• Login
    View Item 
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis and properties of ferromagnetic nanostructures embedded within a high-quality crystalline silicon matrix via ion implantation and nanocavity assisted gettering processes

    Thumbnail
    View/Open
    Synthesis and properties of ferromagnetic nanostructures embedded within a high-quality crystalline silicon matrix via ion implantation and nanocavity assisted gettering processes_Final.pdf (1.934Mb)
    Date
    2014
    Author
    Malladi, Girish
    Huang, Mengbing
    Murray, Thomas
    Novak, Steven
    Matsubayashi, Akitomo
    LaBella, Vincent
    Bakhru, Hassaram
    Publisher
    Journal of Applied Physics
    Metadata
    Show full item record
    Subject
    semiconductor
    magnetic functionality
    electrons
    ion implantation
    ferromagnatism
    nanocavities
    metal nanoparticles
    Abstract
    Integrating magnetic functionalities with silicon holds the promise of developing, in the most dominant semiconductor, a paradigm-shift information technology based on the manipulation and control of electron spin and charge. Here, we demonstrate an ion implantation approach enabling the synthesis of a ferromagnetic layer within a defect free Si environment by exploiting an additional implant of hydrogen in a region deep below the metal implanted layer. Upon post-implantation annealing, nanocavities created within the H-implanted region act as trapping sites for gettering the implanted metal species, resulting in the formation of metal nanoparticles in a Si region of excellent crystal quality. This is exemplified by the synthesis of magnetic nickel nanoparticles in Si implanted with H+ (range: ~850 nm; dose: 1.5 x 10 16 cm -2) and Ni+ (range: ~60 nm; dose: 2 10 15 cm -2). Following annealing, the H implanted regions populated with Ni nanoparticles of size (~10–25 nm) and density (~10 11/cm 2) typical of those achievable via conventional thin film deposition and growth techniques. In particular, a maximum amount of gettered Ni atoms occurs after annealing at 900 degrees C, yielding strong ferromagnetism persisting even at room temperature, as well as fully recovered crystalline Si environments adjacent to these Ni nanoparticles. Furthermore, Ni nanoparticles capsulated within a high-quality crystalline Si layer exhibit a very high magnetic switching energy barrier of ~0.86 eV, an increase by about one order of magnitude as compared to their counterparts on a Si surface or in a highly defective Si environment.
    URI
    http://hdl.handle.net/1951/68927
    Collections
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works [63]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us
    DSpace Express is a service operated by 
    Atmire NV