Carboplatin enters the cell by passive diffusion. The R, Hydrolysis of carboplatin inside the cell [4].

The compound undergoes hydrolysis to assume a form that can interact with the DNA strand, specifically the N7 position of guanine and adenine [5].

- Carboplatin enters the cell by passive diffusion.
- The compound undergoes hydrolysis to assume a form that can interact with the DNA.
- The compound forms adducts with nucleophilic purine bases in the DNA strand, specifically the N7 position of guanine and adenine [5].
- The adducts cause major intra-strand cross links and minor inter-strand cross links. Cross-linking inhibits the process of DNA replication which causes errors in replication.

The errors in replication lead to apoptosis, or cell death [1].

Future Treatment of Epithelial Ovarian Cancer

A peptide-Fc fusion protein, trebananib, in combination with pegylated liposomal doxorubicin (PLD) is being tested to see if this combination of drugs will improve progression-free survival (PFS) in patients with recurrent epithelial ovarian cancer and that in which are platinum-sensitive or resistant. Trebananib inhibits angiopoietin-1 and -2, thereby preventing any interaction with the Tie2 receptor. Agents that in doing so, target the vascular endothelial growth factor pathway, have been shown to improve PFS but have not been shown to prolong overall survival in patients with ovarian cancer. In a randomized double-blind, placebo-controlled study, two hundred and twenty-three patients were randomized to receive 50 mg/m2 of intravenous PLD once every 4 weeks as well as 15 mg/kg of intravenous trebananib or a placebo once a week. The results of the study found that the median PFS for those patients being given trebananib was 7.6 months, whereas the median PFS for those being given the placebo was 7.2 months. Therefore, trebananib did not significantly prolong PFS; however, it did improve objective response rate (21% to 46%) and duration of response (from 3.9 to 7.4 months) [9].

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.

The cell cycle is made of the four stages G1, S (synthesis), G2, and M (mitosis). The cell grows in G0 phase and replicates its DNA. After several hours, another signal from cyclin A activates the cell to enter G2. The cell will enter mitosis and divide when the cyclin B becomes active. Eukaryotic cells use cyclins as checkpoint to control the progression through the stages of cell division.