Material Memoir: Artist Statement

My family owns a fifty acre plot of rolling red clay hills in West Virginia. When I return home, I dig clay, a pilgrimage to harvest from the strata of memory. This body of work explores the potential of wild West Virginia clay through the wood firing process. The kiln creates a dramatic range of effects as varying amounts of ash and heat amalgamate and give vitality to the wild clays I use. The kiln is my collaborator, a trusted but pleasantly unpredictable partner lending its voice to mine to create something made from a life of memory and memorial.

Abstract

Almost every Sunday of my childhood, my family gathered here for Sunday dinner. My family would meet on a rolling red clay hill topped with pin oak and pine forests, gentle fields, and barns that lean and sag with the weathering of time. My great grandmother lived on one side of the hill, and my grandparents on the other. My great grandmother’s parents started the tradition, and it followed the generations down to my grandmother and grandfather, Alice and Bernard Bosley, who took up the mantle during my childhood. In 2010, I moved to Japan to teach English at a rural high school in Kochi Prefecture. I returned to America in 2014 as a potter’s apprentice studying the traditional Japanese wood-fired ceramics with the ceramic artist
Jeff Shapiro in Accord, New York. Since then, my grandparents have passed, but I find that they are more present in my thoughts than ever before. When they were ill, I returned to dig clay from their land to merge my new found passion with my childhood. Now, I return regularly to harvest clay and replenish the memories of my family.

Material holds memory. It has a lingering narrative more akin to memoir than a full memory. Memoir is not a life’s story; rather it is a remembered story from a life. In Material Memoir, I explore the use of West Virginia clay to construct artifacts that illustrate my longing from home and passion for the wood firing process.

Firing in an anagama kiln is the perfect analog for this material sense of memoir. Each piece becomes a marker for the dynamic forces of flame and ash that build up over the course of days. The dramatic range of surfaces reconstruct the narrative of this labor-intensive process. I am compelled to create these artifacts to authenticate my memories while exploring the traditions and histories that are embedded in the wood firing process.

Thesis Narrative: Of Tradition and Memory

“I witness with pleasure the supreme achievement of memory, which is the masterly use it makes of innate harmonies when gathering to its gold the suspended and wandering tonalities of the past.”

Vladimir Nabokov [77]

Memoir inhabits a liminal space. Defined as the written memories and moments of an individual’s life according to their perspective. Rooted in the French word mémoire, which
translates more clearly as a reminiscence, memoir is a lense of truth. In my work for *Material Memoir*, I explore the presence of remembered history through material, form, and process to search for something that once was, but will never be again.

At the base of the most prominent hill on my family’s property sits a skeletal cabin clad in peeling white paint and rust. My grandmother told me it was one of many cabins throughout the Mid-Ohio Valley built as temporary housing for brick makers that traveled to the factories in Parkersburg. During the summer months, laborers from all over West Virginia would come to make bricks, and these simple white cabins were placed on willing participant’s land as affordable shelters.

Mineral Wells is a small rural community in the Mid Ohio Valley situated very close to the West Virginia and Ohio border. West Virginia has quite a history with the ceramic and brick industry. One of the first potteries established west of the Appalachian mountains was the
Morgantown Pottery which used clay from the terraces of the Monongahela River. Morgantown was the first large scale ceramic industry in West Virginia and focused mainly on bringing local utilitarian salt fired crocks and storage jars to the population as an alternative to overpriced stoneware from Baltimore and New York. Morgantown Pottery was established in 1785 and ceased business operations in 1898, but just two hours southwest in my hometown of Parkersburg, West Virginia, the Donaghho Pottery was founded in 1866.

Donaghho was most known for their production of stoneware made from a massive seam of Ohio River clay that permeated the area’s already abundant earthenware clays. While Donaghho disbanded in the early 1900s there is a thriving community of collectors that seek their salt-fired stoneware jars, jugs, and crocks. My grandmother proudly owned several
Donaghho crocks, and would frequently tell me of that history for our area once I discovered my passion for ceramics.

My work and process are undeniably affected by a hybridized history of the physical land where I grew up and my experience and study of Japan’s ceramic history. In his writings on memoir and memory, Pierre Nora breaks down and defines memory as individual, archival, and alienated memory. Nora’s alienated memory is a memory that comes from studying the past [64]. When I lived in Japan, the ceramic history of Japan’s six ancient kiln sights consumed my thoughts. Bizen, Tanban, Shigaraki, Echizen, Seto, and Tokoname all developed unique styles for firing and making based on the qualities of the clay deposits and resources near each village. The historic styles of these six villages began in the sixteenth century and have lasting effects on contemporary Japanese ceramics.

The wares of Bizen in Okayama prefecture are almost singularly responsible for my initial explorations in clay. The surfaces of Bizen range from deep red to satin black with flashes of yellow amber ash that comes from prolonged high-temperature firings and the quality of the clay used. The specificity of the local material was the genesis of the modern-day stylistic narrative of Bizen pottery. What incredible power that iron-rich mud has attained over the years,
centuries of memory and tradition! What power, what memories and stories does the clay in my history possess? How do I write that narrative with the objects I create?

When my grandparents passed away, the importance of returning home felt more monumental. Each visit became a chance to explore the space they left behind, to experience family. In his article on memoir, Nora states, “The less memory is experienced from within the greater the need for exterior props and artifacts to make it accessible.”[64] The objects in my thesis are artifacts of process and memory — their creation bordering compulsion. The platters and house like structures that make up Material Memoir all began as coils of clay, memory, or both earth and mind. Are they the same thing? Each coiling handful of clay was painstakingly dug, transported, processed, and molded into shape. The platters each have sculpted lips depicting seats at the table in my grandparent’s kitchen. The three pieces titled The House That Memory Built are repositories of memory rooted in the feelings longing for happiness that soaked into that clay from generations of my family’s collective memory.

The physical making of my work is highly process focused. Every firing of a wood kiln is an engaging conversation with the kiln, a learning experience, and an opportunity to build on or previous conversations to deepen the friendship. While not entirely predictable the dynamic environment within has almost allegorical similarities to the malleability of memoir. In his essay Craft and the Allegorical Impulse, Glenn Adamson develops a concept of allegory that is eerily similar to the definition of memoir that Nora defines in his writings: “It [allegory] can be understood metaphorically as a constantly renewable field of fragments, like and architectural
ruin, ever ready for reinhabitation.” Like memoir applied across disciplines of tangible and intangible. My concept of working in memory speaks to the fragmented and reconstructed realities of process, tradition, and memory. Adamson goes on to discuss Walter Benjamin’s writings and describes allegorical work as, “cross[ing] aesthetic boundaries’. Emotionally, it is an elegiac mood, “consistently attracted to the fragmentary, the imperfect, and the incomplete”. The pieces I mold, refine, and care for transform in the flames and atmosphere of the firing. They emerge changed, warped, and coated in layers of historic and cultural fragments that cannot paint a complete truth.

I create artifacts of process and personal memory. Depending on their placement in the kiln these objects are painted, bent, and fractured by the dynamic realities of the wood burning kiln, and the lingering ghost of touch retained by the physical memory of clay shown in the mark of a finger, or the stress fracture left by the turbulence of flame. In all my work I attempt to sort through notions of learned tradition, nostalgia, regret, and the desire to memorialize. Nora elegantly concludes his exploration of memoir as follows:

From countless microhistories we take shards of the past and try to glue them together, in the hope that the history we reconstruct might seem more like the history we experience. One might try to sum all this up by using the term memoir (or mirror memory), but the problem is that mirrors only reflect identical copies of ourselves, whereas what we seek in history is difference -and through difference, a sudden revelation of our elusive identity. We seek not our origins but a way of figuring out what we are from and what we are no longer.[66]
My work treads the line between allegory and memoir, pulling from traditions of process laden studio practice, and materials soaked in highly personal memories. My objects exist as monuments to forgotten ceremony and the desire to make my memories tangible. The clays I work with are as malleable as the histories we construct, and in the end it is only the exploration of but a glimpse in a whole lifetime. A construction of fire and mud, a material memoir.
Materials and Techniques

Using Wild Clays:

“The world around us is a huge storeroom of potter’s supplies.” - Phil Rodgers (pg. 56)

My studio practice begins on my family’s land in West Virginia. There are two clay deposits I dig from on this land. The smaller of the two is at the base of the hill in a ditch carved by rainwater. There are often chunks of gravel, roots, and leaf litter that must be cleared and dug through before it is harvested. Stone like and brittle when initially collected the clay has a vibrant ocher color. If crushed into a fine powder and then rehydrated it reveals a plastic, but toothy clay body.

The second and far larger site makes up the bulk of the fifty-acre hillside. My grandmother never gardened because she always said the land was thick red mud lacking in any nutrients. Digging just an inch below the topsoil reveals a dense clay largely free of stones or organic material with black dots of iron-rich inclusions. The clay can immediately be worked into a soft coil and comfortably wrapped around the finger, a field test for plasticity and clay content.

The raw clays are then dried and broken down into more uniform smaller, gravel-sized, pieces. These are easier to rehydrate as a super hydrated slip that is poured through a series of quarter and half inch sieves that catch any large stones and roots that were harvested along with the clay. This level of filtering yields a very open clay body that is quite groggy and rough in comparison to a store-bought mixed clay. If a finer clay body were desired, it would simply require reducing the mesh of the sieve utilized.
Once these slurries are sieved, I allow the excess water to evaporate off until the clay is a thick slip. From here it can be dried on plaster bats and wedged for immediate use, or blended with other clays and materials to alter the body of the clay. These wild clays were tested in oxidation and found them to have a thirteen percent shrinkage, and comfortably fired to a deep purple-red at cone 6. I tested the pure clay up to cone 9 in a much smaller wood kiln before building my thesis work and trying these clays in the anagma.

To harvest my wild clay I drive nine hours to get to my family’s land. The need to extend the use of the raw material I was able to harvest with each pilgrimage was evident after I began work on the series *The House That Memory Built*, which I will elaborate on in the next section. Each of these sculptures used close to two hundred pounds of wet clay in their initial shaping. After hours of processing more clay, I began to blend the wild clay with other materials to extend the life of my quickly dwindling native clay supply. After many tests, a ratio of two five-gallon buckets full of thick wild clay slip blended with silica sand, Lizella, Hawthorn Bond, Godzilla grog, Helmar’s Kaolin, and Laterite proved to give the wild clay an excellent toothy quality and added depth and variety to the flashing and natural ash laden surfaces in the firing.

<table>
<thead>
<tr>
<th>Wild West Virginia Clay</th>
<th>2 five gallon buckets of thick slip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lizella</td>
<td>30 ldz</td>
</tr>
<tr>
<td>Hawthorn Bond</td>
<td>30 ldz</td>
</tr>
<tr>
<td>Helmar’s Kaolin</td>
<td>22 ldz</td>
</tr>
<tr>
<td>Laterite</td>
<td>18 ldz</td>
</tr>
<tr>
<td>Silica Sand</td>
<td>10 ldz</td>
</tr>
<tr>
<td>Godzilla Grog</td>
<td>5 ldz</td>
</tr>
</tbody>
</table>
Form and the Act of Making:

Material has agency and memory, and it is because of this intrinsic memory that I chose hand building as my primary technique for making all the work for Material Memoir. The project originated in the desire to keep me connected to my home in West Virginia. Through the use of thick coil construction and a reductive carving process I was able to achieve the forms and lines that spoke most to me. Initially, I attempted to make the large platters from my thesis in a plaster slump mold but found that removing the platters from the molds resulted in dramatic cracks in the greenware phase. Every coil added to each form conjured more memories of my grandparents. The act of making is an act of self-discovery. Each refining scrape of the sheer form, pinch of my fingers, or pull of the rib refines the story of line and shape while leaving room for the character of the clay and the firing to shine through.
The Kiln:

An anagama, translated as cave kiln, is a Japanese adaptation of a fifteenth-century cross drafted wood-burning kilns from China and Korea. These kilns were often built directly into hillsides and are made up of a long tube with a flue at one end and a firebox at the other. Designs vary significantly from climbing stepped interiors to tapered teardrop shapes, or even straight and flat-floored tubes. The kiln is entered and loaded with pots from the mouth of the cave and filled from back to front with ceramics with space left at the very front of the kiln for a large bed of coals and fire. Some of the largest kilns in Japan fired for up to two weeks and took whole villages to fill and fire.

Angamas use wood as fuel to reach up to 2500 degrees, and with each stoke of the fire, ash particles are pulled through the shelves of pottery along with the vaporized natural salts and potassium released by the combusting wood. The dynamic atmosphere within the kiln pulls these vapors and wood ash particles through the kiln. The kiln has a breath of its own and a directionality to the path of that breath. With each breath, the ash that lands on the surfaces of the clay forms combine with the natural silica and alumina in the clay to create areas of natural wood ash glaze. Over several days the pots in the direct path of these forces build up layers and layers of this natural ash. There are many approaches to firing this type of large tunnel kiln. British Potter and ash glaze specialist, Phil Rodgers speaks on wood firing:

"Today, potters have adopted the wood firing process and use their kilns as creative tools to paint their pots with fire. By manipulating the flame path with careful stacking of the pots and considered stoking of the wood, potters are improvising and playing their kilns much as musicians play an instrument." (page 85).

The anagama at SUNY New Paltz is twelve feet long from door to chimney and stands just over four feet tall with a gentle belly in the middle that is five feet wide. It has three steps up from the firebox to the flue. In my eight firings of the anagama, I found that it takes an average of three and a half days to fire, burning through approximately two and a half to three cords of wood. While there is an element of unpredictability to each firing, this firing method is not ruled by chance. Every body of work and firing creates a deeper understanding of the process; coaxing
out the desired surfaces and character from the kiln. Each step of the process must be an informed and deliberate decision.

For any firing cycle, the first decision is the sourcing and preparation of the fuel. No fuel, no fire. My first firings I used a combination of donated honey locust wood and two cords of mixed maple and ash wood. Honey locust produced a uniquely golden yellow ash and proved challenging to sustain prolonged temperature gains without being split down to relatively small pieces. In the firings that followed, I have achieved the best results from stoking two cords of ash with a bit of oak and cherry mixed in, and one cord of pine. Pine combusts very quickly in the kiln with explosive pops and cracks of resin as it ignites. This quick burning softwood is useful to incorporate into a stoking cycle to catalyze the slower, but longer lasting, burn of the ash. It is imperative that wood is sourced and stacked under shelter from the rain well in advance of the firing to have time to dry and cure. Firing with wet wood will lengthen the firing and lead to mountains of extra effort and frustration.

Loading the kiln is a three-day process. Each zone of the kiln produces dramatically different characteristics. The very back of the kiln is the coolest zone in the kiln, typically reaching cone seven or eight. I pack a very tight back stack to slow the flow of the flames through the large flue of the New Paltz kiln. My best results in this area come from unglazed...
work tumble stacked and padded with a bed of dried rice hulls to encourage localized regions of combustion and atmosphere. Rice hulls are a very refractory material, but can only be utilized up to cone 8 before they begin to melt into a variation of an ash glaze. The second stack faces the side stoke trough, and in a way is like a second firebox zone especially along the floor of the stacks. The lower levels of this stack must be loaded very carefully because side stoke wood will likely come into direct contact with the objects on these bottom shelves. The angle of the side stoke ports in the New Paltz kiln is quite steep, so I found myself pushing the second stack as far back as possible while loading the third stack as close to the lip of the first step up as possible. This slightly exaggerated gap spans roughly seven inches. This zone can be quite hot depending on the aggressiveness of the side stoking cycle and develops substantial ash build up, especially in the first two to three layers of shelves.
The third stack was the most consistent zone of the New Paltz anagama for my research. Its proximity to the firebox allowed for a full range of heavy ash build up with dramatic fuming in the sheltered areas between pots and a direct source of heat radiant thermal mass from the coal bed to generate melt. Consideration for the placement of every pot related to the flow of the flames through the work is crucial. The flow is much like the current of a flowing river with the pots being the stones obstructing and diverting the meandering flames. It is also crucial to place cone packs and any test rings or pieces that might get pulled from the firing. Before the use of pyrometers and cones, kilns were fired by sight and sound. The gentle roar of the flames to measure how powerful the draw of the chimney and the color of the glow to regulate heat. Ash build up and melt can be measured by reaching into the kiln with long iron and stainless steel
poles to carefully withdrawal specially made rings of clay that mimic the surfaces of pots. If the surface is matte and has a sandpaper-like texture, it has built up layers of unmelted ash, and the kiln requires either more heat or a long soak. If the surface of the clay is glass like with drips and pools of melted ash, then it is a good indicator of the surfaces of the pots in the kiln, and care must be taken not to raise the temperature so high that the ash glaze runs off the pot.

The firebox is the final and most turbulent zone of the kiln. Pieces stacked in the lower zones of the firebox will become buried in embers as the firing progresses. Covering pieces yields a highly textured surface with a range of colors and characteristics depending on at what stage of the firing the surfaces become buried. Every kiln can be loaded and fired with different approaches. As I continue, it is essential to remember that this approach was my way of achieving consistent, reliable, and exciting results that continued to drive me to discover more about firing this anagama.
After three days of considered loading, it is time to brick up the door. The door is an area where the firing style of the individual leading the kiln can really affect the configuration of the bricks. There are three main components that should be taken into account: the size and location of the main stoking door, the primary air flow, and the orientation of the mouse holes. The door is built in courses of bricks stacked in an alternating direction so the full door is nine inches wide and lines evenly with the walls of the kiln. In the center of the door I stack the primary air flow opening that is four bricks high with three bricks to either side. This primary intake can be closed down throughout the firing by stacking bricks in the port, filling it with wood, or by bracing kiln shelves up against it. One course of bricks above the floor to either side of the primary air I like to include a mouse hole the size of a standard half brick. This hole remains plugged for most of the firing but can be opened to help burn down an excess of coals and increase the airflow.

Lastly, there is the main stoking door. I am in the practice of laying nine courses of brick from the floor to the base of the main door. This port is perhaps the most used and crucial part of the door. It must be stacked flush with the hanging soft brick and iron door attached to a pulley above the kiln and should be stacked to withstand the abuse of the frequent larger stokes that come towards the end of the third day of the firing.

After the door is stacked and the arch filled all extra cracks should be stuffed with fiber wool. The cracks are then stuffed tightly by compressing coils of clay along the seams of the
bricks, and the whole door is loosely wiped down with a wet sponge, a thick slurry of equal parts: hawthorn bond fire clay, unprocessed wood ash (saved at the end of each anagama firing), and straw is smeared onto the exterior of the door. This thick layer of mud serves as a buffer of heat for the stokers and further insulates the door. It is important to wear gloves for the mudding of the door because of the corrosive nature of wood ash. While it will not burn bare skin, it dramatically dries the skin and is quite unpleasant.

With the door mudded, the kiln is almost ready for the firing. All that remains is to construct the firemouth of the kiln directly in front of the primary air intake. The firemouth is a small tunnel constructed of hard bricks and kiln shelves that frames the primary air intake. The firemouth is where the initial preheating fire burns. If the initial fire were lit directly in the door of the anagama unburnt coals would quickly overwhelm the work stacked in the firebox, and the direct exposure to the flames could risk damaging the pots. The firemouth is the initial hearth that brings the kiln to life. The draw of the chimney pulls warming air and smoke into the main chamber after the small fire is lit, and the firing is truly ready to begin.

Firing:
The first eight to twelve hours of the firing are a quiet time of contemplative steadiness. The fire housed within the firemouth should never exceed a small campfire for the first four hours. Flames may lick up the exterior wall of the door, and a bloom of smoke may fill the kiln shed, but a gentle hand in warming the kiln is necessary. An excess of small kindling is needed for this infant fire to keep it burning and transmitting heat evenly. After holding at two hundred degrees fahrenheit for a minimum of four hours, if there is no greenware loaded in the anagama, more fuel can be added to the firemouth. I increase at a rate of no more than fifty degrees an hour until eight hundred degrees. In my firings of the New Paltz kiln, I chose to light my kiln in the early darkness of predawn. The quietness of early morning is mirrored in the gentleness of the preheating flame. This timing typically placed the kiln at eight hundred degrees by 7-9 p.m. on the first day. When managing this kiln it is crucial to have a team of at least three people to help take shifts. For people with little to no experience, or lacking in confidence with their ability to control the flame holding temperature rather than gaining heat is a realistic goal. I hold this temperature for four to eight hours to get some rest, so that I can be fresh and ready to start increasing the fuel and stoke rate to pass through quartz inversion. Once you go above 850 on the pyrometer, it is imperative that a slow, steady climb of fifty degrees an hour be maintained
through 1200. Throughout this rise in temperature, the firemouth should still be the primary source of flame and fuel. The mouth of the kiln will often appear stuffed with smaller pieces of wood; once the kiln begins to climb above 1000, it is appropriate to start pushing the embers back into the firebox of the angama itself. Small split pieces of pine or very thinly split hardwood can begin to be dropped directly in front of the firemouth through the primary stoking door. This stage of the firing is really where the pace and the character of the individual firing will begin to develop.

Every firing develops its own rhythm. Unlike oxidation and gas reduction firings the pyrometer and the cones are not the only indications of how the firing should proceed. The placement of the pyrometer in the New Paltz kiln has it reading the temperature above the middle of the first full stack of shelves directly behind the firebox; meaning that the firebox is significantly hotter than the pyrometer reading and the very back of the kiln is even cooler. After coaxing the kiln past the 1200 point it is time to pack the firemouth with wood and begin seriously stoking and measuring the number of logs, size of stoke, and intervals between stokes. With every stoke it’s crucial to check cones and to take note of the building coal bed. The coal bed should appear orange with flakey gray, pillowy, ash. If logs are blackened and visible, it means they have not fully broken down, and to aggressively stoke on top of these will build up coals faster than desired at this stage of the firing. When cone 012 goes down in the front, it’s time to increase the bed of coals and to push the damper in the chimney. The damper controls the flow of air through the chimney, and the further in it is, the more reduction there will be. However, reduction in a wood kiln is not as steady as the reduction in a gas kiln. An anagama breaths. Each stoke is a cycle of feeding the fire, heavy reduction as the fuel ignites and typically a small drop in temperature, black smoke and the roar of the wood burning, and then the gradual clearing of the atmosphere as the fuel begins to burn entirely as the temperature continues to rise at a steady pace. From cone 012 to cone 1, I strive to time the stokes to maintain the dense smokey atmosphere and higher reduction within the kiln. The flames should be visible rolling blooms, and the interior color of the kiln should begin to develop a red-orange glow. It is a tricky balance between maintaining strong reduction and trying to manage the initial coal bed. If stokes are constantly all hardwood it is difficult to burn completely, and if the stokes are all pine, then
the atmosphere clears too quickly. After cone 1 drops I close down and carefully remove the fire mouth construction and replace it with some bricks to restrict the airflow to the coal bed. If there is an excess of coals that have buried work in the firebox it might be time to consider opening the mouse holes. The timing and flow of the firing from this point will depend on the individual firing and load of the kiln.

I often refer to this portion of the firing as the primary push. It is the first consistent pursuit of more aggressive temperature rise. I generally hope to be at cone 6 late into the second night. Around cone 5 the kiln will start to eat wood more aggressively, and the size of stokes will increase. Up until this point in the firing raw clay surfaces might have developed some ash build up, but nothing is hot enough to truly begin to stick to the pottery. I like to hold the second night at cone 6 and make a concerted effort to frequently stir the coals in the firebox with one of the several steel poles or shovels that were made for the anagama. The coals must continually be churned and stirred to create more fly ash on the ceramic surfaces. Working the coals and measuring the level of melted ash on the pots is another element that must be considered from this point on.

After holding at cone 6 for four to six hours, and hopefully resting some, it’s time to push for cone 10. This push is also when it is time to begin side stoking to level out the firing and start to build up a second bed of coals in the back of the kiln. This requires the help of at least one other person, but ideally, there is the conductor of the firing leading the front and directing a team of side stokers at each of the two side stoke ports. The front gets a normal stoke and is allowed to pass through initial combustion before the side stokers open their ports and stoke in unison to avoid back pressure flames pushing towards them. The pattern of front stoke, wait, and small side stoke is repeated for as long as it takes to bring the temperature of the back up. As the back begins to dramatically increase in temperature it will help pull the heat more efficiently from the front so the importance of side stoking this kiln through the mid cone range cannot be understated.
After dropping cone 10, everything in the front of the kiln will appear vibrant yellow or white hot and will no longer be safe to look into without protective kiln goggles. Side stoking can be stopped to focus more on the front of the kiln. This stage of the firing is another opportunity to work the coal bed. The surfaces I chase are unique to each temperature zone of the kiln. Working the coal bed most dramatically affects the surfaces in the firebox and front stacks of the kiln, creating dynamic highly fluxed and ashy surfaces.

I take this opportunity to use one of the long steel shovels to scoop up the fluffy embers of the coal bed and cover the lower layers of shelves and firebox with extra ash build up. I learned this technique from firing with Jeff Shapiro during my eighteen-month apprenticeship. The bricks and shelves used to restrict the primary air flow are carefully cleared using tongs before the steel shovel scoops up ash from the coal bed. Covering should happen while wearing multiple layers of cotton clothing for protection, welding gloves, and appropriate eye protection.
The coals and ashes are then inserted into the main stoking door and tossed onto the lower two or three stacks of shelves covering the surfaces of the ceramic objects in heavy amounts of ash. Covering must be done carefully and with a controlled aim. The development of surface is not a chance result of the wood fire process, but rather a relatively controllable outcome when broken down into measurable variables and steps. In my final firing, I held at cone 10 for eight hours, and worked the coals and covered three times. Staying at this temperature is necessary to melt the additional thicker ash you have covered over the clay surfaces. At this stage, one of the pole tools can reach into the kiln to pull test cups or draw rings carefully from the front stacks. These should be dropped directly into a bucket full of water to rapidly cool while trapping some of the reduction from the kiln on the ceramic surfaces. The glossiness of the surface is an indication of how melted the ash build up is. The quality of the surfaces is always at the forefront of my mind.

In my eight firings of the New Paltz kiln, the final crescendo to reach cone 12 is always an immense effort best tackled by two to three people being on shift. By this point in the firing the stoking cycles are generally ten to twelve substantial pieces of hardwood with a couple of pieces of pine to encourage ignition. This rate of consumption can quickly become exhausting, and the heat put out from each opening of the door saps the lead stoker’s energy. With each stoke billowing burps of flame and smoke roll from the kiln door, but it is vital to allow the atmosphere to clear and check the cones with each stoke. It is also important to refrain from stirring the coals too much at this point to avoid accumulating unmelted fly ash. When cone 11 is flat, and cone 12 begins to soften I pull my final test rings to make sure the ash had not run entirely off the pots, and the last large stoke fills the firebox. Check the back cones, and ceramic surfaces carefully before continuing. If necessary, two people can continue controlled side stoking to bring the back of the kiln up to the desired temperature. Push the damper in, and check to make sure all doors and ports of the kiln are filled in a quick but controlled manner with fiber wool, and a thick slip of hawthorn bond and sand in equal portions. Filling the kiln for the final stoke ensures that the atmosphere within will remain in reduction through the early stages of the cooling process. The kiln is then left sealed for three full days to cool. All in all the kiln fires for around seventy hours, depending on the firing.
The firing cycle detailed in this description is only a record of the way I led my firings of this kiln. There is a myriad of different techniques and opportunities to work with the kiln to create new ranges of surface potential and results. This firing schedule produced pieces that represented the full potential of wood kiln results from drippy ash runs to satin fumed surfaces. Ultimately none of my results would be achievable without the assistance of my firing teams, and the greater ceramic community in New Paltz and the Hudson River Valley. Deciding to work with an anagama is a choice to focus on the community. My work with firing has been as much an exploration of community and relationship building as a technical exploration of this kiln’s range of potential.
Advisors:

The act of mentorship is an incredibly giving act, and throughout my research so many people have given me so much. My research was dramatically informed by my original mentor, Jeff Shapiro who shaped my initial career. Jeff nurtured the spark of curiosity in me when I first moved back to the United States and continues to provide tremendous insight into the traditions of wood firing as well as the range of experimentation and play the process can provide.

Tim Rowan is one of my two external advisors. Tim’s methods of hand building and constructing monumental forms with dramatic refined lines changed my approach to refining my forms. Tim’s kindness and contemplative critiques helped me to better understand how to approach working with my wild materials, and learn from the materials themselves.

I was fortunate to have the opportunity to fire a seven day firing of Kristin Muller’s anagama this semester, and it dramatically changed my approach constructing the door of my kiln. Kristen was incredibly giving in her time and explanations of developing community, and weaving historic approaches into a contemporary studio practice.

Doug Peltzman was another external advisor who has helped to guide me through strategies for forging community and networks of reliable artists to aid in my studio practice. While his studio practice is not connected directly by the wood firing process his dedication to surface exploration, and attention to the construction of narrative within a body of work helped me to connect my thoughts on my thesis work, and to solidify my dreams for a future working in clay.

Anat Shiftan and Bryan Czibes were my mentors and academic influences throughout my two year time as an MFA candidate at SUNY New Paltz. They gave me the freedom to explore the wood-fire process I love while pushing me conceptually and professional. I could not have completed this project without their help.
Acknowledgements:

I am so thankful and lucky to have so much support, inspiration, guidance, and physical help from everyone on this list. I can never say thank you enough.

Bernard and Alice Bosley
Anat Shifman
Bryan Czibes
Jeff Shapiro
Tim Rowan
Kristin Muller
Doug Peltzman
Norm Sartorius
Diane Bosley
Tanya Lee Hamm
Beth Bogola
Tamar Hedges
Heather Rosenbach
Emily Brownawell
Yago Wang
Amanda Ellinger
Jennifer O’Connell Reid
Bruce Denhert
Bibliography:

Andrew Sartorius
845.332.6585 absartorius@gmail.com

Education:
2017-Present MFA Candidate at State University of New York at New Paltz focused in Ceramics (Completion pending May, 2019).
2009 Teaching English as a Foreign Language Certification, The Boston Language Institute, MA.
2009 BA English Literature and Fictional Writing, The College of Wooster, OH.

Exhibitions:
2019 Mugshot 2: 2nd Biennial International Juried Ceramic Mug Competition, Mojo Coffee Gallery, 2019 NCECA, Minneapolis, MN.
2019 Geaux Cups, Clay Center of New Orleans, LA.
2019 Twin Cups exhibition 2019, Missouri Western State University Clay Guild, MO.
2019 Materials: Hard and Soft, Greater Denton Arts Council, Denton, TX.
2018 The Cup The Mug, Main Street Gallery, Clifton Springs, NY.
2018 Atmospheric, Clay Center of New Orleans, LA.
2018 delecTABLE: The Fine Art of Dining, The Art Students League of Denver, CO.
2017 Conductivity: The Many Faces of Copper in Ceramics, Companion Gallery, Humbolt, TN.
2017 Serve It Up 2017, Clay Arts Vegas, Las Vegas, NV.
2017 Small Favors "Think Inside the Box", The Center for Art in Wood in collaboration with The Clay Studio, Philadelphia, PA.
2015 Apprentice Lines, NCECA, Providence, RI.
2014 Grit and Grain, Solo Exhibition. Machikado Gallery, Susaki City, Kochi, Japan.

Work:
2018 Instructor of Record, Introduction to Ceramics, State University of New York at New Paltz.
2018 Apprentice Board Member for Common Ground on the Hill focusing in Fine Arts Curriculum Building, McDaniel College, Westminster, MD.
2017-2018 Kiln Manager for Ceramics Department, Graduate Assistantship, State University of New York at New Paltz.
2017 Teaching Assistant, Processes and Techniques Alternative Firing Methods, State University of New York at New Paltz.
2014-2016 Studio assistant and apprentice for Jeff Shapiro, Accord, NY.
2010-2014 Prefectural Advisor and Assistant Language Instructor on The Japan Exchange and Teaching Program, Kochi, Japan.

Awards:
Fall 2018 Research and Creative Project Award, State University of New York at New Paltz.
Spring 2017 Research and Creative Project Award, State University of New York at New Paltz.
2016 2nd Place, Peter’s Valley School of Craft, Arts and Craft Fair, Layton, NJ.
2008, 2009 Two and Three Dimensional Activity Head, Kingsley Pines Summer Camp, Raymond, ME
Workshops:

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Attended - Anagama Firing Workshop with Ashwini Bhat and Heidi Kreitchet, Peter’s Valley School of Craft, Layton, NJ.</td>
</tr>
<tr>
<td>2018</td>
<td>Instructor - Form and Function: Handbuilding Dinnerware Sets, Common Ground on the Hill Traditional Music and Arts Camp, McDaniel College, Westminster, MD.</td>
</tr>
<tr>
<td>2017</td>
<td>Instructor - Making Your Mark in Clay, Common Ground on The Hill Traditional Music and Arts Camp, McDaniel College, Westminster, MD.</td>
</tr>
<tr>
<td>2017</td>
<td>Instructor - Raku Kiln Building, Common Ground on The Hill Traditional Music and Arts Camp, McDaniel College, Westminster, MD.</td>
</tr>
<tr>
<td>2016</td>
<td>Attended - Kurinuki Carving with Melissa Weiss, BKLYN Clay Studio, Brooklyn, NY.</td>
</tr>
</tbody>
</table>