• Login
    View Item 
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    •   DSpace Home
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Substrate dielectric effects on graphene field effect transistors

    Thumbnail
    View/Open
    Substrate dielectric effects on graphene field effect transistors_Final.pdf (1.185Mb)
    Date
    2014
    Author
    Hu, Zhaoying
    Sinha, Dhiraj Prasad
    Lee, Ji Ung
    Liehr, Michael
    Publisher
    Journal of Applied Physics
    Metadata
    Show full item record
    Subject
    electronics
    optoelectronics
    graphene
    graphene-dielectric interaction
    graphene field effect transistors
    carrier transport
    dielectrics
    carrier mobility
    extrinsic doping
    Raman spectra
    Abstract
    Graphene is emerging as a promising material for future electronics and optoelectronics applications due to its unique electronic structure. Understanding the graphene-dielectric interaction is of vital importance for the development of graphene field effect transistors (FETs) and other novel graphene devices. Here, we extend the exploration of substrate dielectrics from conventionally used thermally grown SiO2 and hexagonal boron nitride films to technologically relevant deposited dielectrics used in semiconductor industry. A systematic analysis of morphology and optical and electrical properties was performed to study the effects of different substrates (SiO2, HfO2, Al2O3, tetraethyl orthosilicate (TEOS)-oxide, and Si3N4) on the carrier transport of chemical vapor deposition-derived graphene FET devices. As baseline, we use graphene FETs fabricated on thermal SiO2 with a relatively high carrier mobility of 10 000 cm2/(V s). Among the deposited dielectrics studied, silicon nitride showed the highest mobility, comparable to the properties of graphene fabricated on thermal SiO2. We conclude that this result comes from lower long range scattering and short range scattering rates in the nitride compared those in the other deposited films. The carrier fluctuation caused by substrates, however, seems to be the main contributing factor for mobility degradation, as a universal mobility-disorder density product is observed for all the dielectrics examined. The extrinsic doping trend is further confirmed by Raman spectra. We also provide, for the first time, correlation between the intensity ratio of G peak and 2D peak in the Raman spectra to the carrier mobility of graphene for different substrates.
    URI
    http://hdl.handle.net/1951/68926
    Collections
    • SUNY Polytechnic Institute Faculty and Staff Research, Publications, and Creative Works [63]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV