Wax Worms (Galleria mellonella) as Potential Bioremediators for Plastic Pollution

Student Researcher: Alexandria Elliott
Faculty Mentor: Danielle Garneau, Ph.D.
Center for Earth and Environmental Science
SUNY Plattsburgh, Plattsburgh, NY 12901

Plastic Pollution
- 30 million tons of plastic waste is generated annually in the USA (Coalition 2018).
- 50% landfill, < 10% recycled (PlasticsEurope, The Facts 2013).
- 10% of world’s plastic waste ends up in ocean (70% sinks, 30% floats in currents (Gyres, Fig. 2)).

Bioremediation
Wax Worms (Galleria mellonella)

- Organisms who degrade environmental pollutants (e.g., bacteria, fungi, worms)

Methods

Wax worms were collected from PetSmart and placed in screen-covered Ball jars and worms, frass, and plastics were weighed until moths emerged (Fig. 4).

Results

- **Fig. 5.** Change in worm weight as a function of plastic pilot trial.
 - Greater negative change in worm weight (g/day) for all pilot trials consuming plastic (HDPE 1 & 2, PP, EVAC) vs controls (Fig. 5). Plastic consumption may act as an environmental stressor.

Discussion

- Combination of holes in plastic and frass suggests worms are digesting plastic (Figs. 6, 7).
 - Of the plastic pilot trials which exhibited signs of feeding, two were HDPE (Fig. 6).
 - Bombelli et al. (2017) and Yang et al. (2014) found wax worms were capable of PE consumption.
 - Common bond (CH2-CH2) in PE is same as that in beeswax (Bombelli et al. 2017).
 - FT-IR shows degradation of PE (i.e., increase in surface roughness, novel spectral peaks occurring with digestion) and PE mass loss in experiments with a bacterial homogenate smell on plastic (Bombelli et al. 2017; Fig. 9).
 - Yang et al. (2017) isolated two bacterial strains from the digestive tracts of wax worms feeding on PE (Fig. 10).

Overall Implications

- Higher rates of worm weight loss may be evidence of plastic as a stressor to worms as an impractical long-term organism for bioremediation of plastic.
- Future testing should focus on determining if gut contents (e.g., bacteria) digest plastic → bacteria as long-term, large-scale bioremediation candidate for plastic pollution.
- Consumers must begin to reduce, recycle, and refuse plastic dependence.

Acknowledgements

Many thanks to Dr. Mark Lesser for his assistance in statistical analysis using Program R. Additional thanks to the Lake Champlain Research Institute (Luke Meyers) for use of scales, Ball jars, and insect consultation. Thanks to Erin Ashline FT-IR support. Support for this research and conference travel comes from the Center for Earth and Environmental Science and College Auxiliary Services of SUNY Plattsburgh.

Literature Cited