• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis and Characterization of Iodine laden Graphene Nano Platelets via reduction of Graphene Oxide Using Hydrogen Iodide

    Thumbnail
    View/Open
    Sundararaj_grad.sunysb_0771M_10872.pdf (3.183Mb)
    Date
    1-May-12
    Author
    Sundararaj, Joe Livingston
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    This research thesis proposes a novel method for the synthesis, analysis and characterization of Iodinated X-Ray contrast agents using Graphene Nanoplatelets (GNPs) for Computed Tomographic Imaging. Graphene Oxide was synthesized using the Hummers Method of Oxidation [1] through oxidative treatment of Graphite with Potassium Permanganate (KMnO4). The resulting Graphene Oxide was chemically reduced using varying concentrations of Hydrogen Iodide or Hydroiodic acid (HI), rather than the conventionally used highly toxic Hydrazine Hydrate (N2H4) to strip off the oxygen functionalities. In the process of chemical reduction using Hydrogen Iodide, we hypothesized that this would result in the incorporation of Iodine into the Graphitic structure. Raman Spectroscopy, EDS along with XRD analysis provided evidence for the reduction of GO. Raman spectra for reduced GNPs showed an increase in ID/IG ratio from that of graphene oxide and also a peak at 154cm-1 attributed to I5-. EDS/EDX spectra for HI reduced GO showed a peak at X-ray energy level 3.94KeV characteristic of Iodine. Further analysis using Ion-Selective Electrode measurements confirmed the presence of about 10% Iodine in the Hydroiodic acid reduced samples. SEM and TEM images showed a brief morphology of the Graphene Nanoplatelets. Finally, to elucidate the possibility of Iodinated GNPs to be developed into potential CT contrast agents in the near or far future, CT Phantoms of Iodine loaded GNPs at a concentration of 40mg/ml in water showed excellent contrast density with water and dilute Hydroiodic acid as controls.
    Description
    82 pg.
    URI
    http://hdl.handle.net/1951/59882
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV