On Microstructure Evolution in Fiber-reinforced Elastomers and Implications for Their Mechanical Response and Stability

Loading...
Thumbnail Image
Issue Date
1-May-10
Authors
Li, Zhiyun
Publisher
The Graduate School, Stony Brook University: Stony Brook, NY.
Keywords
Abstract
Lopez-Pamies and Idiart [Lopez-Pamies, O., Idiart, M.I., 2010, Fiber-reinforced hyperelastic solids: A realizable homogenization constitutive theory. Journal of Engineering Mathematics, doi:10.1007/s10665-009-9359-y.] have recently put forward a homogenization theory with the capability to generate exact results not only for the macroscopic response and stability, but also for the evolution of the microstructure in fiber-reinforced hyperelastic solids subjected to finite deformations. In this thesis, we make use of this new theory to construct exact, closed-form solutions for the change in size, shape, and orientation undergone by the underlying fibers in a model class of fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these results we then establish connections between the evolution of the microstructure and the overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In particular, we show that the rotation of the fibers may lead to the softening of the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we show that this geometric mechanism is intimately related to the development of long-wavelength instabilities. These findings are discussed in light of comparisons with recent results for related material systems.
Description
DOI