• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design, Synthesis and Evaluation of Novel Taxane-Based Anticancer Agents

    Thumbnail
    View/Open
    Li_grad.sunysb_0771E_10506.pdf (4.641Mb)
    Date
    1-May-11
    Author
    Li, Yuan
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Taxol¶© (paclitaxel) and TaxotÇùre¶© (docetaxel) are the most widely used pharmaceuticals in cancer chemotherapy. These drugs have been approved by the FDA for the treatment of advanced ovarian cancer, metastatic breast cancer, Kaposi Sarcoma, non-small cell lung cancer, etc. Both drugs are also under clinical development for additional cancer indications. Although established great success in the clinic, paclitaxel and docetaxel have exhibited a number of undesirable side effects as well as low efficiency against drug-resistant cancerphenotypes. Therefore the development of new analogs, which are expected to have higher potency and better pharmacological properties but fewer side effects, is of high value from the cancer chemotherapy perspective. The dissertation will present the design, synthesis and biological evaluation of the following novel taxane-based anticancer agents: (1) New generation taxoids: via the highly efficient β-Lactam Synthon Method, the design and synthesis of a large number of novel taxoids with systematic modifications has led to the development of highly potent second- and third-generation taxoids. In parallel, taxoids against multi-drug resistance cell lines have also been developed to create the dual functions (the cytotoxicity and the MDR reversal activity) into one molecule. (2) Macrocyclic taxoids: paclitaxel takes effect by inducing microtubule stabilization, G2/M block and apoptosis. Although this classic mechanism of action has been known for almost 30 years, the binding conformation of paclitaxel to β-tubulin is yet to be fully understood. Structurally constrained macrocyclic taxoids were designed, synthesized and evaluated to help identify the bioactive conformation(s). (3) Novel taxoid conjugates: the undesirable side effects in conventional cancer chemotherapy are generally resulted from the lack of tumor-specificity. Omega-3 fatty acids have been shown to be beneficial for tumor-targeting drug delivery. Novel tumor-targeting conjugates of new generation taxoids were hence designed and synthesized using omega-3 polyunsaturated fatty acids.
    URI
    http://hdl.handle.net/1951/56053
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV