• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Thermal plasticity within and across generations and its relevance to contemporary evolution

    Thumbnail
    View/Open
    Salinas_grad.sunysb_0771E_11084.pdf (6.393Mb)
    Date
    1-Aug-12
    Author
    Salinas, Santiago
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Understanding and predicting how populations will react to changes in the environment is a long-standing goal in evolutionary ecology. It is also of considerable practical importance, as anthropogenic changes stress species worldwide. The relevance of phenotypic plasticity is becoming more apparent as species are forced to cope with rapid changes in the environment. This dissertation explores ways in which phenotypic plasticity will play a major role in determining the future of populations. In Chapters 1 and 2, I evaluate a modeling framework that could be used to predict plastic changes in key life history traits of ectotherms brought about by temperature. This work, based on the metabolic theory of ecology (MTE), assumes that biological rates scale exponentially with temperature. I first show the validity of the MTE for predicting lifespan gradients within species and then apply this temperature-life history relationship to predict changes in ectotherms resulting from global temperature increases over the next 50 years. In Chapter 3, I experimentally test the plastic response of sheepshead minnows, Cyprinodon variegatus, an estuarine fish common to the east coast, to combinations of temperature (24, 29, 34??C) and food availability (60, 80, or 100% of maximum consumption). The thermal response of juvenile growth rate was mediated by food availability, while the age at maturation was independently affected by temperature and food. Notably, and despite very different thermal and feeding regimes, the fish matured within a small size window. In Chapters 4 and 5, I explore transgenerational plasticity (TGP) as a means to cope with temperature changes. When the temperature experienced by the parents acts as a reliable indicator of thermal offspring environment, a parent can "pre-program" offspring traits appropriate for the predicted environment. This transfer of information from parent to offspring has been termed TGP, and is well studied in plants and invertebrates. In these chapters, I show that thermal TGP has a strong effect in larval growth of sheepshead minnows. I also explore how transgenerational and phenotypic plasticity interact to shape the size of fish throughout life, and provide evidence suggesting that the TGP effect lasts for at least 2 generations.
    Description
    122 pg.
    URI
    http://hdl.handle.net/1951/59847
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV