• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Accurate, Semi-Implicit Methods with Mesh Adaptivity for Mean Curvature and Surface Diffusion Flows Using Triangulated Surfaces

    Thumbnail
    View/Open
    Clark_grad.sunysb_0771E_10871.pdf (1022.Kb)
    Date
    1-May-12
    Author
    Clark, Bryan L.
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Geometric partial differential equations, such as mean-curvature flow and surface diffusion, are challenging to solve numerically due to their strong non-linearity and stiffness, when solved explicitly. Solving these high-order PDEs using explicit methods would require very small time steps to achieve stability, whereas using implicit methods would result in complex nonlinear systems of equations that are expensive to solve. In addition, accurate spatial discretizations of these equations pose challenges in their own rights, especially on triangulated surfaces. We propose new methods for mean curvature flow and surface diffusion using triangulated surfaces. Our method uses a weighted least-squares approximation for improved accuracy and stability, and semi-implicit schemes for time integration for larger time steps and higher efficiency. If mesh element quality is initially poor, or becomes poor through evolution under mean curvature flow or surface diffusion, we utilize mesh adaptivity to improve mesh quality and proceed further in evolution. Numerical experiments and comparisons demonstrate that our method can achieve second-order accuracy for both mean-curvature flow and surface diffusion, while being much more accurate and stable than using explicit schemes or alternative methods.
    Description
    84 pg.
    URI
    http://hdl.handle.net/1951/59616
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV