• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis of Clickable Amphiphilic 1,3-Propanediol Dendrons

    Thumbnail
    View/Open
    Liang_grad.sunysb_0771M_10810.pdf (1.396Mb)
    Date
    1-Dec-11
    Author
    Liang, Xiaoli
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Biohybrid materials combine proteins or peptides with synthetic molecules to generate materials with complex functions. Proteins have functions such as enzymatic activity, signal generation/recognition, and materials transfer due to their well-defined structures. Conjugating polymers to proteins has produced nanostructured biohybrid materials. However, only a fraction of the proteins are functional. De novo designed peptides that form the functional part of a protein are interesting alternatives to proteins in biohybrid materials. Nanostructured biohybrid materials are obtained by conjugating liquid crystal mesogens or polymers to peptides. We are interested in making functional biohybrid materials by conjugating amphiphilic dendrons to de novo designed proteins. Amphiphilic 1,3-propanediol dendrons form lamellar or columnar organization in the crystalline phase. We hypothesize that biohybrid materials obtained by covalently attaching amphiphilic dendrons to the exterior of a de novo designed proteins will have lattice structures similar to those of the dendrons in the solid-state. To test this hypothesis, we need amphiphilic dendrons to conjugate to the protein. Two new amphiphilic 1,3-propanediol dendrons with azide apex groups have been synthesized. The iterative synthesis of amphiphilic 1,3-propanediol dendrons was improved by adopting the use of 15-crown-5 as a catalyst for the Williamson etherification step. The reactions require shorter time to reach completion, reduce the amount of mono-alkylated intermediates as byproducts, and avoid the use of DMF as a co-solvent. The two new compounds can be attached to de novo designed proteins by the copper-catalyzed azide-alkyne cycloaddition reaction.
    Description
    47 pg.
    URI
    http://hdl.handle.net/1951/59760
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV