• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Building Distributed Data Models in a Performance-Optimized, Goal-Oriented Optimization Framework for Cyber-Physical Systems

    Thumbnail
    View/Open
    Subramanian_grad.sunysb_0771E_11133.pdf (3.819Mb)
    Date
    1-Dec-12
    Author
    Subramanian, Varun
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Cyber-physical systems (CPS) are large, distributed embedded systems that integrate sensing processing, networking and actuation. Developing CPS applications is currently challenging due to the sheer complexity of the related functionality as well as the broad set of constraints and unknowns that must be tackled during operation. Building accurate data representations that model the behavior of the physical environment by establishing important data correlations and capturing physical laws of the monitored entities is critical for dependable decision making under performance and resource constraints. The goal of this thesis is to produce reliable data models starting from raw sensor data under tight resource constraints of the execution platform, while satisfying the timing constraints of the application. This objective was achieved through adaptation policy designs that optimally compute the utilization rates of the available network resources to satisfy the performance requirements of the application while tracking physical entities that can be quasi-static or dynamic in nature. The performance requirements are specified using a declarative, high-level specification notation that correspond to timing, precision and resource constraints of the application. Data model parameters are generated by solving differential equations using data sampled over time and modeling errors occur due to missed data correlations and distributed data lumping of the model parameters.
    Description
    203 pg.
    URI
    http://hdl.handle.net/1951/59880
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV