• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis, and/or Structural, Conductivity Investigations of Single and Polycrystalline Fluorides, Ionic Liquids and Conjugated Diynes Using Solid-state Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction

    Thumbnail
    View/Open
    Boyd_grad.sunysb_0771E_11122.pdf (6.327Mb)
    Date
    1-Aug-12
    Author
    Boyd, Stephen A.
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    One overarching focus of solid-state chemistry has evolved due to the desire to understand the structures and mechanisms underlying conductivity, whether electronic or ionic, and to seek ways toward enhancement and control of those mechanisms and materials. Modern strategies are also shaped by environmental concerns and these concerns have, in turn, influenced the search for synthetic routes which employ more benign methods. The first sections of this dissertation describe adapted and modified reverse-micellar methods, as applied toward the room-temperature synthesis of several different types of binary and lanthanide-doped, monodisperse, nanoparticle (20-40nm), polycrystalline fluorides. Their structures were investigated using Magic-angle Spinning Nuclear Magnetic Resonance (MAS NMR) and X-ray Crystallography. The difficulty of applying these aqueous methods toward nanoparticle lead fluoride (PbF2) was surmounted when a novel crystal, cetyltrimethylammonium hexafluorosilicate monohydrate, was synthesized, its crystal structure solved, and employed as a fluoride delivery mechanism to successfully synthesize both a- and b-phase PbF2. MAS NMR spectroscopy is well-suited as an investigative tool for both crystalline and non-crystalline materials. Two sections of the dissertation deal with two types of compounds in which MAS NMR multinuclear pulse techniques (19F, 7Li, 1H, and 13C) play a critical role in the deduction of structure (conjugated diynes) and conductive behavior as a function of temperature (ionic liquids). The final sections of this dissertation again rely heavily on X-ray crystallography and MAS NMR, as well as Impedance Spectroscopy and EXAFS/XANES via collaborative efforts, to examine fluoride conductivity and temperature-dependent behavior of fluoride materials. The super-Lewis acid, antimony pentafluoride, was used to explore whether morphology affects mobility across grain boundaries when vacancies are artificially induced in both nanoparticles as well as their larger polycrystallite analogs. In a collaborative effort, barium fluoride and calcium fluoride single-crystal heterostructures were grown by the Joachim Maier Group and were used to elucidate the precise mechanisms of observed conductivity enhancement in these heterostructures.
    Description
    244 pg.
    URI
    http://hdl.handle.net/1951/59585
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV