• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structural Equation Modeling for Mixed Designs

    Thumbnail
    View/Open
    Sharpe_grad.sunysb_0771E_10068.pdf (1.879Mb)
    Date
    1-May-10
    Author
    Sharpe, Kathryn Elizabeth
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    A mixed-design study, also called a split-plot design, intends to evaluate the differences among multiple independent groups and multiple treatment conditions simultaneously, with repeated measurements of the same participants. Structural equation modeling (SEM), also referred to as path analysis, is a statistical technique used by researchers in many fields to verify or disprove hypothesized causal links among a predefined system of variables. The existing SEM methods for detecting differences in path strength among multiple datasets can accommodate comparisons of independent groups or repeated measures (e.g. with and without stimulus), but not both. Thus SEM is unable to perform a direct analysis of a mixed-design study. To fill this void, we have developed a cohesive two-level parametric modeling approach using the maximum likelihood method (MLE SEM) for detecting differences in pathways caused by multiple factors, both between and within groups, such as group membership and treatment condition. The method is illustrated through a brain functional pathway analysis. Further, developments of the mixed-design methodology for Latent Variable SEM and Partial Least Squares SEM (PLS SEM) are included, and guidelines for power and sample size are provided.
    URI
    http://hdl.handle.net/1951/55620
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV