• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Testing for a Poisson Mixtures: Comparison of the Power of the Posterior Predictive Check (PPC) and Bootstrap Approaches

    Thumbnail
    View/Open
    Lee_grad.sunysb_0771E_10629.pdf (785.2Kb)
    Date
    1-Aug-11
    Author
    Lee, Donghyung
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Identifying the number of components in a finite mixture is hard problem. Generally, the likelihood ratio test provides a robust method for statistical inference for this problem. However, the classical theorem for the asymptotic null distribution of the LRT statistic cannot be applied to finite mixture alternatives. So other inferential methods have been proposed to assess the statistical significance of an observed LRT value. Two such methods are the bootstrap and posterior predictive check (PPC). In this dissertation we conducted simulation studies to compare the power of the bootstrap method to the PPC method as it applies to identify the number of components in a Poisson mixture. We considered two simple hypothesis tests where we test a single Poisson distribution against a mixture of two Poisson distributions and a zero inflated Poisson (ZIP) distribution. For the two-component Poisson mixture alternative, we compared the power of the PPC method to the Bootstrap method. In the case of the zero inflated Poisson (ZIP) alternative, we compared the PPC method to the bootstrap method and two asymptotic tests proposed by Rao and Chakravarti [20] and van den Broek [24] for detecting zero inflation in a Poisson. Simulated data sets were used to compare the performance of the methods for each test. A wide range of cases under these alternative hypotheses were considered with the objective of seeing whether one method is uniformly more powerful than the others for each of these alternatives.
    URI
    http://hdl.handle.net/1951/56049
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV