• Login
    View Item 
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Redox control of senescence and age-related disease

    Thumbnail
    View/Open
    Redox control of senescence and age-related disease_Final.pdf (635.9Kb)
    Date
    2017-03
    Author
    Chandrasekaran, Akshaya
    Idelchik, Maria del Pilar Sosa
    Melendez, J. Andrés
    Publisher
    Redox Biology
    Metadata
    Show full item record
    Subject
    oxidative stress
    aging
    senescence
    senescence-associated secretory phenotype (SASP)
    reactive oxygen species (ROS)
    signaling network
    Abstract
    The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.
    URI
    http://hdl.handle.net/1951/69147
    Collections
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works [63]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV