• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Least Sine Squares and Robust Compound Regression Analysis

    Thumbnail
    View/Open
    Han_grad.sunysb_0771E_10819.pdf (1.568Mb)
    Date
    1-Dec-11
    Author
    Han, Hao
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    The errors-in-variables (EIV) regression model, being more realistic by accounting for measurement errors in both the dependent and the independent variables, is widely used in econometrics, chemistry, medical, and environmental sciences, etc. The traditional EIV model estimators, however, can be highly biased by outliers and other departures from the underlying assumptions. In this work, we propose two novel nonparametric estimation approaches - the least sine squares (LSS) and the robust compound regression (RCR) analysis methods for the robust estimation of EIV models. The RCR method, as a natural extension and combination of the new LSS method and the compound regression analysis method developed in our own group (Leng and Zhu 2009), provides the robust counterpart of the entire class of the traditional maximum likelihood estimation (MLE) solutions of the EIV model, in a 1-1 mapping. The advantages of both new approaches lie in their intuitive geometric interpretations, their distribution free property, their independence to the ratio of the error variances, and most importantly their robustness to outlier contamination and other violations of distribution assumptions. Monte Carlo studies are conducted to compare these new robust EIV model estimation methods to other nonparametric regression analysis methods including the least squares (LS) regression analysis method, the orthogonal regression (OR) analysis method, the geometric mean regression (GMR) analysis method, and the robust least median of squares (LMS) regression analysis method. Guidelines on which regression methods are suitable under what circumstances are provided through these simulation studies as well. Real-life examples are provided to further illustrate and motivate these new approaches.
    Description
    107 pg.
    URI
    http://hdl.handle.net/1951/59683
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV