
    • SUNY Plattsburgh
    • Student Work
    • Center for Earth and Environmental Science Student Work
    • View Item
    •   DSpace Home
    • SUNY Plattsburgh
    • Student Work
    • Center for Earth and Environmental Science Student Work
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spatial and Temporal Distribution and Abundance Microplastics in Lake Champlain Long-Term Monitoring Samples

    Thumbnail
    View/Open
    poster (1.187Mb)
    Date
    2017
    Author
    Hagar, Susan-Marie
    Austin, Lindsey
    Metadata
    Show full item record
    Subject
    microplastic
    pollution
    nurdle
    Lake Champlain
    water quality
    long-term monitoring
    plastic industry
    aquatic pollution
    extruded plastic
    polyisoprene
    fieece
    Abstract
    Microplastics are particles less than 5mm in size, characterized as fibers, fragments, beads, foams, and pellets. Microplastics (MP) arise from four main processes: environmental degradation (UV exposure, mechanical and/or biological), direct release by means of wastewater treatment processing, unintentional loss of raw materials, and discharge of macerated wastes. Microplastics are potentially toxic to aquatic biota and the presence of microplastics in freshwater ecosystems is largely under-researched. The goal of our research was to examine the spatial and temporal distribution of microplastics and pre-production particulate (nurdles) from long-term monitoring (LTM) zooplankton samples within Lake Champlain collected between 1992-2016. Nurdles were counted in full from samples, whereas microplastics (e.g., fragments, fibers) were subsampled due to size. Fourier Transform Infrared Spectroscopy (FTIR) characterized nurdles as polyisoprene rubber ribbon. Within the LTM samples (n = 2265), nurdles (n = 3455) and microplastics (n = 249), predominantly fibers, were identified. The greatest microplastic abundance was noted in 2015 (n = 73 microplastics, n = 494 samples). Nurdles were found only in samples that had been collected 2012-2016, with the greatest nurdle abundance noted in 2012 (n = 1,169 nurdles, n = 412 samples) and at varying depths. Nurdle abundance declined since the 2012 peak and in 2015 was greatly reduced (n = 531 nurdles, n = 494 samples). Spatial distribution maps suggest the complexity of the story with high abundances at deep central locations, as well as shallow isolated bays. The high influx of nurdles in 2012 may be related to the 2011 Lake Champlain flood; however more research will need to be conducted to tease apart timing and potential nurdle point-sources (e.g., train tracks, industrial/urban centers).
    Description
    Student poster, Center for Earth and Environmental Science, SUNY Plattsburgh
    URI
    http://hdl.handle.net/1951/69763
    Collections
    • Center for Earth and Environmental Science Student Work [57]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV