Abstract
Resistance capacitance time delay in Cu interconnects is becoming a significant factor requiring
further performance improvements in future nanoelectronic devices. Choice of alternate
interconnect materials, for example, refractory metals, and subsequent integration with underlying
barrier and liner layers are extremely challenging for the sub-10 nm nodes. The development of conformal deposition processes for alternate interconnects, liner, and barrier materials are crucial in order for implementation of a possible replacement for Cu interconnects for narrow line widths. In this study, the authors report on ultrathin (~3 nm) chemical vapor deposition (CVD) grown ruthsynchrotron x-ray diffraction with in situ rapid thermal annealing to investigate the thermal stability of the barrier layers and determine the effective activation energies of barrier failure leading to ruthenium monosilicide formation. For Ru films deposited directly on Si and on 0.5 nm MN (M¼Ti, Ta) covered Si substrates, silicide formation proceeds via a two-step crystallization process involving lateral nucleation above ~440 degrees C followed by thickening of the ruthenium monosilicide layer above ~520 degrees C. This silicidation temperature of ~440 degrees C could be potentially problematic in back-end-of-the-line (BEOL) processing since it is close to the typical thermal budget used. However ~1nm thick ALD MN (M=Ti, Ta) was found to be adequate to block silicide formation up to ~580 and ~620 degrees C for TiN and TaN, respectively, and also aided in superior coverage of the CVD ruthenium overlayer (>90%). The results reported here might be useful to ascertain annealing temperature and time for BEOL process and integration optimization without reaching a state where ruthenium silicides start forming.