• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interfacial Polymerization on Cellulose Nanofiber-Based Membrane as a New Pathway for Fabrication of Thin Film Nanocomposite Membrane

    Thumbnail
    View/Open
    Mo_grad.sunysb_0771M_10953.pdf (2.933Mb)
    Date
    1-May-12
    Author
    Mo, zhi rui
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Conventional thin film nanocomposite (TFNC) membranes are based on porous membranes produced by the phase inversion method. The top barrier layer in these membranes has smaller pores with a torturous pathway and together with fairly low porosity for the supporting layer, resulting in a relatively low flux. In this study, a high flux ultra-filtration cellulose nanofiber-based (CN) membrane which consists of a three-tier composite structure, consisting of a TEMPO-oxidized cellulose nanofiber top layer, an electrospun poly(acrylonitrile) (PAN) scaffold and a non-woven polyethylene terephthalate (PET) support was used as a substrate for the thin film nanocomposite membrane preparation. The properties of the cellulose nanofiber-based membrane were fully characterized. The barrier layer of this membrane was prepared by interfacial polymerization (IP) of m-phenylenediamine (MPD) and piperazine (PIP) with trimesoyl chloride (TMC) on top of the CN membrane. The interfacial polymerization between MPD and TMC was investigated by studying the effects of the MPD concentration change, reaction time and curing temperature. Besides, the addition of PIP into the aqueous phase greatly improves the permeate flux without sacrificing the rejection ratio. When the MPD and PIP concentration were 1.5% and 0.5%, respectively, the thin film nanocomposite membrane with CN substrate exhibited a rejection of 94.6% and a permeate flux of 30.5 L/m2h, about 2 times higher than that of only 2% MPD concentration. Such thin film nanocomposite membrane has about 30% lower permeate flux than the commercial membrane, Dow FilmtecXLE-440 with a comparable rejection ratio (~95%) due to the thicker barrier layer produced by a manual preparation process. In addition, the A and B values of this TFNC membrane were 4.3 ?? 0.1 L/(m2*h*bar) and 1.54 L/m2h, compared with the commercial membrane, Dow filmtec XLE-440, 6.9 L/m2h*bar and 3.06 L/m2h, respectively. The filtration performance of this thin film nanocomposite membrane under various applied pressures (100~800 psi) was also studied.
    Description
    59 pg.
    URI
    http://hdl.handle.net/1951/59795
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV