• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design, Synthesis and Biological Evaluation of Novel Curcumin Analogues as Inhibitors of Matrix Metalloproteinases and Pro-inflammatory Cytokines

    Thumbnail
    View/Open
    Zhang_grad.sunysb_0771E_11154.pdf (5.974Mb)
    Date
    1-Dec-12
    Author
    Zhang, Yu
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    There are two principal reasons why we age: 1) the toxicity of oxygen species; 2) the continuous degradation of collagen by groups of enzymes such as the matrix metalloproteinases (MMPs). The MMPs are a group of more than 25 structurally zinc-containing enzymes that are involved in the degradation of numerous extracellular, pericellular and non-matrix proteins. In many disease conditions their levels and proteinase activity rise, producing pathological and serious structural damage. Tetracyclines (TCs) are known inhibitors of mammalian-derived MMPs, and non-antibiotic formulations of doxycycline are FDA-approved to treat periodontitis and the chronic inflammatory skin disease, rosacea. However, a significant limitation is that the FDA only permits the use of subantimicrobial doses of these antibiotics for these diseases to prevent antibiotic side-effects. Therefore a series of chemically-modified TCs (CMTs), which are no longer anti-bacterial at any dose, were developed, but a significant side-effect was increased photosensitivity. Accordingly, in order to avoid these limitations, a series of chemically-modified curcumins (CMCs) were prepared and evaluated as new MMP inhibitors because they have the same zinc-binding site as the TCs, namely a polyenolic assembly. The current lead compound, CMC2.24 [a bis-(demethoxy) phenylaminocarbonyl derivative of curcumin], exhibits inhibitory IC50 values in vitro, ranging from 2-8 micromolar against two collagenases (MMP-8 and MMP-13), two gelatinases (MMP-2 and MMP-9), MMP-3, MMP-7 and MMP-12. The zinc-binding as well as the acidity constants of these CMCs were evaluated and correlated to their potency as MMP-inhibitors in vitro. An in vitro lipophilicity study and in vivo pharmacokinetics were also carried out for curcumin and CMC2.24. The results show that CMC2.24 is more bioavailable in rat serum, and is retained in organ tissues such as the liver, heart, spleen, lung, kidney and brain in comparison with curcumin, which showed much lower levels of retention in these tissues. It was also found that the production of the pro-inflammatory cytokines and the chemokines including TNF-alpha, IL-1beta; and MCP-1 was significantly reduced by CMC2.24 and a related trione (CMC2.5) in cell culture. Collateral studies with CMC2.24 involving its effects on various disease models are discussed.
    Description
    298 pg.
    URI
    http://hdl.handle.net/1951/59936
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV