• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Conservation and Evolutionary Divergence in the Activity of Receptor-regulated Smads

    Thumbnail
    View/Open
    Sorrentino_grad.sunysb_0771E_10913.pdf (14.33Mb)
    Date
    1-May-12
    Author
    Sorrentino, Gina
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Activity of the TGFΒ pathway is essential to the establishment of body axes and tissue differentiation in bilaterians. Orthologs for core pathway members have been found in all metazoans. Uncertain homology of the body axes and tissues patterned by this pathway raises questions about the activities of these molecules across the metazoan tree. We focus on the principal canonical transduction proteins (R-Smads) of the TGFΒ pathway, which instruct both axial patterning and tissue differentiation in the developing embryo. We compare the activity of R-Smads from a cnidarian (Nematostella vectensis), an arthropod (Drosophila melanogaster), and a vertebrate (Xenopus laevis) in Xenopus embryonic assays. NvSmad1/5 ventralized Xenopus embryos when expressed in dorsal blastomeres, similar to the effects of XSmad1. However, NvSmad1/5 was less potent than XSmad1 in its ability to activate downstream target genes in Xenopus animal cap assays. NvSmad2/3 strongly induced general mesendoderm markers, but weakly induced genes involved in specifying the Spemann organizer. Furthermore, NvSmad2/3 was unable to induce a secondary axis in Xenopus embryos, whereas the orthologs from Xenopus (XSmad2 and XSmad2) and Drosophila (dSmad2) were capable of doing so. Replacement of the NvSmad2/3 MH2 domain with the Xenopus counterpart led to a slight increase in inductive capability, but it could not generate a secondary body axis. We conclude that the activities of Smad1/5 orthologs have been largely conserved across Metazoa, but the activity of Smad2/3 orthologs has undergone more evolutionary divergence. Given the high level of sequence identity among R-Smad orthologs, we compared the protein sequences of Smad2/3 orthologs from 30 different metazoan taxa to locate regions of variation among taxa. Functional regions showed striking conservation, with most of the amino acid variation located in regions that are not well-described in the literature at present. We recommend further chimeric and mutagenic experimentation with Smad2/3 and present candidate sites. Our data demonstrate that large-scale morphological variation can be caused by fine-scale molecular divergence.
    Description
    130 pg.
    URI
    http://hdl.handle.net/1951/59869
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV