• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Polymers for Novel Applications: I. Hydrogel Implants for Post-Lumpectomy Patients and II. Cellulose Nanofibrous Composite Membrane for Heavy Metal Adsorption

    Thumbnail
    View/Open
    Guan_grad.sunysb_0771M_10954.pdf (961.8Kb)
    Date
    1-May-12
    Author
    Guan, Si Hui
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Abstract of the Thesis Polymers for Novel Applications: I. Hydrogel Implants for Post-Lumpectomy Patients and II. Cellulose Nanofibrous Composite Membrane for Heavy Metal Adsorption by Si Hui Guan Master of Science in Chemistry Stony Brook University 2012 I. Breast cancer patients who have followed the lumpectomy procedure to take out the infected tissue will leave an empty space in their breasts. The aim of this study is to design and synthesize a novel Pluronics-based hydrogel that is radiation resistant, osmotic pressure balanced, radiological imaging friendly, while temporarily replicating the physical and mechanical properties of the native breast tissue. In order to produce a photo-cross-linkable hydrogel, Pluronics F127 was chemically modified from copolymer Poloxamer 407, by using diacrylates. The modified hydrogel, to our knowledge, is non-toxic and biocompatible to the human body. Furthermore, it can act as a scaffold to regenerate natural tissue in the presence of growth factors. In the process, the hydrogel will be designed to degrade slowly in order to accommodate the regenerated tissue as well as to maintain the shape of the breast. Therefore, this new hydrogel will be an innovative approach for breast reconstruction applications. II. The heavy metal pollution problem is an environmental concern in developing and developed countries. The current study is designed for a novel microfiltration membrane consisting of cellulose nanofibers (CNF) and amino-modified cellulose nanofibers (mCNF), infused in an electrospun polyacrylonitrile (PAN) scaffold on a non-woven polyethylene terephthalate (PET) support, which can effectively remove a range of heavy metals from water. The high porosity, large surface area per unit volume and dense charges of the nanoscale-web structure can provide the resultant micro-filtration membrane with an ability to remove 159mg Pb (II) per gram CNF (0.766 mmol/g) and 71mg Cr (VI) per gram mCNF(1.36 mmol/g) by static adsorption. For dynamic adsorption, the CNF composite membrane is able to remove 259 mg/g (1.25 mmol/g) Pb (II), while the mCNF composite membrane is able to remove 100 mg/g (1.92 mmol/g) Cr (VI). Furthermore, the composite membrane can be recycled by utilizing a desorption cycle, which can remove 100 % of the adsorbed metal ions from the membrane. Therefore, a low cost, safe and effective pathway for heavy metal ion removal has been developed.
    Description
    77 pg.
    URI
    http://hdl.handle.net/1951/59674
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV