• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Chitosan/TPP Nanoparticles as a Gene Delivery Agent For Tumor Suppressant P53

    Thumbnail
    View/Open
    Liu_grad.sunysb_0771M_10945.pdf (6.539Mb)
    Date
    1-May-12
    Author
    Liu, Gaojun
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    In the last decade, non-viral polymeric vectors have become more attractive than their viral counterparts due to their nontoxicity and good biocompatibility. However, one of the major drawbacks is the low transfection efficiency when compared to viruses. In this work, a naturally cationic polysaccharide, chitosan, was cross-linked with negatively charged tripolyphosphate (TPP) to synthesize chitosan/TPP nanoparticles (CNPs) for delivery of plasmid DNA (pDNA). Particle size and zeta potential were characterized for CNPs with chitosan-TPP mass ratios of 4:1 and 6:1 (w/w) using benchtop dynamic light scattering. And both potentiometric titration method and FTIR spectrometer were applied to measure the degree of deacetylation of chitosan. Release kinetics of a model protein (bovine serum albumin, BSA) showed a steady release that reached 7% after 6 days. Besides that, we also assessed the in vitro transfection efficiency of the CNP- pDNA system using fluorescence microscopy, as well as the effect of tumor suppressant p53. Later the release kinetics and encapsulation efficiency of plasmid DNA bound to the CNPs will be investigated. Additionally, we will try to improve the gene transfection efficiency in both MC3T3-E1 and osteosarcoma cells by applying Sonicator 740 therapeutic ultrasound.
    Description
    51 pg.
    URI
    http://hdl.handle.net/1951/60289
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1956]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV