• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Spectrum of Superconformal Theories

    Thumbnail
    View/Open
    Yan_grad.sunysb_0771E_11086.pdf (1.264Mb)
    Date
    1-Aug-12
    Author
    Yan, Wenbin
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    The spectrum is one of the basic information of any quantum field theory. In general, it is difficult to obtain the full quantum spectrum of QFT. However, in the case of four dimensional superconformal theories, certain information of the quantum spectrum can be extracted exactly. In such theories one can compute exactly certain observables containing spectral information with the help of localization technique. One such observable is the superconformal index, which is a partition function of the 4d theory on S<super>3</super> * S<super>1</super>, twisted by various chemical potentials. This index counts the states of the 4d theory belonging to short multiplets, up to equivalent relations that set to to zero all sequences of short multiplets that may in principle recombine into long ones. By construction, the index is invariant under continuous deformations of the theory. The superconformal index is studied for the class of N=2 4d superconformal field theories introduced by Gaiotto. These theories are defined by compactifying the (2,0) 6d theory on a Riemann surface with punctures. The index of the 4d theory associated to an n-punctured Riemann surface can be interpreted as the n-point correlation function of a 2d topological QFT living on the surface, which can also be identified as a certain deformation of two-dimensional Yang-Mills theory. With the help of different symmetric polynomials, even explicit formulae are conjectured for all A-type quivers of such class of theories, which in general do not have Lagrangian description. Besides the N=2 theories, the superconformal index of the N=1 Y<super>p,q</super> quiver gauge theories is also evaluated using R"omeslberger's prescription. For the conifold quiver Y<super>1,0</super> the result agrees exactly at large N with a previous calculation in the dual AdS<sub>5</sub> * T<super>1,1</super> supergravity. The superconformal index of a 4d gauge theory is computed by a matrix integral arising from localization of the supersymmetric path integral on S<super>3</super> * S<super>1</super> to the saddle point. As the radius of the circle goes to zero, it is natural to expect that the 4d path integral becomes the partition function of dimensionally reduced gauge theory on S<super>3</super>. We show that this is indeed the case and recover the matrix integral of Kapustin, Willett and Yaakov from the matrix integral that computes the superconformal index. Remarkably, the superconformal index of the "parent" 4d theory can be thought of as the q-deformation of the 3d partition function.
    Description
    163 pg.
    URI
    http://hdl.handle.net/1951/59926
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV