• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MULTIPLE DNA BINDING DOMAINS MEDIATE THE FUNCTION OF ERCC1-XPF IN NUCLEOTIDE EXCISION REPAIR AND INTERSTRAND CROSSLINK REPAIR

    Thumbnail
    View/Open
    Su_grad.sunysb_0771E_11231.pdf (21.75Mb)
    Date
    1-Dec-11
    Author
    Su, Yan
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Structure-specific endonucleases are widespread enzymes that incise phosphodiester bonds in DNA and play key roles in DNA transactions including the maintenance of genome stability. One such enzyme is ERCC1-XPF, which cleaves single-stranded/double-stranded DNA junctions, and is involved in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and other pathways. Defects in ERCC1-XPF lead to several hereditary diseases, like xeroderma pigmentosum, XFE progeroid syndrome, cranio-occulo-facio-skeletal syndrome, and Fanconi anemia. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5' to the lesion. In this dissertation, the roles of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates were studied. It was found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were required to significantly diminish NER activity, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. These studies demonstrate that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with the hypothesis that multiple weak protein-DNA and protein-protein interactions drive progression through the NER pathway. In addition, DNA binding residues of ERCC1-XPF were found to be more important for ICL repair than for NER. Impairment of DNA binding of ERCC1-XPF rendered cells more sensitive to exposure to crosslinking agents than to UV, suggesting tighter substrate binding by ERCC1-XPF is needed for ICL repair than for NER. Intriguingly, subsequent to our studies, mutations in DNA binding residues of XPF were found in Fanconi anemia patients, who have defects in ICL repair, showing that mutations in DNA binding domains of ERCC1-XPF can have pathway-specific pathogenic consequences in humans.
    Description
    137 pg.
    URI
    http://hdl.handle.net/1951/59878
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV