• Login
    View Item 
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    •   DSpace Home
    • Stony Brook University
    • Stony Brook Theses & Dissertations [SBU]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of the Hemopexin Domain of Matrix Metalloproteinases in Cell Migration

    Thumbnail
    View/Open
    Dufour_grad.sunysb_0771E_10302.pdf (8.638Mb)
    Date
    1-Dec-10
    Author
    Dufour, Antoine Hugues-Olivier
    Publisher
    The Graduate School, Stony Brook University: Stony Brook, NY.
    Metadata
    Show full item record
    Abstract
    The biological functions of matrix metalloproteinases (MMPs) extend beyond extracellular matrix degradation. Non-proteolytic activities of MMPs are just beginning to become understood. The role of proMMPs in cell migration was herein evaluated using transfected COS-1 cells with various proMMP cDNAs employed in a Transwell chamber migration assay. Latent MMP-2 and MMP-9 enhanced cell migration to a greater extent than latent MMP-1,. 3,. 11 and. 28. To examine if proteolytic activity is required for MMP-enhanced cell migration, three experimental approaches including a fluorogenic substrate degradation assay, transfection of cells with catalytically inactive mutant of MMP cDNAs, and addition of MMP inhibitors were utilized. The mechanism underlying the non-proteolytic enhancement of cell migration by MMPs was evaluated by the structure-function relationship of MMP-9 on cell motility. A domain swapping approach was utilized to demonstrate the role of the hemopexin (PEX) domain of proMMP-9 in cell migration when examined by a Transwell chamber assay and by a phagokinetic assay. TIMP-1, which interacts with the PEX domain of proMMP-9, inhibited cell migration whereas TIMP-2 had no effect. Furthermore, using a biochemical approach, it was demonstrated that dimerization of MMP-9 through the PEX domain appears necessary for MMP-9-enhanced cell migration. Following a series of substitution mutations within the MMP-9 PEX domain, blade IV was shown to be critical for homodimerization, whereas blade I was required for heterodimerization with CD44. Both blade I and IV mutants showed diminished enhancement of cell migration compared to wild type MMP-9 transfected cells. Peptides mimicking motifs of the outermost strands of the first and fourth blades of the MMP-9 PEX domain were designed; these peptides efficiently blocked MMP-9 dimerization and inhibited motility of COS-1 cells overexpressing MMP-9, HT-1080 and MDA-MB-435 cells. Using a shRNA approach, CD44 was found to be a critical molecule in MMP-9-mediated cell migration. An axis involving an MMP-9-CD44-EGFR signaling pathway in cell migration was identified using an antibody array and specific receptor tyrosine kinase inhibitors. In conclusion, the mechanism by which proMMP-9 can enhance cell migration was dissected. Biochemical studies led to the development of structure-based inhibitory peptides, and small molecules targeting MMP-9-mediated cell migration.
    URI
    http://hdl.handle.net/1951/55415
    Collections
    • Stony Brook Theses & Dissertations [SBU] [1955]

    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV
     

     


    SUNY Digital Repository Support
    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV