• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effects of Disordered Dopants on the Electronic Structure of Functional Materials: Wannier Function-Based First Principles Methods for Disordered Systems

    Thumbnail
    View/Open
    Berlijn_grad.sunysb_0771E_10610.pdf (13.09Mb)
    Date
    1-Aug-11
    Author
    Berlijn, Tom
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    Doping is one of the most powerful tools for tuning the electronic properties of functional materials. Well known examples include doped semiconductors and the Cu and Fe based high temperature superconductors. Besides introducing charge carriers and chemical pressure, it is almost inevitable that dopants will introduce quenched disorder into the system. This can have a wide range of consequences for the electronic structure, such as electric and thermal resistance, a deformation of the nodal structure of a superconductor or Anderson localization. In this thesis the influence of disordered dopants is studied by calculating the configuration-averaged spectral function <A(k,w)> from first principles within the super cell approximation. To overcome two major problems of the super cell approximation, the band folding and the computational expense, two Wannier function based first principles techniques are developed. The developed methodology is applied to address three realistic materials problems. The first problem is on the influence of disorder on the Fermi surface of NaxCoO2, an important thermoelectric material. The second problem is on the role of oxygen vacancies in the room temperature ferromagnetism in the recently discovered dilute magnetic semiconductor Cu:ZnO. The third problem is on the carrier doping and charge localization in transition metal doped iron based superconductors.
    URI
    http://hdl.handle.net/1951/55957
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV