• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Investigation of Factors that Control Droplet Formation in Microfluidic Cross-Junctions Using the Lattice Boltzmann Method

    Thumbnail
    View/Open
    Pellegrino_grad.sunysb_0771M_11221.pdf (1021.Kb)
    Date
    1-Dec-12
    Author
    Pellegrino, Jason
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Microfluidics could potentially provide a cheaper and more effective alternative to current industrial and laboratory fluid management techniques due to the large surface area-to-volume ratios; however, optimization of the flow conditions necessary for precise droplet generation is required for any segmented flow application. The Shan-Chen multicomponent multiphase Lattice Boltzmann method was used to simulate droplet formation conditions and provide insight about the conditions for different flow regimes like streaming, threading, and stable droplet generation. For the range of numerically stable flow conditions tested, the combined effects of the Capillary number and velocity ratio were demonstrated to be the process drivers for the cross-junction droplet size while the other dimensionless numbers had a less significant effect. Future studies include the analysis of other multiphase models to improve the numerical stability and reduce spurious velocities. In addition, there has already been some success in incorporating tracer particles into cross-junction droplets to quantify mixing during droplet coalescence. Further improvements will incorporate suspended magnetic particles to simulate the afforded mixing and separation capabilities.
    Description
    72 pg.
    URI
    http://hdl.handle.net/1951/59821
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV