• Login
    View Item 
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Large-scale ex vivo generation of human neutrophils from cord blood CD34+ cells

    Thumbnail
    View/Open
    Large-scale ex vivo generation of human neutrophils from cord blood CD34+ cells_Final.pdf (3.692Mb)
    Date
    2017-07-11
    Author
    Jie, Zhenwang
    Zhang, Yu
    Wang, Chen
    Shen, Bin
    Guan, Xin
    Ren, Zhihua
    Ding, Xinxin
    Dai, Wei
    Jiang, Yongping
    Publisher
    PLoS ONE
    Metadata
    Show full item record
    Subject
    antigens
    CD34+
    cell differentiation
    fetal blood
    hematopoietic stem cells (HSCs)
    neutrophils
    umbilical cord blood (UCB)
    neutropenia
    Abstract
    Conventional high-dose chemotherapy frequently leads to severe neutropenia, during which patients experience a high risk of infection. Although support care with donor’s neutrophils is possible this choice is largely hampered by the limited availability of matched donors. To overcome this problem, we explored a large-scale ex vivo production of neutrophils from hematopoietic stem cells (HSCs) using a four-stage culture approach in a roller-bottle production platform. We expanded CD34+ HSCs isolated from umbilical cord blood (UCB) using our in-house special medium supplemented with cytokine cocktails and achieved about 49000-fold expansion of cells, among which about 61% were differentiated mature neutrophils. Ex vivo differentiated neutrophils exhibited a chemotactic activity similar to those from healthy donors and were capable of killing E. coli in vitro. The expansion yield as reported herein was at least 5 times higher than any other methods reported in the literature. Moreover, the cost of our modified medium was only a small fraction (<1/60) of the StemSpan™ SFEM. Therefore, our ex vivo expansion platform, coupled with a low cost of stem cell culture due to the use of a modified medium, makes large-scale manufacturing neutrophils possible, which should be able to greatly ameliorate neutrophil shortage for transfusion in the clinic.
    URI
    http://hdl.handle.net/1951/69325
    Collections
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works [63]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us
    DSpace Express is a service operated by 
    Atmire NV