• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design of Low Noise and Low Power Front-end Readout Circuitry in Radiation Detector System

    Thumbnail
    View/Open
    YEH_grad.sunysb_0771M_10581.pdf (1.583Mb)
    Date
    1-Aug-11
    Author
    Yeh,Yi-Shin
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    This thesis presents a design methodology of a low-power and low-noise integrated front-end readout circuits for radiation detection. Since a charge sensitive amplifier (CSA) and a pulse shaper are essential circuit units in the low-power and low noise front-end readout circuits, this thesis provides how to design the low power low noise CSA and the pulse shaper. The CSA can allow the electrons generated from the detector to integrate on a feedback capacitor of a CSA. The main function of a CSA is to amplify the input signal charge generated from the detector into the output voltage step signal. The input transistor optimization can significantly reduce the noise impact on the whole system so it can help the front-end readout circuit increase the sensitivity in order to detect smaller electrons generated from the detector. The pulse shaper is a high order semi-Gaussian pulse shaping filter. The main function of the pulse shaper is to filter the output signal and noise from the CSA in order to maximize signal-to-noise ratio and obtain the lowest equivalent noise charge (ENC). In this thesis, the semi-Gaussian pulse shaper with ICON cells can achieve a longer time constant in order to minimize the noise in the circuitry.
    URI
    http://hdl.handle.net/1951/56163
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV