• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Wireless Indoor Localization using Expectation-Maximization on Gaussian Mixture Models

    Thumbnail
    View/Open
    Goswami_grad.sunysb_0771M_10524.pdf (1.157Mb)
    Date
    1-May-11
    Author
    Goswami, Abhishek
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    We consider the problem of localizing a wireless client in an indoor environment based on the signal strength of its transmitted packets as received on stationary sniffers or access points. Current state-of-the art indoor localization techniques have the drawback that they rely extensively on a 'training phase'. This 'training' is a labor intensive process and must be done for each target-area under consideration for various device types. This clearly does not scale for large target areas. The introduction of unmodeled hardware with heterogeneous power-levels etc further reduces the accuracy of these techniques. We propose a solution in which we model the received signal strength as a Gaussian Mixture Model (GMM). We use expectation maximization to find the parameters of our GMM. We can now give a location fix for a transmitting device based on the maximum likelihood estimate. This way, we not only avoid the costly 'training phase' but also make our location estimates much more robust in the face of various form of heterogeneity and time varying phenomena. We present our results on two different indoor testbeds (CEWIT and Computer Science Buildings in Stony Brook University) with multiple WiFi devices (iphones, android phones, laptops, netbooks). We demonstrate that the accuracy is at par with state-of-the-art techniques but without requiring any training. We also show an application of such localization in extracting the hidden social structure of the occupants of the building based on their WiFi activity. We show interesting observations from the Computer Science building in Stony Brook University.
    URI
    http://hdl.handle.net/1951/56011
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1956]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV