2008–2010 GRADUATE BULLETIN
Many Voices, Many Visions, One University

As members of Stony Brook University, we acknowledge that the primary purpose of this community is education, including academic achievement, social development, and personal growth.

In committing ourselves to study and work at Stony Brook, we agree to promote equality, civility, caring, responsibility, accountability, and respect. We also recognize the importance of understanding and appreciating our differences and similarities.

As members of a respectful community, we will not encroach on the rights of others, either as individuals or as groups. We recognize that freedom of expression and opinion entails an obligation to listen to and understand the beliefs and opinions of others, and to treat others fairly.

We strive to be a responsible community. We are accountable individually for our personal behavior and development, and collectively for the welfare of the community itself.

We encourage all Stony Brook community members to celebrate and express pride in our community’s academic, athletic, and social accomplishments, and to involve themselves in the surrounding local communities.

In affirming this statement, we commit ourselves to becoming dedicated, active, and full members of Stony Brook University in each and every role we assume.

—Year of Community Initiative
A Message from the Provost

Graduate school can be one of the most exciting and rewarding times of your professional life. It is an opportunity to learn in depth about disciplines that intrigue you, hone your skills of inquiry, to make contributions to knowledge through your own scholarly efforts, and in many cases to explore the joys of teaching others. You will also form some of the professional and personal relationships that will shape your life. I hope you will consider Stony Brook as the place to do your graduate work. Our University, now celebrating only its 50th anniversary, has quickly become recognized as one of the best institutions of higher learning in the nation. Our reputation is based on an excellent faculty and staff who are organized into the traditional College of Arts and Sciences, an extensive Health Sciences Center, the School of Marine and Atmospheric Sciences, the College of Engineering and Applied Sciences, the Business School, and our new School of Journalism. These Colleges and Schools create a stimulating atmosphere across a diverse set of disciplines and provide many opportunities for exciting and rigorous interdisciplinary scholarship.

Your years in graduate school will also be a time to develop close relationships with faculty mentors as you learn the substance of your discipline and begin to develop and organize your own ideas about your areas of interest. Stony Brook encourages a diversity of intellectual interactions among students and faculty, as well as outreach to neighboring institutions and to our community. Your development into a creative scholar is a prime goal of graduate education at Stony Brook. You will find that Stony Brook has high standards for its faculty and students, and you will come to realize that this level of excellence provides a benchmark against which to judge your future achievements.

As you consider graduate schools, explore the relationships that faculty have with their students and the opportunities for interdisciplinary interactions. Stony Brook is fortunate to have two close neighboring institutions that substantially broaden the intellectual opportunities for students and faculty. Brookhaven National Laboratory to the east is an internationally known center of research in physics, biology, chemistry, and other disciplines. Cold Spring Harbor Laboratory to the west is similarly well known for its excellence in the biomedical sciences. Stony Brook shares graduate programs with these institutions, as well as a wide range of rich and informal interactions that inevitably occur when a large concentration of scholars occurs in a small geographical area.

The Long Island region is also home to growing electronics and biotechnology companies. Many of these have been started by Stony Brook faculty and maintain close ties with the University. As well, our proximity to New York City provides countless opportunities for collaborations in the arts, connection to the business world, and interactions with colleagues at its many universities. Much of this work is facilitated by our Stony Brook Manhattan location.

Many graduate students become junior colleagues of their professors by providing instruction for undergraduates. A full and rewarding time in graduate school should include the opportunity to develop your skills as a teacher and to learn to integrate fully your scholarship and your teaching. Stony Brook recognizes the importance of helping graduate students learn to teach and the significance of their contribution to the education of our undergraduates.

Come and visit our campus and community. You may not realize how beautiful Long Island is or appreciate the many opportunities that are provided by having New York City only 60 miles away. If you do visit, I hope I meet you. Whatever your educational future holds, I wish you well.

Eric W. Kaler

A Message from the Dean

The Graduate Bulletin provides important information about Stony Brook’s rules, regulations, and graduate admission and degree requirements. It is intended to guide the study of students enrolled in our postbaccalaureate degree programs, but not to substitute for the advice that can be provided by the faculty. Graduate students should read and understand the introductory sections of this book and the sections about their own programs. Of course, they are expected to be familiar—and to comply—with these rules.

Departments and graduate programs provide more detailed information about their own rules and procedures, and each department has a complete compilation of Graduate School policies. Please be sure to consult all of these sources of information; your success here may depend upon it.

If you encounter problems or difficulties during your studies, deal with them promptly and completely. If you cannot find a solution, contact the Graduate School; we can usually correct any problem that is brought to us in good time.

Lawrence Martin
Table of Contents

<table>
<thead>
<tr>
<th>An Introduction to Stony Brook</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus Resources and Student Services</td>
<td>15</td>
</tr>
<tr>
<td>Financial and Residential Information</td>
<td>23</td>
</tr>
<tr>
<td>Admission to Graduate Study</td>
<td>33</td>
</tr>
<tr>
<td>Academic Regulations and Procedures</td>
<td>37</td>
</tr>
<tr>
<td>Degree Requirements</td>
<td>43</td>
</tr>
<tr>
<td>Degrees and Advanced Graduate Certificates Awarded</td>
<td>49</td>
</tr>
<tr>
<td>Degree and Advanced Graduate Certificate</td>
<td>53</td>
</tr>
<tr>
<td>Program Descriptions</td>
<td>---</td>
</tr>
<tr>
<td>Africana Studies (AFH)</td>
<td>54</td>
</tr>
<tr>
<td>Anatomical Sciences (HBA)</td>
<td>58</td>
</tr>
<tr>
<td>Anthropological Sciences (DPA)</td>
<td>62</td>
</tr>
<tr>
<td>Anthropology (ANT)</td>
<td>67</td>
</tr>
<tr>
<td>Applied Mathematics and Statistics (AMS)</td>
<td>71</td>
</tr>
<tr>
<td>Art (ARH, ARS)</td>
<td>80</td>
</tr>
<tr>
<td>Biochemistry and Structural Biology (BSB)</td>
<td>89</td>
</tr>
<tr>
<td>Biomedical Engineering (BME)</td>
<td>93</td>
</tr>
<tr>
<td>Business, College of (MBA)</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry (CHE)</td>
<td>110</td>
</tr>
<tr>
<td>Comparative Literary and Cultural Studies (CLCS)</td>
<td>118</td>
</tr>
<tr>
<td>Computer Science (CSE)</td>
<td>125</td>
</tr>
<tr>
<td>Creative Writing and Literature (CWL)</td>
<td>138</td>
</tr>
<tr>
<td>Dental Medicine, School of</td>
<td>141</td>
</tr>
<tr>
<td>Ecology and Evolution (BEE)</td>
<td>142</td>
</tr>
<tr>
<td>Economics (ECO)</td>
<td>147</td>
</tr>
<tr>
<td>Education and Teacher Certification Professional Education Program</td>
<td>151</td>
</tr>
<tr>
<td>Electrical and Computer Engineering (ESE)</td>
<td>160</td>
</tr>
<tr>
<td>English (EGL)</td>
<td>169</td>
</tr>
<tr>
<td>European Languages, Literatures, and Cultures (GER, RLF, RLI, SLV, DLG, DLF, DLI, DLL, DLR)</td>
<td>176</td>
</tr>
<tr>
<td>Genetics (BGE)</td>
<td>186</td>
</tr>
<tr>
<td>Geosciences (GEO)</td>
<td>190</td>
</tr>
<tr>
<td>Health Technology and Management, School of</td>
<td>199</td>
</tr>
<tr>
<td>Hispanic Languages and Literature (SPN)</td>
<td>200</td>
</tr>
<tr>
<td>History (HIS)</td>
<td>207</td>
</tr>
<tr>
<td>Linguistics (LIN, ESL)</td>
<td>214</td>
</tr>
<tr>
<td>Marine and Atmospheric Sciences (MAS)</td>
<td>219</td>
</tr>
<tr>
<td>Materials Science and Engineering (ESM)</td>
<td>228</td>
</tr>
<tr>
<td>Mathematics (MAT)</td>
<td>235</td>
</tr>
<tr>
<td>Mechanical Engineering (MEC)</td>
<td>242</td>
</tr>
<tr>
<td>Medicine, School of</td>
<td>250</td>
</tr>
<tr>
<td>Molecular and Cellular Biology (MCB)</td>
<td>251</td>
</tr>
<tr>
<td>Molecular and Cellular Pharmacology (HBM)</td>
<td>257</td>
</tr>
<tr>
<td>Music (MUS)</td>
<td>266</td>
</tr>
<tr>
<td>Neuroscience (NEU)</td>
<td>277</td>
</tr>
<tr>
<td>Nursing, School of</td>
<td>280</td>
</tr>
<tr>
<td>Oral Biology and Pathology (HDO)</td>
<td>281</td>
</tr>
<tr>
<td>Philosophy (PHI)</td>
<td>285</td>
</tr>
<tr>
<td>Physics and Astronomy (PHY)</td>
<td>291</td>
</tr>
<tr>
<td>Physiology and Biophysics (HBY)</td>
<td>302</td>
</tr>
<tr>
<td>Political Science (POL)</td>
<td>308</td>
</tr>
<tr>
<td>Professional Development, School of</td>
<td>315</td>
</tr>
<tr>
<td>Liberal Studies</td>
<td>315</td>
</tr>
<tr>
<td>Professional Studies</td>
<td>315</td>
</tr>
<tr>
<td>Teaching</td>
<td>316</td>
</tr>
<tr>
<td>Educational Leadership Program</td>
<td>317</td>
</tr>
<tr>
<td>Advanced Graduate Certificate Programs</td>
<td>317</td>
</tr>
<tr>
<td>Psychology (PSY)</td>
<td>319</td>
</tr>
<tr>
<td>Public Health</td>
<td>327</td>
</tr>
<tr>
<td>Social Welfare, School of</td>
<td>339</td>
</tr>
<tr>
<td>Sociology (SOC)</td>
<td>349</td>
</tr>
<tr>
<td>Technology and Society (EST)</td>
<td>354</td>
</tr>
<tr>
<td>Theatre Arts (THR, DRM)</td>
<td>360</td>
</tr>
<tr>
<td>Women's Studies (WST)</td>
<td>365</td>
</tr>
<tr>
<td>Writing and Rhetoric (WRT)</td>
<td>368</td>
</tr>
</tbody>
</table>

Directories, Maps, Index, Subject Codes | 371 |

Directories	372
Campus Map	374
Directions to Stony Brook	376
Index	377
Subject Codes	380
The information in this publication is accurate as of the press date. Courses listed in the Graduate Bulletin are subject to change through normal academic channels. New courses and changes in existing programs are initiated by the responsible departments or programs and approved by the appropriate curriculum committees, the appropriate academic dean, and the dean of the Graduate School. Circumstances may require that a given course be withdrawn or that alternative offerings be made. Names of instructors of courses and days and times of class sessions are given in the class schedule, available to students at registration.

All students are reminded that Stony Brook University is subject to the policies set forth by the Board of Trustees of the State University of New York. Fees and charges are set in accordance with such policies and may change in response to alterations in policy or actions of the legislature during the two-year period covered by this publication. The University reserves the right to change its policies without notice.

Additional bulletins are published and made available for undergraduate, professional development (SPD), and health sciences students.

For general information about graduate programs and/or an application, please write or phone:

The Graduate School
Stony Brook University
Stony Brook, New York 11794-4433
(631) 632-GRAD (4723)
(631) 632-7243 (fax)
www.grad.sunysb.edu

The general University telephone number is (631) 632-6000.

Equal Opportunity and Affirmative Action

Stony Brook University does not discriminate on the basis of race, religion, sex, color, national origin, age, disability, marital status, arrest record, criminal conviction, or status as a disabled or Vietnam-Era Veteran (or other protected category of eligible veteran) in its educational programs or employment. Also, the State of New York prohibits discrimination on the basis of sexual orientation.

Discrimination is unlawful. If you are a student or an employee of Stony Brook University and you consider yourself to be the victim of illegal discrimination, you may file a grievance in writing with the Office of Diversity and Affirmative Action within 90 calendar days of the alleged discriminatory act or within 90 days after the conclusion of the semester in which the alleged discriminatory act occurred.

If you choose to file a complaint within the University, you do not lose your right to file with an outside enforcement agency such as the New York State Division of Human Rights or the United States Equal Employment Opportunity Commission. For more information about this office and its many programs, please visit www.stonybrook.edu/diversity

Any questions concerning this policy or allegations of noncompliance should be directed to:

The Office of Diversity and Affirmative Action
Administration Building 201
Stony Brook University
Stony Brook, NY 11794-0251
(631) 632-6280

This publication can be made available in alternative format upon request.

The Graduate Bulletin was produced by University Communications:
Yvette St. Jacques, Assistant Vice President
Joanne Morici, Director of Editorial Services
Karen Leibowitz, Art Director
Lynne Roth/Susan Scheck, Editors
Cover: Milton Glaser, Inc.

Stony Brook University thanks the following for use of their photography: Peter Finger, John Griffin, Matthew Klein, Sam Levitan, Media Services, David Roberts, Juliana Thomas, Courtesy of NASA, Department of Anthropological Sciences

© 2008 by Stony Brook University
Stony Brook Soars: An Overview

Located on Long Island’s North Shore, Stony Brook is a 1,600-acre universe in which world-renowned faculty have created a stimulating, highly interactive environment for graduate studies. With the collaborative, interdisciplinary atmosphere of the departments, outstanding faculty, and a dedication to providing students with a variety of opportunities for research, the Graduate School offers students a well-rounded education that fully enables them to excel in whatever career path they choose.

Stony Brook University was established in 1957 as a college for the preparation of secondary school teachers of mathematics and science; the first campus was located at Oyster Bay, Long Island, on the grounds of a former Gold Coast estate. In 1962, a new campus was built in Stony Brook, on land donated by local philanthropist Ward Melville. Part of the State University of New York system, Stony Brook now encompasses 222 buildings on 1,600 acres. In the 50 years since its founding, the University has grown tremendously, and is now recognized as one of the nation’s important centers of learning and scholarship, and has been designated one of two flagship universities in the New York State university system.

Stony Brook ranks in the top 2 percent of all universities in the world. The London Times Higher Education Supplement placed Stony Brook 136th among more than 8,300 universities worldwide, and in the top 50 in North America. Among science universities, Stony Brook ranks in the top 100 in the world, top 25 in North America, and top 10 among public universities. Stony Brook has been ranked among the top 100 national universities in America and among the top 50 public national universities in the country by U.S. News & World Report.

Stony Brook is a member of the prestigious Association of American Universities, the invitation-only organization of the best research universities in North America. The University has been listed as one of the “100 Best Values in Higher Education” among public universities, according to Kiplinger’s Personal Finance magazine.

Ten doctoral programs are ranked in the top 40 nationwide, with two in the top ten and four in the top 20. Stony Brook is one of ten universities given a National Science Foundation recognition award for integrating research and education.

Research expenditures at Stony Brook were $184 million in 2007, the most federal dollars of any institution in SUNY. With 710 patents worldwide during the past 10 years, Stony Brook has reaped some $137 million in royalties.

Emphasis on Research

Stony Brook faculty are among the top in their fields. The commitment to both research and excellence has led to many groundbreaking discoveries, such as the development of ReoPro®, recommended for all cardiac angioplasties; the cause of and a new early-diagnostic test for Lyme disease; discovery of the link between smoking and emphysema; construction of the first nuclear magnetic resonance image of a living organism; invention of an ultrasound method to speed up the healing of bone fractures; identification and cataloging of 928 distant galaxies; technologies for 3-D computer visualization; and the discovery of the link between birds and dinosaurs.

Stony Brook’s partnership with government and industry plays a vital role in the economy of the metropolitan region. New York State has invested $50 million in Stony Brook’s planned Center of Excellence in Wireless and Information Technology. Tens of millions of dollars in anticipated federal funding will make the Center a quarter-of-a-billion dollar effort to place New York at the forefront in the next epoch of the information revolution.

Stony Brook is the only public university with two National Science Foundation Materials, Science, and Engineering Research Centers, in the fields of polymer interfaces and thermal spray high-performance coatings. The study of plastics translates to engineering careers for graduates and real-world solutions for local and national business communities.

Stony Brook co-manages Brookhaven National Laboratory in partnership with Battelle Memorial Institute, joining an elite group of universities that run federal laboratories. Located near campus, the lab affords faculty and students a unique opportunity to work among scientists from around the world. Also nearby is the world-famous Cold Spring Harbor Laboratory, where Stony Brook researchers and students collaborate with scientists from other institutions.

The University has state-of-the-art equipment, including an IBM Blue Gene supercomputer, located at Brookhaven Lab; spectroscopy labs; imaging facilities; the Van de Graaf Nuclear Accelerator; and much more. Additional research units right on campus include Stony Brook’s innovative Centers for Molecular Medicine and Biology Learning Laboratories; School of Marine and Atmospheric Sciences; Stony Brook University Cancer Center; Heart Center; Ambulatory Surgery Center; Institute for Theoretical Physics; and the High Technology Incubator, among others. The Frank Melville Jr. Memorial Library, with more than 2.2 million books and 3.8 million publications in microformat, is one of the largest academic libraries in the nation.

Living in Stony Brook

The University is located in mid-Suffolk County, about 60 miles east of New York City—one of the most desirable places to live on the East Coast. The campus is nestled amid scenic towns and wooded areas, with the Long Island Sound just minutes away to the north, and the white sandy beaches of the Atlantic Ocean a 45-minute drive to the south. Nearby is the historic village of Stony Brook, with its breathtaking harbor views, quaint shops, and picturesque cottages. In town are the Museums at Stony Brook, the largest privately funded history and art museum on Long Island, the landmark Three Village Inn (circa 1751), and the Stony Brook Grist Mill, which dates back to 1699 and is open to the public for tours. The conveniences of the modern world are at hand as well—Stony Brook and nearby Port Jefferson, Lake Grove, and Smithtown boast every shop imaginable, from specialty to superstore. For those with children, the University has on-site daycare services and proximity to the highly regarded Three Village School District.

Stony Brook has become a leisure-time resource to Long Island residents. The Staller Center for the Arts features productions by world-class artists in a Broadway-caliber theatre; a first-run cinema utilizing Suffolk County’s largest screen; an art gallery that sponsors exhibitions by faculty, students, and artists of the region; and its popular Summer Film Festival, including indie features making their premiere.
For sports and fitness enthusiasts, the University has a 5,000-seat indoor Sports Complex and a 8,300-seat outdoor athletic stadium for Stony Brook's Division I teams. The Student Activities Center houses the Wellness Center, run by the Department of Campus Recreation, which offers a variety of fitness classes and the use of state-of-the-art equipment.

Off campus, you can attend art openings in the Hamptons and view independent films at the Cinema Arts Center in Huntington village. The many restaurants in Port Jefferson have fresh seafood, and you can take a ferry ride across the Sound from Port Jefferson to Bridgeport, Connecticut. For a relaxing weekend drive, you can visit the wineries, orchards, and farmlands sprawled across Long Island's scenic East End.

The region is a naturalist’s dream. On campus is the 26-acre Ashley Schiff Nature Preserve. To the east lie thousands of acres of pine barrens preserved from development. Long Island's hundreds of miles of coastline attract many swimming, boating, and fishing enthusiasts from around the world.

Life at Stony Brook has something for everyone. There is the tranquil pace of the surrounding community, with its winding roads and gracious homes. At the same time, there are the cutting-edge resources and the abundant culture of the University itself. And easily accessible by car or train is the excitement of Manhattan.

At Stony Brook, diversity is a necessity for intellectual excellence. Since a third of the graduate enrollees are African-American, Latino, Native American, and international students, Stony Brook is a place where cultures converge for the mutual enrichment of all.

The Campus

The fountain at the center of the six-acre Academic Mall is a focal point for social activity. Surrounding the fountain are lawns, shrubs, gardens, trees, and a brook that cascades down steps leading to the campus’ main entrance. A nature preserve, six miles of bicycle paths, park benches, an apple orchard, and a duck pond are interspersed among the spacious plazas, modern laboratories, and classroom buildings. Surrounding the Frank Melville Jr. Memorial Library at the center of the campus are the academic buildings for the Colleges of Arts and Sciences and Engineering and Applied Sciences, the Van de Graaf nuclear accelerator, the Administration Building, Jacob K. Javits Lecture Center, Computer Science Building, Educational Communications Center, Computing Center, Stony Brook Union, Sports Complex, Student Activities Center, and other service and activities buildings. In front of the Staller Center for the Arts is an outdoor plaza in which concerts and gatherings are held. Adjacent to Staller is the Charles B. Wang Center, a 120,000-square-foot conference facility and venue for cultural, professional, and educational events. The Center also has Asian food, sprawling gardens, pools, and terraces.

On the East Campus, the Health Sciences Center houses academic and support areas for five professional schools and University Hospital, which opened in 1980. There is the 350-bed Long Island State Veterans Home, which opened its doors in 1991; the Long Island High Technology Incubator, which opened in 1992 and houses start-up companies in biotechnology and other high-tech fields; the new Ambulatory Surgery Center, a spacious, state-of-the-art facility designed to create a stress-free outpatient surgery experience for adult and pediatric patients; the Heart Center, performing 500 heart operations annually; and the new Cancer Center, offering the only comprehensive cancer program backed by University-based research.

Encircling the academic buildings are the residential quadrangles, which are the basic social units for on-campus students, providing residence halls, dining rooms, and a range of student-sponsored enterprises and social facilities. A complex of one-, two-, and three-bedroom apartments that house married and graduate students is located near the Health Sciences Center. Additional graduate student residences are located on the West Campus.

On the south campus, beyond the nature preserve and linked by shuttle bus to the rest of the campus, are 11 buildings housing the School of Marine and Atmospheric Sciences and the School of Dental Medicine.

In fall 2007, Stony Brook Southampton, located on Long Island's east end, opened its doors. Classes at Stony Brook Southampton are centered around environmental sustainability, public policy, and natural resource management.

Stony Brook’s Manhattan facility, located at 401 Park Avenue South, is designed to accommodate special undergraduate, graduate, and non-credit courses, plus seminars, internships, and events. It has 11 classrooms, two conference rooms, faculty office space, and an open area for lectures, receptions, and conferences.

Students

Stony Brook’s enrollment is 23,354 students. Graduate students number 7,829 while undergraduate students number 15,525. The Health Sciences Center provides undergraduate and graduate education to 2,500 students in medicine and health professions. Graduate students come from most states in the nation and from many countries around the world.

Stony Brook is committed to ensuring educational opportunity at the undergraduate, graduate, and professional levels to students from groups that historically have not been equally represented in higher education. The University recognizes its responsibility to develop leaders among these groups and values the contribution to the educational environment made by a diverse student population.

Faculty

The vast majority of Stony Brook’s faculty members hold doctoral degrees, and 90 percent or more are engaged in active research leading to publication, much of it supported by external grants and contracts. The faculty-student ratio is about one faculty member for every 14 students.

Eminent faculty members include Einstein and Distinguished Professor Emeritus C.N. Yang, Nobel Laureate in Physics; John Milnor, Distinguished Professor and holder of the Fields Medal, Director of the Institute for Mathematical Sciences; Gail Mandel, Howard Hughes Medical Institute Investigator and Distinguished Professor in Neuroscience; University Professor John H. Marburger in Physics and Electrical Engineering, former president of Stony Brook and currently President Bush’s National Science Advisor; and Artists-in-Residence in Music, the Emerson String Quartet and Ani Kavafian.

Distinguished Professors

John Fleagle in Anatomy; James Glimm in Applied Mathematics and Statistics, also recipient of the 2002 National Medal of Science; William Lennarz and Rolf
Sternglanz in Biochemistry and Cell Biology; Clinton Rubin in Biomedical Engineering/Biotechnology; Benjamin Chu and Iwao Ojima in Chemistry; Barry McCoy, George Sterman, and Peter van Nieuwenhuizen in the C.N. Yang Institute for Theoretical Physics; Arie Kaufman in Computer Science; Lorne M. Golub in Dental Medicine; Douglas Futuyma, Jeffrey Levinton, and James Rohlf in Ecology and Evolution; Gregory Benenky, Serge Luryi, and Armen Zemanian in Electrical and Computer Engineering; E. Ann Kaplan in English; Donald Weidner in Geosciences; Herman Lebovics in History; Robert Aller and Cindy Lee in the Marine Sciences Research Center; Miriam Rafaelovich in Materials Science and Engineering; H. Blaine Lawson Jr., Dusa McDuff, John Mihor, and Dennis Sullivan in Mathematics; Fu-Pen Chiang in Mechanical Engineering; Sami Said in Medicine; Eckard Wimmer in Molecular Genetics and Microbiology; Gilbert Kalish in Music; Lorne Mendell in Neuroscience; Israel Kleinberg in Oral Biology and Pathology; Arthur P. Grollman in Pharmacological Sciences; Edward Casey, Richard Howard, and Don Ihde in Philosophy; Gerald E. Brown, Janos Kirz, Konstantin K. Likharev, Edward Shuryak, Philip Solomon, and Gene Sprouse in Physics and Astronomy; Stuart McLaughlin in Physiology and Biophysics; Mark Schneider and Jeffrey Segal in Political Science; M. Christina Leske in Preventive Medicine; Arthur A. Stone in Psychiatry; and Marvin Goldfried and K. Daniel O’Leary in Psychology; Nicholas Fisher in School of Marine and Atmospheric Sciences; Stephen Cole in Sociology.

Distinguished Professors Emeriti
Paul Popper in Anesthesiology; Jacob Bigeleisen and George Stell in Chemistry; Louis Ripa in Children’s Dentistry; Theodosios Pavlidis in Computer Science; Robert Sokal in Ecology and Evolution; Louis Simpson in English; Donald Lindsley in Geosciences; Joel Rosenthal in History; Robert Cess in the Marine Sciences Research Center; Herbert Herman in Materials Science and Engineering; Charles Rosen in Music; Seymour Cohen and Edward Reich in Pharmacological Sciences; Paul Grannis in Physics and Astronomy; William Van der Koot in Physiology and Biophysics; Milton Lodge in Political Science; Howard Rachlin in Psychology; Morton Meyers in Radiology; and John Gagnon in Sociology.

Distinguished Teaching Professors
Jack Stern in Anatomical Sciences; Alan Tucker in Applied Mathematics and Statistics; Robert C. Kerber in Chemistry; Fred Ferguson in Children’s Dentistry; H. Barry Waldman in General Dentistry; Michael Barnhart in History; Patrick Grims and Helen Rodhite Lemay in Philosophy; Thomas Hennick and Harold Metcalfe in Physics and Astronomy; Norman Goodman in Sociology; and Jonathan F. Levy in Theatre Arts.

Distinguished Teaching Professors Emeriti
Elief Carlson in Biochemistry and Cell Biology; Homer Goldberg and Rose Zimbardo in English; Barbara Elling in Germanic and Slavic Languages and Literatures; Judith Tanur in Sociology; and Thomas Liao and John Truxal in Technology and Society

Distinguished Service Professors
David W. Krause in Anatomical Sciences; Mario Mignone in European Languages and Cultures; Gilbert Hanson and Robert Liebermann in Geosciences; Malcolm Bowman in the Marine Sciences Research Center; Barry S. Celler in Medicine and Pathology; Richard Fine in Pediatrics; Vincent Iacono in Periodontics; Peter Paul in Physics and Astronomy; Dorothy Lane and M. Christina Leske in Preventive Medicine; Said Arjomand and Norman Goodman in Sociology; and David Ferguson and Lester Paldy in Technology and Society.

Distinguished Service Professors Emeriti
Velio Marsocci in Electrical Engineering; Robert Cess in the Marine Sciences Research Center; J.R. Schubel, former Dean and Director of the Marine Sciences Research Center; Irwin Kra in Mathematics; Stanley Alexander in Medicine; Sidney Gelber in Philosophy; Eli Seifman, Social Sciences Interdisciplinary and Director Emeritus of the Center for Excellence and Innovation in Education.

Academic Units

College of Arts and Sciences
The College of Arts and Sciences consists of the following departments: Africana Studies, Anthropology, Art, Asian and Asian American Studies, Biochemistry and Cell Biology, Chemistry, Comparative Literary and Cultural Studies, Ecology and Evolution, Economics, English, European Languages and Literatures, Geosciences, Hispanic Languages and Literature, History, Linguistics, Mathematics, Music, Neurobiology and Behavior, Philosophy, Physics and Astronomy, Political Science, Psychology, Sociology, and Theatre Arts; and of programs in Women’s Studies and Writing and Rhetoric, as well as the Latin American and Caribbean Studies Center, the Language Learning and Research Center, and the Humanities Institute.

In the biological sciences, the Ph.D. degree is offered in Cellular and Developmental Biology, Ecology and Evolution, Genetics, Molecular Biology and Biochemistry, and Neuroscience.

Graduate study is offered in more than 40 different graduate studies areas as well as in the five schools of the Health Sciences Center and the School of Professional Development. The doctoral degree is offered in 40 areas, the M.A.T. in 10 areas, the M.A. in 28 areas, and the M.S. in 21 areas. Also offered are a Master of Business Administration, Master of Music degree, a Master of Fine Arts degree, a Master of Philosophy degree, a Doctor of Musical Arts degree, and a Doctor of Arts degree in Foreign Languages. In the Health Sciences Center the M.D. and Ph.D. degrees are offered by the School of Medicine, the D.D.S. by the School of Dental Medicine, the M.S.W. and Ph.D. degrees by the School of Social Welfare, and the M.S. degree by the School of Health Technology and Management and the School of Nursing. At the undergraduate level, many departmental major programs and interdisciplinary programs leading to the B.A., B.S., and B.E. degrees are offered by the College of Arts and Sciences, the College of Engineering and Applied Sciences, and the Health Sciences Center.

Degree Opportunities
Graduate study is offered in more than 40 different graduate studies areas as well as in the five schools of the Health Sciences Center and the School of Professional Development. The doctoral degree is offered in 40 areas, the M.A.T. in 10 areas, the M.A. in 28 areas, and the M.S. in 21 areas. Also offered are a Master of Business Administration, Master of Music degree, a Master of Fine Arts degree, a Master of Philosophy degree, a Doctor of Musical Arts degree, and a Doctor of Arts degree in Foreign Languages. In the Health Sciences Center the M.D. and Ph.D. degrees are offered by the School of Medicine, the D.D.S. by the School of Dental Medicine, the M.S.W. and Ph.D. degrees by the School of Social Welfare, and the M.S. degree by the School of Health Technology and Management and the School of Nursing. At the undergraduate level, many departmental major programs and interdisciplinary programs leading to the B.A., B.S., and B.E. degrees are offered by the College of Arts and Sciences, the College of Engineering and Applied Sciences, and the Health Sciences Center.
The departments of Anthropology, Chemistry, Geosciences, Economics, History, Mathematics, Physics, and Astronomy, Political Science, Psychology, and Sociology offer Ph.D. and M.A. degrees.

Every graduate program is guided by a director and an executive committee, and establishes its own entrance standards and degree requirements in addition to those of the Graduate School. For detailed descriptions of the programs, consult the individual listings. Inquiries should be addressed to the appropriate graduate director.

The office of the dean of the College of Arts and Sciences is located in the Melville Library, Room E-3320. The phone number is (631) 632-6991.

College of Business
The College of Business offers an M.B.A. degree with concentrations in finance, management, marketing, information systems management, human resources, and health care management. The regular M.B.A. consists of a 60-credit program plus an internship. Students with more than five years of business experience or an advanced degree beyond the bachelors may qualify for the accelerated program, which consists of a 48-credit program.

Courses for the M.B.A. program are held during the day, evening, and Saturday. Most courses are offered on the Stony Brook campus, but a few courses are offered in Manhattan on weekday evenings for the convenience of students who work or live in New York City.

The College also offers its “Stony Brook Fast Track M.B.A. Program,” which consists of a combined undergraduate and M.B.A. degree program, typically taken over a five-year period. Students in this program take an undergraduate major outside of the College of Business and take the regular M.B.A. program with courses beginning in the summer before the senior year.

In addition, the College has an Executive M.B.A. program for employees of businesses that contract with Stony Brook. Students in these programs must have at least five years of business experience. Courses for these programs are often held on the employer's premises with tuition paid for by the employer. One such Executive M.B.A. is exclusively offered for law firm managers, with most courses offered at Stony Brook's Manhattan facility.

The Interim Dean for the College of Business is Joseph W. McDonnell.

College of Engineering and Applied Sciences
The College of Engineering and Applied Sciences consists of seven academic units: The departments of Applied Mathematics and Statistics, Biomedical Engineering, Computer Science, Electrical and Computer Engineering, Materials Science and Engineering, Mechanical Engineering, and Technology and Society. Six of these units offer programs leading to the Master of Science and Doctor of Philosophy degrees; the Department of Technology and Society offers a program leading to the Master of Science degree.

Each department has its own laboratories for teaching and research; in addition, collaborative research programs are carried out utilizing the facilities in the College, as well as in the Health Sciences Center, the College of Arts and Sciences, the Marine Sciences Research Center, Brookhaven National Laboratory, the New York State Center for Excellence in Wireless and Information Technology, the Advanced Energy Research and Technology Center, and several other off-campus national and industrial laboratories. The graduate programs in the College of Engineering and Applied Sciences are designed to train both academically oriented students and those with professional goals in industrial and governmental occupations requiring an advanced degree.

Each academic department/school evaluates candidates for admission to its programs. Prospective applicants should address inquiries directly to the graduate director of the appropriate department.

The Dean of the College of Engineering and Applied Sciences is Yacov Shamash, whose office is located in the Engineering Building, Room 100, (631) 632-8380.

Health Sciences Center
Unleashing the power of medicine through technology has been the catalyst for sweeping changes in health care this decade. Already the discoveries made by Stony Brook’s basic and clinical researchers who develop new approaches to treatment, new drugs, and new methods of transplantation have changed the quality of life for Americans.

Stemming from the 1963 mandate of the Muir Report that recommended the creation of new medical, dental, and nursing schools, today the Health Sciences Center (HSC) is composed of five professional schools—Dental Medicine, Health Technology and Management, Medicine, Nursing, and Social Welfare—that offer full-time professional education to nearly 3,000 students and conduct programs in research, service, and continuing education. The M.D. and Ph.D. are offered by the School of Medicine, the D.D.S. by the School of Dental Medicine, the M.S.W. and Ph.D. by the School of Social Welfare, and the M.S. by the School of Health Technology and Management and the School of Nursing. A master’s in public health is also offered. Additionally, the Long Island State Veterans Home serves as a teaching center for students from all professions.

More than 2,500 skilled professionals from the Long Island region have voluntary and part-time faculty appointments bringing academic prowess to the HSC’s five schools. While teaching a full load of courses per semester, full-time faculty pursue scholarly research and publication, as well as curriculum development and active participation in campus committee activities.

All HSC students, as part of their clinical training or fieldwork, work for a specific time with some of the Long Island health and welfare agencies. The Health Sciences Center also sponsors conferences, workshops, and lectures for the general community.

The HSC schools share instructional space and multidisciplinary laboratories in addition to the support services of the HSC Library and the Coller Learning Center, the Division of Laboratory Animal Resources, Media Services, and the Office of Student Services. The Center also includes a bookstore, bank, and food service area for the convenience of its students and faculty.

As one of the nation’s leading academic health centers, the HSC is committed to fulfilling its abiding missions: research-based patient care, education, basic and clinical research, and community service. Using multidisciplinary foci and partnerships that create a synergy among the schools and departments with external resources, the HSC has developed centers of excellence in cancer, heart, neonatology, autism, and molecular medicine, among others. It is developing a comprehensive academic Long
serves the health care needs of the nearly three million residents of Long Island and provides training for physicians, nurses, social workers, dentists, and allied health professionals. The HSC, with its 504-bed hospital, its 350-bed nursing home, and a dental care center that provides for 42,000 patients visits a year, represents an extraordinary resource to Long Island. The hospital has been ranked one of the 15 best major teaching hospitals in the U.S. It treats 28,000 inpatients and provides 400,000 outpatient visits each year. Through subspecialties, the School of Medicine’s 18 clinical departments offer consultation and care using a full array of specialized diagnostic and treatment techniques. The hospital is the only tertiary care hospital in Suffolk County and serves as the region’s “quaternary” hospital, providing services to the region’s high-risk medical patients. There are nine intensive care units dedicated to anesthesia, burn, cardiovascular, coronary, neonatal, and transplant patients. The neonatal intensive care unit provides the only tertiary care services for premature and newborn infants in Suffolk County. Utilizing the latest diagnostic and evaluative techniques, the prenatal diagnostic unit—the only American Institute of Ultrasound in Medicine (AIUM) accredited unit on Long Island—identifies potential problems and solutions for high-risk pregnancies.

In addition to being the only academic-based hospital in Suffolk County, University Hospital serves many regional roles. As the designated Regional (Level I) Trauma Center, helicopter and ground transports deliver Suffolk County’s most seriously injured and ill patients to the hospital. The seven-bed shock trauma room is specifically designed for treating patients with problems ranging from multiple traumas to cardiogenic shock. University Hospital also serves as the county referral center for all psychiatric emergencies. The hospital is designated as the regional perinatal center and the regional kidney transplant center, and also houses a cardiac diagnostic center, a sleep disorders laboratory, and a Lyme disease center. Adults and children with a variety of chronic conditions such as diabetes, cystic fibrosis, and multiple sclerosis receive specialized care and advanced services.

Detailed information about the professional programs offered by the five schools and the graduate program in public health is contained in the *Health Sciences Center Bulletin*. Since the Center’s training of health professionals requires special academic programming and support services, significant sections of the data contained in the *Graduate Bulletin* are not applicable to the HSC. Exceptions are the Ph.D. programs in Basic Health Sciences, which include Anatomical Sciences, Molecular Microbiology, Oral Biology and Pathology, Pathology, Pharmacological Sciences, Physiology, and Social Welfare.

The *Health Sciences Center Bulletin* can be obtained by contacting the HSC Office of Student Services at (631) 444-2111, or by contacting the office of the dean of a specific school.

School of Marine and Atmospheric Sciences

The School of Marine and Atmospheric Sciences (SoMAS) is the State University of New York’s center for marine and atmospheric research, education, and public service. More than 200 graduate and undergraduate students from 16 different nations currently work and study at SoMAS. It offers a Master’s and a Ph.D. program in Marine and Atmospheric Sciences, both with tracks in Marine Sciences and Atmospheric Sciences. SoMAS also has advanced certificate programs in Waste Management and Oceanic Science.

The Master’s and Ph.D. graduate programs emphasize integrative and interdisciplinary approaches to solving problems in marine sciences. Students may choose to specialize in any one of the research topics currently pursued by SoMAS faculty. Candidates may apply for admission at either the M.S. or Ph.D. level.

The Ph.D. Program in Marine and Atmospheric Sciences Atmospheric track is designed to prepare students to identify and solve problems in atmospheric science. The graduate programs emphasize independent thinking and skills in analytical, numerical, and laboratory techniques to solving problems in weather, climate, and environmental change. It builds on a flexible, interdisciplinary program and prepares students to become effective, independent problem solvers. Students are free to emphasize their own interests in atmospheric science but are expected to acquire a broad base of interdisciplinary knowledge.

Ph.D. students in the Marine track are broadly trained in oceanography. The program is designed to be flexible for a broad range of research specialties in biological, chemical, geological, and phys-
ical aspects of oceanography. There is considerable stress on integrative and interdisciplinary approaches to solving oceanographic problems.

M.S. students in the Atmospheric track receive rigorous training in atmospheric physics, thermodynamics, dynamics, radiative transfer, and their application in one of the areas of weather forecasting, satellite and conventional atmospheric data analysis, numerical modeling, and climate change. The program prepares students to gain strong communication, analytical and computer skills for positions in research, education, management, and environmental protection.

Master’s students in the Marine track are provided with a thorough education in physical, biological, chemical, and geological aspects of oceanography, plus rigorous training in scientific communication. Students conduct independent research in a wide variety of research fields and write a dissertation. This program is ideally suited to prepare students for positions in research, management, environmental protection, and resource development. Graduates will have a firm basis for more advanced study and the tools and training needed for effective careers.

The Advanced Graduate Certificate Program in Waste Management, designed for professionals who confront the complex problems of waste management and disposal, provides the educational background necessary to make informed decisions on these often controversial matters. This certificate is especially important for those who consider access to the most current expertise in waste management essential to working effectively in their careers or public service activities. It is structured to meet the immediate demands for waste management solutions and the more long-range goal of promoting the environmental and economic welfare of the region. The program is offered in collaboration with the Waste Reduction and Management Institute, part of SoMAS. This advanced graduate certificate articulates with the Master of Arts in Liberal Studies and the Master of Professional Studies through the School of Professional Development as well as the Master’s degree in Marine and Atmospheric Sciences.

The advanced graduate certificate program in Oceanic Science is designed to make the unique resources of SoMAS available to professionals as well as to scholars both within the SUNY system and at other institutions as well as other professionals. Students admitted to this program complete two full-time semesters (18 credits) of intensive, specialized graduate studies in our core curriculum, or the equivalent, under the supervision of a faculty sponsor. The program is intended to supplement a student’s primary educational and professional goals. Qualified students are provided with a broad background in oceanography as well as opportunity for in-depth course work in highly specialized topics.

School of Professional Development

The School of Professional Development (SPD) offers graduate degree and certificate programs designed for working adults. Courses are scheduled in the evenings, on Saturdays, online, and in off-campus locations. Students may enroll on a part-time or full-time basis. Two of the University’s three largest part-time graduate programs are offered through SPD: the Master of Arts in Liberal Studies and the post-Master’s Advanced Graduate Certificate in Educational Leadership. These programs are available in on-campus or online formats. Students may take some or all of their courses via the Internet, without ever coming to campus. Other SPD programs that have an online option are the Master of Professional Studies and Advanced Graduate Certificates in Human Resource Management and Coaching.

Prospective students can obtain the graduate credential they need to become New York State certified secondary school teachers through SPD’s Master of Arts in Teaching (M.A.T. programs). M.A.T. programs include Biology, Chemistry, Earth Science, English, Spanish, French, German, Italian, Mathematics, Physics, and Social Studies; five-year combined B.A./M.A.T. and B.S./M.A.T. degree programs are also available in the above-named areas.

SPD’s Advanced Graduate Certificate programs address the needs of the region as well as emerging professions. These 18- to 21-credit programs can be taken alone, or as part of a master’s degree program. Program offerings include those in coaching, educational computing, environmental management, human resource management, information systems management, and operations research.

SPD also has a non-credit Division of Career Development that offers a wide range of comprehensive courses in business and technology.

For more information or to apply for admission, visit SPD on the Web at www.stonybrook.edu/spd, call (631) 632-7050 (option 3), or write to N-201 Ward Melville Social and Behavioral Sciences Building, Stony Brook University, Stony Brook, NY 11794-4310.

Research

Research and scholarly and creative activity constitute a primary University mission, closely coupled with training, especially at the graduate level. As a SUNY campus, Stony Brook has its sponsored project funds administered under a statewide memorandum of understanding by the Research Foundation of SUNY (RF), a 50-year-old not-for-profit corporation whose local activities are directed by Stony Brook’s Vice President for Research acting as RF’s campus Operations Manager. The Foundation also provides the flexibility to establish affiliated corporations to facilitate university-industry-government partnerships and accelerate the growth of research opportunities; for Stony Brook these include Brookhaven Science Associates, through which Stony Brook, acting through the RF of SUNY, and Battelle Memorial Institute manage Brookhaven National Laboratory for the U.S. Department of Energy, and Long Island High Technology Incubator, Inc., Long Island’s first facility for technology start-ups, ranked first in a recent National Business Incubation Association survey. For the past three years, SUNY has ranked in the top 15 nationally in technology transfer, as measured by licensing revenues received for its technologies, according to the Association of University Technology Managers; the Stony Brook campus is responsible for generating more than 95 percent of those revenues and for 30 to 70 percent of technology transfer activity among SUNY’s 64 campuses, including invention disclosures, patents, and licenses.

Stony Brook generates more than $184 million in annual research activity from external sources across the spectrum of disciplines. More than 2,500 sponsored projects are under way at any given time in the form of organized research, training programs, public service activities, and educational support; some 900 graduate students annually are supported by these projects.
The offices reporting to the Vice President for Research assist researchers through the following major functional activities:

Office of Multidisciplinary Programs: Coordinates the development of multidisciplinary programs or interdisciplinary research and/or training proposals and fosters cross-disciplinary interaction among faculty. This office also maintains an online database of researcher interests and expertise and provides campus-wide access to thousands of funding opportunities that are keyed to match researcher interests.

Office of Sponsored Programs: Coordinates proposal submissions, negotiates contract and grant awards, and accepts and establishes sponsored awards on behalf of the University.

Office of Grants Management: Monitors sponsored award expenditures and cost sharing activity and provides financial accounting and reporting to sponsors and project directors.

Office of Research Compliance: Administers the campus’ compliance with laws and regulations dealing with research involving human subjects, laboratory animals, and recombinant DNA; monitors compliance with federal and university requirements regarding conflict of interest relating to sponsored research; and coordinates the investigation of allegations regarding scholarly misconduct.

Office of Technology Licensing: Assists in the preparation of invention disclosures and marketing of such property to the private sector; focuses on issues regarding patents, copyrights, technology transfer, and intellectual property of all kinds. Students are urged to consult this office regarding any agreements involving research activities in which they are named or which they may be asked to execute with external organizations.

Office of Economic Development: Links the academic and research resources of the campus with the economic needs of Long Island and New York State and supports resources related to them.

These offices recognize the importance of research and scholarly and creative effort to the University, the region and State, and society at large, and stand ready to assist and advise faculty and student researchers in the pursuit of these essential activities.

Campus-Community Ties

As the public university center for the metropolitan New York region, Stony Brook plays a major role in the Long Island community. The University is the largest single-site employer on Long Island, with more than 13,500 full- and part-time employees. It is estimated that the University generates approximately $2.5 billion annually in regional economic impact.

What sets Stony Brook apart from most other institutions of its kind is the University’s commitment to support and partner with local businesses. To that end, the University has developed several innovative economic development programs that provide vital assistance to Long Island’s growing companies. The University sponsors two State-designated Centers for Advanced Technology—the Sensor Systems CAT and the Center for Biotechnology—which are designed to promote industry growth vital to the state’s economic future. Also fueling new economic growth is the University’s Long Island High Technology Incubator, where entrepreneurs occupy nearly 200,000 square feet of commercial space and have earned more than $100 million in annual revenues. A second incubator, founded in cooperation with Computer Associates International Inc., is devoted to software development, making Stony Brook the only SUNY campus with two new business incubators. Faculty and graduate students are encouraged to take their technology to the marketplace and enroll in the Incubator program. The Incubator Web site is at www.lihti.org.

The Small Business Development Center at Stony Brook has created or saved 3,000 jobs on Long Island in the past decade, and the Strategic Partnership for Industrial Resurgence has worked with 220 companies on more than 1,150 projects, creating or saving 8,500 jobs. The region’s extraordinary profusion of coastal environments is a living laboratory for the School of Marine and Atmospheric Sciences, one of the world’s leading centers for coastal oceanography.

University Hospital serves the health-care needs of the residents of Long Island and provides training for physicians, nurses, social workers, dentists, and allied health professionals. Since opening in 1980, the Hospital has utilized the very latest in medical knowledge and technologies to meet the special needs of its patients. The Hospital offers highly specialized services, using the most sophisticated instrumentation and computerized physiological monitoring systems available.

Through subspecialties, the Departments of Medicine and Surgery offer consultation and care using a full array of specialized diagnostic and treatment techniques. The Hospital consists of 504 beds, of which nine intensive care units are dedicated to anesthesia, burn, cardiovascular, coronary, pediatric, medical, surgical, and transplant patients. It houses the area’s only Perinatal Center, providing care to women and infants with complex needs. The Hospital also performs more than 500 cardiac procedures annually, including open heart surgery, and has a new orthopaedic facility with the resources to treat even the most complex skeletal problems.

The Long Island State Veterans Home is a 350-bed nursing home that serves New York State veterans. It is located on the University campus, one-half mile east of University Hospital. The Veterans Home is unique in the United States because it is the first nursing home to be fully integrated into the health care, educational, research, and regional development missions of a major university.

Regional business and civic leaders help guide the Stony Brook Foundation—the University’s independently incorporated development arm—and community members with special interests in campus programs participate in the Association for Community-University Cooperation, the Friends of the Staller Center for the Arts, and the University Hospital Auxiliary. In addition to the University’s many degree programs, there are broad opportunities for credit-bearing and noncredit instruction for individuals pursuing specific, limited objectives or seeking personal enrichment.

In addition to its function as Long Island’s major research university and source of advanced and specialized instruction, Stony Brook provides a social and cultural center, a specialized referral center for health care, recreational opportunities, and a broad range of other services for individuals and groups in the public and private sectors. Several hundred concerts, lectures,
films, theatre productions, art exhibits, and sports events on the campus are open to the public each semester, many at no charge. It is estimated that several hundred thousand people attend these events annually or visit the campus to take advantage of other facilities and services.

Staller Center for the Arts

Stony Brook University’s Staller Center presents the most comprehensive program of cultural arts on Long Island. Staller Center is the only arts facility to offer professional music, dance, theatre, fine art, and film. The University Art Gallery presents professional artists’ exhibits as well as the work of Stony Brook faculty and students in the Fine Arts program.

Staller Center’s professional performance season opens in September and includes dozens of live professional events. World class artists and ensembles such as Savion Glover, Midori, the Ramsey Lewis Trio, the Moscow State Symphony Orchestra, and the Emerson String Quartet appear on the Staller Center stages alongside other internationally renowned musicians, dancers, actors, and actresses. The Renaissance Jazz Series brings leading jazz musicians to the intimate Staller Center Recital Hall. The “Not Just for Kids” series offers live musical theatre and other attractions for children and their families. Additional performances produced by outside presenters are on the calendar, such as the Long Island Philharmonic and the Seiskaya Ballet production of *The Nutcracker*.

A popular Film Series each semester includes an eclectic schedule of films, including foreign and art films that may have had limited engagements at local theaters.

Staller Center presents events produced by Stony Brook University’s departments of theatre, music, and art. Students in the Department of Music perform under the direction of Stony Brook faculty, artists-in-residence, and guest artists. The Stony Brook Symphony Orchestra performs throughout the season.

In July, Staller Center presents the Stony Brook Film Festival, which showcases dozens of independent films from the United States and abroad. Films are in competition and awards are presented at the end of the 10-day festival. The event attracts thousands to the Stony Brook campus. For tickets and information, go to www.stallercenter.com or call the Staller Center Box Office at (631) 632-7233. The Box Office is open from 12:00 pm to 6:00 pm, Monday to Saturday, and one hour before performances.

Department of Athletics

The Intercollegiate Athletics Program provides young men and women unique opportunities for learning not found in other academic environments of the University. The Program embraces the NCAA’s principles of sportsmanship and ethical conduct, and in so doing, provides student-athletes with opportunities to develop positive character and leadership qualities through competitive sport participation and community service.

The Intercollegiate Athletics Program is committed to achieving academic and athletic excellence and to promoting the general welfare of its student-athletes. In achieving these goals, the Program conforms to the letter and spirit of all rules and regulations of the University and of all the athletic bodies of which it is a member.

Through its various activities, the Program offers broad opportunities in an environment that is free of bias—it supports equitable opportunities for all students and staff, including women and minorities. The diversity of offerings and participants plays an important role in improving campus life for students, faculty, staff, and the community.

Policies and Procedures

Maintenance of Public Order

The University wishes to maintain the public order appropriate to a university campus without unduly limiting or restricting freedom of speech or peaceful assembly. The State University Board of Trustees’ Rules for the Maintenance of Public Order (Part 535 of Title VIII—Compliance of Codes, Rules, and Regulations of the State of New York) are available on the Judicial Affairs Web site http://studentaffairs.stonybrook.edu/judiciary/order.

Office of the Student Judiciary

The Office of the Student Judiciary is responsible for investigating and adjudicating cases of alleged student misconduct (in nonacademic matters) in violation of the University Student Conduct Code. In addition, the judiciary educates the campus community about the code and provides a learning experience for students who volunteer to become student hearing board members.

For questions regarding the Conduct Code, the judiciary process, or procedures for filing a complaint, please see http://studentaffairs.stonybrook.edu/judiciary or contact the Director of Judicial Affairs, 347 Administration Building, Gary.Mis@stonybrook.edu, (631) 632-6705.

Parking and Traffic

All graduate students who operate a car on campus are required to obtain a campus permit. Regulations have been established to govern vehicular and pedestrian traffic and parking on highways, streets, roads, and sidewalks owned, controlled, or maintained by the University. These regulations apply to students, faculty, employees, visitors, and all other persons upon such premises.

Online registration, campus information, bus schedules, rail links, parking regulations and appeal procedures, and much more can be found on the Parking Services Web site at www.parking.sunysb.edu. Commuter students can sign up to purchase permits for the Stadium Lot and two additional premium lots: the Life Sciences Lot and the ESS Meter Lot. Payment for premium lots can be made by charge card or the fee can be added to your University Account. Evening students may want to take advantage of the evening garage pass, which costs $11.37 per month and is valid after 3:00 pm Monday to Friday. If you don’t have computer access, call Parking Services at 632-AUTO for more information.

Student Conduct Code and Campus Safety

As a document, the University Student Conduct Code defines acceptable community behavior. For a resident student, it translates into respect for your neighbors and their property. It prohibits tampering with fire safety equipment, i.e., fire alarms, fire extinguishers, fire bells, etc. It includes respecting state property as well as maintaining an acceptable noise level in the residence halls conducive to study and sleep.

For all students, the Student Conduct Code supports compliance with state and federal laws pertaining to drugs,
alcohol, weapons, discrimination, physical abuse, sexual assault, acquaintance (date) rape, relationship violence, and racial, sexual, or sexual preference harassment. The Advisory Committee on Campus Safety will provide upon request all campus crime statistics as reported to the U.S. Department of Education. Direct such requests to Douglas Little, Assistant Chief of University Police, at (631) 632-7786. The U.S. Department of Education Web site for campus crime statistics is http://ope.ed.gov/security/search.asp and search for Stony Brook.

To obtain a copy of the code or information regarding campus regulations and disciplinary proceedings as well as procedures for filing a complaint, contact the Director of Judicial Affairs in the Office of the Student Judiciary, 347 Administration Building, or call (631) 632-6705. A copy of the code can also be found at http://ws.cc.stonybrook.edu/stuaff/Student_Handbook_2001.pdf
Campus Resources and Student Services
Athletic Facilities
The Sports Complex is actually two separate buildings, Pritchard Gymnasium and the newer West Wing.

Pritchard Gymnasium
Pritchard Gym is one of the original buildings on campus, built in the late 1960s when the campus moved to Stony Brook from its Oyster Bay location. The gymnasium is 20,000 square feet and has three regulation basketball courts that can be divided by a moveable wall into two separate rooms. The smaller part of the gym is equipped with drop-down batting tunnels used by the baseball and softball teams during the winter months and inclement weather. The gym is primarily used now for physical education classes, recreation, and team practices.

Also located in the Pritchard side of the Sports Complex is the 25-yard swimming pool, the weight room, and various Athletics and Physical Education offices. Pritchard has seen major renovations to its office space in the past several years. One of the biggest additions and most utilized areas is the Goldstein Academic Center.

Goldstein Academic Center
The Goldstein Academic Center was dedicated in December 1997 through a gift made by Stuart Goldstein and the Sunny and Abe Rosenberg Foundation. The Center is the primary study hall for the student-athletes and is equipped with the latest computers and network connections for Internet access. The academic advisors and student-athlete service offices are located in the Center as well.

Dance Studio
Also in the confines of Pritchard Gym is a 600-square-foot dance studio equipped with hardwood floors and ballet bars. The room is used for physical education classes and the Recreation Department uses it for multiple activities.

West Wing
Opening in 1990, the West Wing was one of the biggest additions to the campus in many years. The arena is 40,000 square feet and houses three regulation basketball courts with the center hardwood floor serving as the main court for basketball and volleyball. The arena has a 177-meter rubber surface track surrounding the perimeter of the room. In addition to basketball and volleyball, the arena is home to numerous trade shows, ceremonies, and concerts throughout the year. The West Wing also has office space for Athletics administration staff as well as a new equipment room, training room, and locker facilities.

Athletic Training Room
The athletic training room contains rooms for hydrotherapy, rehabilitation, private physicians examination, as well as a general treatment area. The facility houses equipment to ensure the student-athletes are getting the best treatment available. An auxiliary training room in the new Kenneth P. LaValle Stadium supplements the primary room.

Squash Court/Lounge
The West Wing also has six squash courts that get used daily for classes and recreation. The court space and its adjoining lounge area were made possible by a gift from Stuart Goldstein. The lounge serves as prime space for meetings and receptions throughout the year.

Kenneth P. LaValle Stadium
Kenneth P. LaValle Stadium opened in 2002 and is the new home to the football and lacrosse teams. The state-of-the-art facility is the largest outdoor facility in Suffolk County and has become the backdrop for some of Long Island’s most exciting sports events. The 8,200-seat stadium was built at the cost of $22 million and its unique design provides fans with a tremendous stadium experience. It has a three-tier press box on the east side and accommodates six luxury suites, a spacious working press box area, television and radio booths, and a camera deck on the roof. The south building houses the offices for the football and lacrosse staff as well as locker rooms for the teams. The facility was named Kenneth P. LaValle Stadium in honor of the New York State senator who was instrumental in making the stadium a reality.

Baseball/Softball Complex
Sitting back-to-back at the north end of the Athletic property is the baseball/softball complex. The baseball field is in its original location and had a face-lift when the skinned area was redone and new drainage and sprinkler systems were installed. The softball field was displaced when LaValle Stadium was constructed, and is now located next to the baseball field. Both fields have 25-foot scoreboards courtesy of Coca-Cola. The fields are the primary practice and competition facilities for the two teams.

Bookstores
The University Bookstore is located on the ground level of the Melville Library (opposite the Stony Brook Union). It stocks a wide selection of new and used textbooks, reference books, study aids, general books, school supplies, art supplies, engineering supplies, residence hall living supplies, Stony Brook logo clothing, Seawolves logo clothing, class rings, gifts and novelties, greeting cards, health and beauty aids, electronics, stationery, backpacks, magazines, candy, and snacks.

Shop early for the best selection of used books and to avoid the rush at the beginning of the semester, or reserve your textbooks online at www.stonybrook.edu/bookstore

The Bookstore buys back textbooks year-round at wholesale prices. To get the best price for your unwanted textbooks, sell them back to the bookstore as soon as final week begins.

The University Bookstore’s general books department carries many reference and technical titles that relate to academic programs and a wide selection of general reading books and magazines. Titles not in stock can be special ordered at no additional charge. For more information, call the University Bookstore at (631) 632-6550.

The Bookstore Campus Account (BCA) is a debit account. It offers the convenience of purchasing textbooks and school supplies in the University Bookstore, Matthew’s HSC Medical Bookstore, and the Seawolves MarketPlace without carrying cash; just present your University ID card. A BCA can be opened in increments of $100; choose an amount from $200 to $1,000. The amount you select is charged to your Student Account and may be deferred against financial aid or paid in monthly installments using the University’s Time Option Payment Plan (TOPP). It must be listed on your TOPP application. To open a BCA account, visit www.stonybrook.edu/bca.

No refunds can be provided until the end of the academic year unless a student officially withdraws from the University.

The University Bookstore also offers the following services:

Prepackaged Textbook Program: Customers who preorder get first selection of all used books in stock. Used books save 25 percent off new-book prices. Reservations must be received 30 days prior to the start of classes. Once your textbook reservation and class schedule are submitted, you will be contacted to confirm your request.
Textbook Guarantee Program: Gold Shelf Tags in the textbook department indicate that a professor has ordered a required textbook on time and students are entitled to the following guarantee. If the tag is gold and the required book is not available during the first two weeks of class, you get a $5 voucher to be used toward the purchase of the book. Restrictions do apply and are posted in the Bookstore.

Credit Card Authorization: Parents can place their credit card on file with the University Bookstore to allow students to make purchases. Additional information and a printable Adobe Acrobat PDF version of the enrollment form is available at www.sunysb.edu/provost/ians/bookstore/students/career.html.

Parent’s Lifeline: A variety of special services are available for parents, so they can send balloons, cakes for any occasion, flower bouquets, and small care packages. Call (631) 632-6553 to make arrangements.

Hours of Operation:
Monday 8:15 am-6:00 pm
Tuesday 8:15 am-7:00 pm
Wednesday/Thursday 8:15 am-6:00 pm
Friday 8:15 am-5:00 pm
Saturday 12:00 pm-4:00 pm

Please Note: The bookstore is open for extended hours during the first two weeks of each semester.

The Health Sciences Center (HSC) Bookstore is operated by Matthew’s Medical Bookstores under the direction of the Faculty Student Association. Located in Room 310 on Level 2 of the Health Sciences Center, it offers the largest selection of medical/health science books in the region, in addition to textbooks, school supplies, a range of college merchandise, daily necessities, and medical equipment for practitioners. The HSC Bookstore honors special book requests, providing customers with easy access to the hundreds of thousands of medical reference titles available. The HSC Bookstore also carries a wide selection of imprinted clothing and gifts, greeting cards, stationery items, general reading books, and magazines.

Hours of Operation:
Monday-Thursday 8:30 am-6:00 pm
Friday 8:30 am-5:00 pm
Saturday 9:00 am-1:00 pm

For more information, call the HSC Bookstore at (631) 444-3685 or visit www.matthewsmedsuny.com.

The University Bookstore and the Health Sciences Center Bookstore are both operated under the direction of the Faculty Student Association’s Retail Services Committee. FSA’s Bookstore Contracts Administrator, Donna O. Klingel, can be reached at (631) 632-9829 or Donna.Klingel@stonybrook.edu

Career Center
The Career Center, a member of the Student Affairs family, assists graduate students with all types of career decision-making and planning concerns. Services range from providing industry panels with potential employers to On-Campus Recruiting and job/internship fairs. Graduate students may find the Center’s practice interviewing and personal assessment instruments especially helpful in making the transition from an academic setting to the private/public sector. The Career Center offers individual and group counseling on the topics of job-search strategies, résumé writing, and interviewing. Students can access the Center’s Web site at www.stonybrook.edu/career, which has valuable job-search links such as ZebraNet, our comprehensive student résumé database and referral system. Graduate students are invited to visit the Career Center, which is located near the foot of the Zebra Path walkway and on the ground level of the Melville Library, Room W-0550. The office is open Monday through Friday, from 8:30 am to 5:00 pm. Call (631) 632-6810 for an appointment or drop in for an on-the-spot visit with one of our peer counselors.

Child Care
The University has on-campus, year-round child care services for 160 children ranging in age from two months to five years. Stony Brook Child Care Services is a nonprofit, nationally accredited center providing service for University students, faculty, and staff. The Center is staffed by professionals in the early childhood field who are assisted by students enrolled in coursework practice. Hours of operation vary. Fees are charged on a scale based on income.

The primary aim of the Center is to provide a warm, supportive, and creative atmosphere in which each child and his or her family are regarded as individuals. For more information or an application, call (631) 632-6930.

Computing Services
The Division of Information Technology has the overall responsibility for managing the computing, networking, and telecommunications at Stony Brook. The University’s computing and networking environment is characterized by an ever-changing array of hardware, software, network connectivity, and consulting services. In addition to the services listed below, which are available to the entire campus community, individual departments offer computing and networking facilities for their constituents.

The campus network is connected to both the commodity Internet at 310 Mbps and Internet2 at 200 Mbps. Both connections are at the OC3 speed, 155MBPS. All of the academic buildings and residence halls are connected to the network with fiber-optic cable. Off-campus access to the computer network is available by calling (631) 762-1000. For additional information about networking services, please refer to the campus home page (www.stonybrook.edu) under “For Students, Division of Information Technology,” or call (631) 632-6120.

Two Sunfire 4810 and other Sun application and file servers comprise the administrative computing environment. These machines serve as the administrative servers and database repositories for the University’s business systems. Electronic mail is provided through Lotus Notes, Unix mail, and POP3 and IMAP servers. High-speed printing is provided by the three Xerox Docuprint 65 printers. For information about computer accounts, contact the Computer Accounts Office at (631) 632-8011.

Client Support Services are available. For more information call (631) 632-9800.

General computing resources are available to all students through Instructional Computing, with offices in S-1460 Frank Melville Jr. Memorial Library (631-632-8050). Here students can use Macintoshes, PCs, and Unix workstations. Student consultants are also available to answer questions and assist students in using these systems (631-632-9602). Students can obtain information on the additional eight public sites as well as documentation for using the various computers. One-hour introductory courses are offered to help students use the public computing facilities. Any Stony Brook student may obtain an account on the instructional computing facilities for e-mail, Internet access, and general computing. Computer accounts are available from the Library SINC site.
Counseling Center
The University Counseling Center provides consultation, crisis intervention, brief psychotherapy, group and couple’s therapy, psychiatric services, and referral services for longer-term therapy for students matriculated in a degree program and who are registered for a minimum of six credits. Counseling services are available year-round and are free of charge. All information about counseling at the Center is strictly confidential, except information that is needed in situations of imminent threat or danger. The Center also provides training in mindfulness meditation, which is recommended for many students who experience anxiety or depression. Consultation is provided on mental health issues to the University as a whole. The University Counseling Center is located on the second floor of the Student Health Center. During the academic year, it is open from 8:00 am to 5:00 pm, Monday, Wednesday, Thursday, and Friday, and on Tuesday, from 8:00 am to 7:00 pm. During the summer, intercession, and spring recess, it is open from 8:00 am to 4:00 pm, Monday to Friday.

Appointments for an initial consultation can be made by calling (631) 632-6720. In emergency situations, students should tell the receptionist that this is an emergency and they will be seen right away without a scheduled appointment.

For mental health emergencies after hours and on weekends, students should call University Police at 911 or go to University Hospital. Students who are not experiencing an emergency but who want to speak with someone after hours or on weekends may call the Response Hotline at (631) 751-7500.

Because adjusting to the University can be stressful, new students are encouraged to come to the Center in their first year rather than wait until they experience a serious crisis. Students should visit the Center’s Web site at http://studentaffairs.stonybrook.edu/counsel/ for more details about services and for links to useful resources, including pamphlets on relevant mental health topics.

Disability Support Services
Disability Support Services (DSS) coordinates advocacy and support services for students with disabilities. These services assist integrating students’ needs with the resources available at the University to eliminate physical or programmatic barriers and to ensure an accessible academic environment.

All information and documentation of student disabilities is confidential. Students are responsible for identifying and documenting their disabilities through the DSS office. Students receive assistance with special modified housing and on-campus transportation. DSS can assist with University procedures and requirements; test accommodations; counseling; and the recruitment of readers, interpreters, and note-takers.

Students who anticipate requiring assistance should contact Disability Support Services at (631) 632-6748/6749 (VOICE/TT is available) as early as possible to allow time for implementing recommended services. For more information, please visit the DSS Web site at http://studentaffairs.stonybrook.edu/dss

Graduate Student Organization
The Graduate Student Organization (GSO) is the only elected representative body for graduate student governance on campus. All graduate students who pay the activity fee, including those in the School of Professional Development (SPD) and the Health Sciences Center, are members. Each department is eligible to have at least one representative in the GSO Senate, which sets policy and oversees the GSO budget.

The GSO acts as a liaison between the graduate student body and the University administration. The Senate serves as a forum for articulating and formulating graduate student interests. The GSO Executive Council advocates these interests in regular meetings with the University President and the Dean of the Graduate School. The GSO Senate appoints graduate student representatives to a number of influential University advisory and policy-making committees, and dispatches delegates to the University Senate. These representatives advocate graduate student interests within the University’s administrative structure and report to the GSO Senate on new policy developments. The GSO is a participating member in both the statewide SUNY Student Assembly and the National Association of Graduate-Professional Students (NAGPS), which advocate for SUNY and graduate-professional students on the New York State and national levels, respectively.

The GSO is also a service-based organization that provides a number of financial services for graduate students at Stony Brook. Resource Allocation Project (RAP) funds, for instance, provide small travel grants to students presenting scholarly or artistic work at conferences, provided their departments have an active senator. The GSO disburses department allocations (cash grants) to the graduate student body in each department to be used as the students see fit, such as to purchase equipment and supplies or to sponsor a visiting scholar. To guide graduate students in areas such as landlord/tenant and matrimonial law throughout the year, the GSO provides its members with access to a local attorney free of charge, and hires tax preparers each year to assist both domestic and international students with their tax returns. In addition, the GSO publishes The Graduate Student Survival Guide at the beginning of each fall semester to provide a “student’s eye” perspective on the operations of the Stony Brook campus and the resources available at the University and in the surrounding communities.

The GSO office is located in the Student Activities Center, Room 227. For more information log onto www.sbgso.org, call (631) 632-6492, or e-mail gso@ic.sunysb.edu

Student Activity Fee
The Student Activity Fee enables the GSO to provide its members with access to valuable and unique programs and services each semester. Any student can apply to the GSO for a waiver of the student activity fee prior to the deadline stipulated on the GSO Web site.

Intensive English Center
E-5320 Melville Library
Stony Brook University
Stony Brook, NY 11794-3390
Phone: (631) 632-7031
Fax: (631) 632-6544
Web site: www.sunysb.edu/iec
E-mail: IEC@stonybrook.edu

The Intensive English Center (IEC) offers non-credit courses on a year-round basis: a spring semester starting in late January, a fall semester starting in early September, and a six-week summer program starting in mid July. Students are placed in levels ranging from low intermediate through pre-academic advanced by means of comprehensive diagnostic examinations in the beginning of each session. Classes meet five days a week for a minimum of 18 hours. Core courses include daily instruction in speaking, listening, read-
ing, and writing skills. These courses are supplemented by elective courses that include: Grammar, Oral Communication, Pronunciation/Accent Improvement, TOEFL Preparation, American Film and Culture, and Business English.

During the summer, the IEC offers full-time and part-time programs supplemented by cultural and recreational activities. Students who have a minimum TOEFL score of 75 (iBT) may take the IEC part-time program and enroll in credit-bearing university courses.

The IEC welcomes graduate students who wish to improve their English proficiency or to satisfy the Graduate School's English proficiency requirements. The TOEFL requirement may be waived for prospective graduate students with a minimum TOEFL score of iBT 75 who successfully complete the advanced level with a grade of B or better.

The IEC will issue an I-20 form (for an F-1 visa) to applicants who meet IEC admission requirements. For applications and more information, please contact the IEC office.

International Academic Programs

The Office of International Academic Programs administers programs with overseas universities and also brings students from other countries to this campus. Graduate students who intend to study or do research abroad should contact this office to complete University-mandated health and personal forms.

For more information, call (631) 632-7031 or visit the office in E-5340 Melville Library.

International Services

The Graduate School
Suite 2401 Computer Science Bldg.
Phone: (631) 632-INTL (4685)
Fax: (631) 632-7243
www.grad.sunysb.edu/international
E-mail: InternationalServices@stonybrook.edu

International Services provides advice and assistance on U.S. government immigration regulations and cross-cultural issues relating to study, teaching, research, and living in the United States. International student and scholar advisers are the Designated School Officials (DSO) and Responsible and Alternate Responsible Officers (ARO) on campus who are responsible for assisting students and scholars in obtaining and maintaining valid F-1 or J-1 status in the United States.

Students who are not citizens or permanent residents of the United States typically enter the U.S. in non-immigrant F-1 student or J-1 exchange visitor status. Certificates of Eligibility (Form I-20 for F-1 status or Form DS2019 for J-1 status) will be required when applying for an F-1 or J-1 visa at a U.S. embassy or consulate abroad. Certificates of Eligibility are issued to students who have been admitted to a full-time program of study, have provided proof of financial support for their proposed program of study, and have provided proof of English language proficiency. Students who are not yet proficient in English may wish to apply to the Intensive English Center.

Orientation and Registration

International Services provides a mandatory orientation program for all new and transfer international students before the start of classes. International students are required to arrive on campus by the first day of orientation and attend all mandatory orientation sessions. Details about arrival and orientation are contained in the arrival booklet and letter from International Services. New non-immigrant students are required to report to an international student adviser at the start of the semester for a personal interview. Students transferring from another U.S. school must coordinate the transfer process with their current school and report to an international student adviser during orientation to complete the transfer procedure.

After Orientation

International Services is required to make many reports to Immigration and Customs Enforcement (ICE) in the Student and Exchange Information System (SEVIS) to record arrival on campus, full-time enrollment, changes of address, changes in program, and other issues. International students must familiarize themselves with these SEVIS requirements in order to comply with U.S. immigration regulations. It is important for students to maintain contact with their international student advisers for advice and assistance. Each semester, workshops on various topics are held for international students. International Services also serves as a liaison between students and the community Host Family Program.

Libraries

The Stony Brook campus has a number of libraries established to meet the informational and cultural needs of the University community. The Frank Melville Jr. Library (Main Library) provides both an intellectual and physical focal point for the campus and is among the largest academic libraries in the nation. Within the Melville Library are collections in biology, computer science, engineering, fine arts and music, general science, geosciences, humanities, and social sciences. Service units in this building provide ready access to 41,700 current print and online periodicals, more than 7,000 feature or educational videos and DVDs, government documents, music scores, maps, microfilm, and legal material. Other service units of note are the Music Library and Listening Center, a Patents and Trademarks Depository, a student lounge, two instructional computing classrooms, a video viewing center, and a variety of study areas.

The Reference Department in the Central Reading Room includes print, microfilm, and online indexes to current periodicals, encyclopedias, information, specialized reference works, and 47 computer workstations. Reference staff (nine librarians) provide on-demand assistance and instruction in searching for and evaluating information, using library resources, and doing research in particular areas. AskALibrarian, offering e-mail and chat (Monday through Friday from 9:00 am to 5:00 pm), provides online reference assistance. To reach a reference librarian call 632-7110.

The Special Collections Department houses the Senator Jacob K. Javits Collection of 2 million items of memorabilia and private papers, as well as the William Butler Yeats Microfilmed Manuscripts Collection, the University Archives, the Environmental Defense Records, and holdings of many Long Island political, cultural, and business manuscripts and records.

Three science branch libraries in other buildings—Chemistry, Math/Physics/Astronomy, and the Marine and Atmospheric Sciences Information Center (MASIC)—provide more specialized resources and services in their subject areas. The Health Sciences Library, separately administered, is located on the East Campus in the Health Sciences Center, Level 3. Collectively, the University libraries contain more than 2.2 million bound volumes and 3.8 million microforms. Library holdings may be accessed through the Stony Brook Automated Retrieval System.
System (STARS), the online catalog that displays the holdings of all West Campus libraries, with the exception of materials that are not completely cataloged (i.e., some government documents, detailed microfilm contents, special collections, University archives, and maps). The Health Sciences Library catalog is accessible on the Library home page.

The University libraries have a wide range of leased online resources including subscriptions to more than 300 electronic databases, books, and archives, as well as more than 40,000 electronic full-text journals. Computer workstations are located throughout the library’s facilities. Web access is available to most of its specialized databases from all personal computers on campus. Off-campus Web access to most of the library’s online resources is available to users with a valid Stony Brook ID.

Instructions for using the databases are available on the library’s home page. Assistance may also be obtained from the Dolt Web site, Instructional Computing Center, Reference Department, and most library service desks.

The library sponsors or co-sponsors author readings, concerts, exhibits, lectures, and tours throughout the year. Check the library or University home page or other campus newsletters for dates and events.

Brochures, handouts, and information sheets explaining library policies, how to use the library, how to access electronic resources, how to do research, and where books, magazines, and services are located are available in the Central Reading Room on the first floor or in Circulation Services on the third floor of the Melville Library. Additional detailed information on library activities, building maps, collections, offices, and services is also available online.

When classes are in session, the Melville Library is generally open from 8:30 am to 12:00 pm (Central Reading Room to 2:00 pm) Monday through Thursday; 8:30 am to 8:00 pm on Friday; 10:00 am to 6:00 pm on Saturday; and 12:00 pm to 12:00 am on Sunday (Central Reading Room to 10:00 pm). Study hours are extended just before final exams. The schedule varies in the winter and session sessions. The library’s information phone line is (631) 632-7160; it is available continuously with a recording of the current hours and any emergency information. For further information check our Web page: www.stonybrook.edu/library

Off Campus Housing

Off Campus Housing, located in the FSA Suite, Room 250 of the Stony Brook Union, is available to assist students in finding off-campus living arrangements. This service includes a searchable database of available rental housing options, tenant information, tips for renters, listings of short-term and interim housing, bed and breakfast, hotel and motel information, and local transportation information and maps. The office is open Monday to Friday from 9:00 am to 4:30 pm. Call (631) 632-6770 or visit the Web site, which contains an interactive database, at http://och.vpsa.sunysb.edu

Ombuds Office

The services of the University Ombuds Office are available to all students, faculty, and staff. The office provides informal, receptive place to turn for help if you are having trouble getting through a bureaucratic maze or need help resolving a dispute or problem related to your life or work at the University. All matters handled by the Ombuds Office remain confidential. Depending on the nature of the question or problem, the Ombuds Office might offer specific advice or informal mediation, provide information, or make the appropriate referral to facilitate a resolution. The Ombuds Office is also open to those who simply need someone to listen impartially and privately and to suggest a course of action. The University Ombuds Office is located in Room W-0505, Melville Library. Hours are 9:00 a.m. to 5:00 p.m. Monday through Friday. Walk-in visits are possible, but scheduled appointments are recommended. The phone number is (631) 632-9200.

Stony Brook Union

The Stony Brook Union is a magnet for concerts, dances, movies, parties, student activities, and a great place to meet new friends. The Lounge on the main floor is a very visible place to become part of the action and participate in all the fun. You can find sales of clothing, jewelry, plants, posters, etc., all in the lobby area. The Stony Brook Union has seven meeting rooms, a 350-seat auditorium, a ballroom, an information center, crafts center, Interfaith Center, café, barber shop, UNITI Cultural Center, Off-Campus Housing Office, an ATM machine, and Enterprise Rent-a-Car.

There are several places to go to for a quick bite or a relaxing lunch: Delancey Street Kosher Deli, Fusion, the Union Deli, Union Station, the University Café, and Wolfies. They all offer an appetizing array of possibilities.

The Stony Brook Union serves as the headquarters for many student groups. In addition, the student newspapers; WUSB-FM (90.1), the University radio station; television station and audiovisual services; and a new, 100-computer SINC site are all located in the Union. The Inter-Fraternity/Sorority Council Office is on the lower level and the Interfaith Center’s Ministries’ offices and lounges are on the second floor, offering Baptist, Catholic, Islamic, Jewish, and Protestant services and activities that are open to all. Religious and personal counseling services for students of these and other denominations are also provided through the Interfaith Center. For more information about the Center, please call (631) 632-6565.

Student Activities Center

The Student Activities Center (SAC) opened in 1997 and forever changed the way students, faculty, and staff interact on campus. Everyone seems to come to the Center at some part of the day, for either a meal, a program, an exhibit, a meeting, or an activity. From the soaring windows in the two-story dining hall that overlook the Academic Mall, you are treated to a panoramic view stretching from the Administration Building to the east, and Earth and Space Sciences to the west.

Services offered within the Center include a wireless network (first and third floors); the Seawolves Marketplace convenience store; U.S. Post Office; a full-service bank with ATMs; an auditorium that seats 595; two multipurpose ballrooms; an art gallery; a court yard; nine meeting rooms; offices for clubs and organizations; a ticket office; several lounges; and two Wellness Centers where you can work out. There are lockers available for commuters in the lower level. Administrative offices for the Dean of Students and Commuter Student Services are located on the second floor, as are offices for Student Activities, Reservations, and Facilities/Operations managers.

Hours of Operation for the Student Activities Center and Stony Brook Union

During the fall and spring semesters both buildings are open Monday
through Friday, 7:30 am to 12:00 pm; Saturday and Sunday, 9:00 am to 12:00 pm. During recesses and intercession it is open Monday through Friday, 7:30 am to 7:00 pm and is closed New Year’s Day, Easter Sunday, Memorial Day, Independence Day, Labor Day, Thanksgiving, and Christmas Day.

Note: Hours are subject to change. For more specific building hours information, call (631) 632-6820.

The Department of Campus Recreation

Wellness Center

Have a Ball with Campus Recreation: Don’t just sit there on the bench! Get into the game by trying one of the many programs the Department of Campus Recreation sponsors every year just for you. These programs include intramural sports, fitness programs, informal recreation, sport clubs, special events, and equipment rentals. Our primary goal is to enhance the quality of life on campus for students, faculty, and staff by providing a diversity of programs and facilities to meet their recreational needs. Here are some of the programs you can join:

Informal Recreation: Commonly referred to as “Open Rec”, it gives individuals the opportunity to participate in drop-in activities such as badminton, basketball, fitness activities, indoor soccer, racquetball, squash, swimming, and volleyball. Weekly schedules are available through the Department of Campus Recreation. Advance reservations are necessary for racquetball and squash court use.

Intramural Sports: Offers opportunities for students, faculty, and staff to participate in team and individual sport competitions. Sports include basketball, bowling, dodgeball, flag football, indoor and outdoor soccer, softball, volleyball, and wiffleball. Special tournamens are scheduled for badminton, racquetball, and tennis. Individuals as well as teams are encouraged to participate in intramurals. Pick up entry forms in the main lobby of the Sports Complex or stop by the Department of Campus Recreation (located on the bottom floor of the Pritchard Gymnasmum). Regular season games are played Monday through Thursday from 3:00 pm to 11:00 pm. Our most popular intramural/recreational sport activities are 5-on-5 basketball, indoor soccer, the ski trip, and whitewater rafting.

Fitness Programs: Fitness classes are scheduled in the Student Activity Center Aerobic Studios located on the Lower Level Room 010 and the Sports Complex Dance studio. Fitness classes include: body sculpting, boot camp, kickboxing, Pilates, resistance ball, spinning, step aerobics, and yoga.

Wellness Center: The Wellness Center is located on the third floor of the Student Activities Center Room 307. Amenities include Cardio Theater, cardiovascular equipment, free weights, locker rooms, physioballs, selectized weight training circuit, shower facilities, and strength training equipment. The Wellness Center is fully equipped with cardiovascular equipment, including: bikes, Concepts II rowers, Cybex Arc trainers, elliptical trainers, and Life Fitness treadmills.

Sport Clubs: The sport club program is an integral part of campus recreation. It fills the void between intramural sports activities and intercollegiate athletics. Sport clubs provide our students the opportunity to participate in highly competitive sport activities, learn new skills, improve skill levels, and enjoy the recreational and social benefits derived from sports involvement. Sport clubs are formed by students who are motivated by a common interest and have a desire to participate in a sport activity. A sport club may be oriented toward competition, recreation, teaching, or solely socialization purposes.

Student Activities

The Office of Student Activities is the primary focal point for the planning, coordination, and implementation of a broad range of cultural, developmental, educational, leadership, recreational, and social programs. The office consists of four functional areas: Clubs and Organizations and Weekend Life; Fraternities and Sororities; Leisure Programs and Art Gallery; and Student Media. The organizational structure compliments this mission: to provide student programs and services, to foster student development, to interact and collaborate with all facets of campus life for activities and program development, and to provide experiential opportunities for the acquisition of skills.

Student Activities provides a variety of programs and services to facilitate the co-curricular and personal development of Stony Brook students and the campus community. Students experience opportunities for leadership development and personal growth. The Activities staff offers assistance in organizational development and program advisement to more than 300 student clubs and organizations and 32 fraternities and sororities. Staff members work with students on the event planning process, and help clubs and organizations with block booking, budget issues, evaluation of events, meeting space, program advisement, recognition for new clubs, space reservation, technical requirements for student-sponsored events, and the annual registration process for student groups. The office coordinates many traditional campus-wide programs, such as Campus Life Time, the Commencement speaker selection process, Opening Week Activities/Chill-Fest, Roth Regatta, and Student Activities Fairs. Activities staff collaborate with other departments to implement other major campus programs such as Diversity Day, Homecoming, Strawberry Festival, and many more.

Craft Center

Located in the basement of the Student Union, the Craft Center provides the students with a place to relax, develop their creative spirit, and meet new people. In its noncredit courses, students can learn about beaded jewelry, ceramics/pottery, drawing, Ikebana (Japanese flower arrangement), painting, photography, and many other art forms. They can also take part in the leisure classes with choices such as defensive driving and bartending. In the studio, members often get hands-on expertise from its friendly and competent instructors. Different community events such as the popular craft night (once a semester), craftmaking at campus festivals, and pottery sales (about four per semester), put the Craft Center amongst the student’s favorites. Overall, the Craft Center is a must-see for the creative student on a budget.

Student Media

High-quality noncommercial FM radio is provided for the campus and community, reflecting a broad spectrum of educational, informational, musical, and news programming 24 hours a day, seven days a week, on WUSB 90.1 FM. The Student Media office sponsors independent projects and internships. The office coordinates fundraisers for the radio station and advises student media groups, including closed-circuit TV, journals, newspapers, and online media. There are several news organizations on campus: Statesman, Stony Brook
Press, SB Independent, AA E-Zine, Blackworld, and Korean Life. SBU-TV is the television station on campus and students are able to learn about the TV industry and produce news and entertainment shows.

Student Health Services
Student Health Services is located on the first floor of the Infirmary Building and provides for the health needs of registered students. For more information, please refer to the Student Health Service section in the next chapter on Financial and Residential Information.

Veterans Affairs
The Office of Veterans Affairs (VA), located in Room 347 of the Administration Building, offers services in applying for VA educational benefits. All veterans, veterans' dependents, and active duty personnel may utilize these services. Stony Brook University is approved for the education of veterans, service members, and dependents of veterans eligible for benefits under the programs of the Veterans Administration.

New veteran students should report to the Office of Veterans Affairs at the time of application to the University. All veterans need to report after registration for each new semester. Since benefit allowances and VA policies and procedures are subject to change, veteran students should maintain regular contact with the office at (631) 632-6700 or OSA_VETS@notes.cc.sunysb.edu

The office also provides certification and tuition deferment services. For additional information or to schedule an appointment, visit the Web site at www.sunysb.edu/stuaaff/vets or call the office at (631) 632-6700.

Information regarding VA benefits, including eligibility, payment information, remaining entitlement, or the address of the nearest regional office is available through the VA at 1-888-GIBill-1 (1-888-442-4551).

Transfer Credit from Military Service
For information about transfer credit from military service school, please make an appointment with the Office of Admissions/Transfer.

Military service school courses will be evaluated with reference to the recommendation of the American Council on Education when official credentials/transcripts have been presented by the student to the Office of Admissions. Such recommendations are not binding upon the University. In no instance may any of the hours of credit be substituted for specific courses, but they may be substituted for electives.

Students who have successfully completed basic training in the armed forces may receive semester hours of elective credit by presenting a DD214, DD295, a copy of a Community College of the Air Force transcript, or a certificate of training to the Office of Admissions.

Writing Center
The Writing Center is the tutorial component of the Program in Writing and Rhetoric, and it provides free, individual mentoring for writing to all members of the Stony Brook University community. The tutors at the center work with a wide range of students, staff, and faculty, and they are sensitive to the needs of native English speakers as well as the concerns of people whose primary language is not English. Tutors are trained to work with all aspects of writing and will address a broad range of writing issues such as planning, organizing, revising, and editing. Although they cannot edit or proofread writers' work for academic honesty reasons, they do model and practice strategies of effective proofreading and editing. The Writing Center offers appointments and drop-in sessions (although availability is often limited), and online tutorial by e-mail. Please call (631) 632-7405 for the current schedule and an appointment, or visit www.stonybrook.edu/writingcenter. The office is located in Humanities 2009.
Tuition and Fees

All bills are due and payable (unless properly deferred by guaranteed financial aid) within 30 days of registration or by the published due date on the billing statement, whichever is sooner. Tuition and fees are subject to change without notice.

Application Fee

- **$60**

Tuition

Full-Time Graduate Students

<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th>Second Semester</th>
<th>Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 or G3—12 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY State resident</td>
<td>$3,450</td>
<td>$3,450</td>
<td>$6,900</td>
</tr>
<tr>
<td>Non-resident</td>
<td>5,460</td>
<td>5,460</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G2 or G4—9 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY State resident</td>
<td>$2,592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-resident</td>
<td>4,095</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part-Time Graduate Students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1, G2, G3, G4, and G5—1 credit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY State resident</td>
<td>$288/semester credit hour</td>
<td></td>
</tr>
<tr>
<td>Non-resident</td>
<td>$455/semester credit hour</td>
<td></td>
</tr>
</tbody>
</table>

Full-Time Medical Students

- NY State resident: $9,400 per semester
- Non-resident: $16,750 per semester

Full-Time Dental Students

- NY State resident: $8,100 per semester
- Non-resident: $16,250 per semester

Activity Fee

- **First Semester**
 - Full-time graduate student (except professional): $22.00
 - Part-time graduate student: 7.00
 - Dental student: 37.50

- **Second Semester**
 - Full-time graduate student (except professional): $22.00
 - Part-time graduate student: 7.00
 - Dental student: 37.50

- **Academic Year**
 - Full-time graduate student (except professional): $44.00
 - Part-time graduate student: 14.00
 - Dental student: 75.00

Comprehensive Fee

- **Fall Semester**
 - Full-time graduate student: $406.50/term

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time graduate student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>composed of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Fee</td>
<td>$12.50/term</td>
<td></td>
</tr>
<tr>
<td>Infirmary Fee</td>
<td>$115.50/term</td>
<td></td>
</tr>
<tr>
<td>Transportation Fee</td>
<td>$105.00/term</td>
<td></td>
</tr>
<tr>
<td>Technology Fee</td>
<td>$173.50/term</td>
<td></td>
</tr>
</tbody>
</table>

Payment of Tuition and Fees

Payments made by check or money order must be made payable to Stony Brook University. Payment can be mailed to P.O. Box 619, Stony Brook, NY 11790, or made in person at the Bursar’s Office in the Student Services Lobby in the Administration Building.

Billing Statements and Account Balances

After registering, all students will be sent a billing statement for tuition and fees with instructions for making payment. If the student does not receive a billing statement within 30 days after registration, it is the student’s responsibility to contact the Student Accounts Office at (631) 632-2455 for a bill and pay the full balance by the due date.

Students with outstanding balances will receive multiple statements throughout each semester. Each billing statement will list the amount due to the University. Tuition, fees, and other University charges assessed on each billing statement will be due in full by the due date appearing on your statement. Unpaid charges from the previous statement will be brought forward and additional charges, payments, and credits will be shown.

The billing statement also will show and subtract any authorized deferments in the calculation of the amount due. These include student loans, TAP awards, and tuition scholarships. Students must have proof of approved aid, waivers, or scholarships in order to properly defer payment. Without satisfactory evidence to defer, students are expected to pay charges up front and wait for reimbursement when the aid, waiver, or scholarship funds are actually received. Students should apply early for financial aid they expect to use to pay their University bill, and are encouraged to join the Time Option Payment Plan.

All students are responsible for making sure that a correct address is on file and they must inform the Registrar’s Office of any change of address. Failure to receive a bill due to an incorrect address will not be accepted as a reason for waiving late payment fees.

Failure to pay the amount due by the due date will result in an automatic assessment of the incremental late payment fee of $40 up to a maximum of $150 per semester. Pending financial aid will not be accepted as a reason to waive late payment fees.

Financial and Residential Information

Required Student Health Insurance

- **Fall:** $409.00
- **Spring:** $563.00

(Subject to change for 2008-09 year.)
Deferments

Students receiving awards provided by the State of New York, managed by the University, may utilize deferments equal to the amount of the award. Only current awards are deferrable; only tuition, room, board, and bookstore accounts charges are deferred. Deferments include:

1. All campus-based financial aid programs with the exception of the Federal Work Study Program and Student Employment
2. Tuition Assistance Program Awards
3. Federal Pell Grants
4. Federal Stafford Loans (Subsidized and Unsubsidized)
5. Veteran’s educational benefits
6. Vocational rehabilitation benefits
7. Private, public, or industrial scholarships, grants, internships, and loans (including foreign government scholarships)

Deferments are available only upon completion of all necessary paperwork and receipt of valid documentation.

NYS Tap awards may be deferred against your bill if you have received an award certificate from HESC listing SUNY Stony Brook. To use your subsidized or unsubsidized Stafford loan as a deferment, you must return the Master promissory note to HESC in Albany. Teacher Waiver certificates, Tuition Eligibility forms, and State tuition waivers must be received by the Student Accounts Office before the end of the second week of classes. Waivers and certificates must be approved by all necessary parties and not expired.

Withdrawals and Tuition Liability

Tuition

A student who is given permission to cancel his or her registration or who is withdrawing from classes shall be liable for payments of tuition and all fees in accordance with the appropriate tuition liability schedule:

Fall and Spring Academic Semester

Tuition Liability Schedule

Tuition and Fee Liability during:

<table>
<thead>
<tr>
<th>Tuition Liability</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>0%</td>
</tr>
<tr>
<td>2nd week</td>
<td>70%</td>
</tr>
<tr>
<td>3rd week</td>
<td>100%</td>
</tr>
</tbody>
</table>

Winter Session

Tuition Liability Schedule

Tuition and Fee Liability during:

<table>
<thead>
<tr>
<th>Tuition Liability</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd day</td>
<td>0%</td>
</tr>
<tr>
<td>3rd/4th day 1st week</td>
<td>65%</td>
</tr>
<tr>
<td>after 1st week</td>
<td>100%</td>
</tr>
</tbody>
</table>

Six-Week Summer Term

Tuition Liability Schedule

Tuition and Fee Liability during:

<table>
<thead>
<tr>
<th>Tuition Liability</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>before 9/8/08</td>
<td>0%</td>
</tr>
<tr>
<td>9/8/08 to 9/15/08</td>
<td>30%</td>
</tr>
<tr>
<td>9/16/08 to 9/22/08</td>
<td>50%</td>
</tr>
<tr>
<td>9/23/08 to 9/29/08</td>
<td>70%</td>
</tr>
<tr>
<td>after 9/30/08</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: The first day of classes as scheduled by the campus shall be deemed to be the first day that classes are offered, as scheduled by the academic calendar.

After 0% liability, tuition will be prorated according to the schedule above, and all fees are due in full. After 100% liability, a student is liable for tuition and all fees in full. Students who register for courses and who do not file the appropriate withdrawal, or do not drop before the end of the fourth week of classes, are liable for their full charges.

Students who decide not to attend after registering must formally cancel their registration at the Registrar’s Office. All refunds or adjustments of charges are based on the date the withdrawal occurs, not on the date of the last class attended. If students are unable to cancel or withdraw in person, written requests may be sent to the Office of Records or faxed to (631) 632-9491. Students are advised to retain a copy of the withdrawal letter from the Student Accounts Office. You should be aware that even after an official withdrawal, you may be subject to financial liability according to the published tuition liability schedule.

There is no tuition liability for a student who withdraws by call to active military service before the end of an academic term. This only includes courses in which he or she does not receive academic credit.

Non-attendance of classes does not classify as an official withdrawal, and does not relieve the student of his or her financial obligation, or entitle the
1 The first day of classes shall be considered the first day of the semester, quarter, or other term; the last day of finals week shall be considered the end of the semester.

Note: The first day of classes shall be the first week of classes. No refunds will be granted after the first week of classes. Any student can apply for a waiver.

Financial Assistance

The mission of the Office of Student Financial Aid Services is to assist students and their families in taking full advantage of their financial aid opportunities by providing applications and processing information about available grants, scholarships, work opportunities, and student loan programs.

Financial aid helps to provide access to a quality college education for all, regardless of economic background. The primary responsibility for meeting college costs rests with the student and his/her family. Financial aid is based on need and is intended to supplement the family’s contribution.

To obtain maximum consideration for financial aid, please study the information available, follow instructions provided on application forms and other materials, and pay careful attention to deadline dates. Timely submission of application forms and other required documents is required to process your financial aid.

Application Forms

To apply for all types of financial aid, the Office of Student Financial Aid Services recommends the following steps:

Register for a Federal PIN (Personal Identification Number): Before you begin the application process, you should register for a federal PIN number. The PIN serves as your electronic signature on federal applications and documents such as the FAFSA. In addition, it allows you to access your personal information in various U.S. Department of Education systems. You can apply for a PIN at the U.S. Department of Education’s PIN site, www.pin.ed.gov

File the Free Application for Federal Student Aid (FAFSA): Go to FAFSA on the Web (www.fafsa.ed.gov) and apply online. When you apply online, you get your results faster. In addition, help with filing out your FAFSA is built into the system. If you prefer not to apply online, you can mail a paper FAFSA to the federal processor.

NY State Residents—Apply for the Tuition Assistance Program (TAP) and other NY State grants and scholarships: If you file a FAFSA electronically, indicate that you are a New York State resident, and list Stony Brook’s federal school code (002838), you will be able to link to your online TAP application at the end of the FAFSA session. If you missed the NYS link, or if you filed a paper FAFSA, go to “Anytime TAP on the Web” at www.hesc.org to complete the application process.

The Award Process

Upon receipt of the completed FAFSA data, the Office of Student Financial Services will create a financial aid award package and send award notification to the student. Students will be provided with instructions on how to accept/decline the aid offered and also on how to report additional awards not listed on their award package. Students can review and accept/decline their awards online in real time by accessing Stony Brook’s “SOLAR System” link (www.stonybrook.edu).

Financial Aid Eligibility

Financial aid eligibility is based on financial need. Financial need is the difference between the “Expected Family Contribution” and the “Estimated Cost of Attendance” (also referred to as the “Student Budget”). The “Expected Family Contribution” (EFC) is the result of the income information that a student provides on the FAFSA, calculated with a formula determined by the U.S. Congress. The EFC is listed on the Student Aid Report that is available to applicants after they file the FAFSA.

The “Estimated Cost of Attendance”
includes estimates for tuition, fees, room, board, books, transportation, and personal expenses. Direct costs are paid directly to the University; indirect costs will vary by student.

Financial Aid Application Deadlines

<table>
<thead>
<tr>
<th>Programs</th>
<th>Deadline to Apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Work Study</td>
<td>March 1*</td>
</tr>
<tr>
<td>Federal Perkins Loan</td>
<td>March 1*</td>
</tr>
<tr>
<td>Tuition Assistance Program (TAP)</td>
<td>May 1**</td>
</tr>
</tbody>
</table>

*The FAFSA must be date-stamped by the federal processor on or before March 1 preceding the fall term.
**The Express TAP Application (ETA) must be completed on or before May 1 of the spring term.

Financial Aid Programs

Financial aid is divided into three basic categories: institutional aid, federal and state aid, and external support. There are three types of aid: grants, loans, and employment opportunities. Grants, which include scholarships and fellowships, do not have to be repaid. Loans carry some form of interest payment and must be paid back to the lender. Employment opportunities afford the student the chance to earn an income while attending school.

Institutional Aid

University Tuition Scholarship

University tuition scholarships may be awarded to cover all or partial tuition charges. Full scholarships cover the cost of the University-required full-time credit load at the rate charged to New York State residents except for (1) international students, (2) first-semester out-of-state students, and (3) U.S. nationals or resident alien students without New York State residency who have been granted an exemption by the Graduate School because obtaining residency would be impractical.

For students in categories (1), (2), and (3), a full tuition scholarship covers the cost of the University required full-time credit load charged at the out-of-state rate.

Out-of-state students receiving tuition scholarships who are U.S. citizens or permanent residents must apply for New York State residency during their first semester of graduate study at Stony Brook. Students who fail to do so will be liable for the difference between the in-state and out-of-state rates.

Partial tuition scholarships may also be awarded. The amount of such awards may vary but are stated in the annual offer/award letter.

Graduate School Traineeships (Teaching Assistantships, Graduate Assistantships)

Graduate traineeships are awarded on a competitive basis (judged by such criteria as academic achievement, financial need, and potential for professional growth and societal contribution) by the Graduate School on recommendation of the program for one year, and may be renewed for up to four years. Effective Fall 2007, a full assistantship had a minimum stipend of $15,145 for the academic year.

Research Assistantships

Appointments are for predoctoral candidates whose special training and qualifications enable them to serve as assistants to project directors or principle investigators in certain programs. In most cases the research work associated with the assistantship will also contribute to the student’s thesis or dissertation. Research assistantship stipend levels vary by discipline, but are usually slightly higher than a teaching or graduate assistantship.

Graduate Council Fellowships

Graduate Council fellowships are available for exceptionally qualified incoming doctoral students. These fellowships are available to U.S. citizens and permanent residents only. GCF candidates are nominated by their respective graduate programs. A Graduate Council Fellowships and Awards committee reviews and ranks candidate files. Typically, 20 graduate fellowships are awarded each academic year. In Fall 2007 a Turner fellowship for a doctoral candidate carried a total stipend of $17,573, a full tuition scholarship, and subsidized health insurance coverage. In limited instances, fellowships for master’s candidates may be available and carry a total stipend of $10,000 plus a full tuition scholarship.

W. Burghardt Turner Fellowships

Turner fellowships are available for qualified incoming masters and doctoral students. These fellowships are available to U.S. citizens or individuals with permanent resident status who have demonstrated they will contribute to the diversity of the student body in the program and have shown how they have overcome disadvantage or other impediments to success in higher education. Turner candidates are nominated by their respective graduate programs. A Turner Advisory committee reviews and ranks candidate files. Typically, 20 Turner fellowships are available each academic year. In Fall 2007 a Turner fellowship for a doctoral candidate carried a total stipend of $17,573, a full tuition scholarship, and subsidized health insurance coverage.

Mildred and Herbert Weisinger Fellowship Award

The Mildred and Herbert Weisinger Fellowship Award is made to a graduate student in financial need so that he or she may complete a dissertation that otherwise would be delayed.

Dr. Madeline M. Fusco Fellowship for Women

The Fusco award, endowed in 1991 and supplemented in 1994, is awarded annually to a minority or woman graduate student who is completing a dissertation and has demonstrated financial need. Nominee files are submitted by each graduate program. The Graduate Council Fellowships and Awards committee reviews all of the candidate files.
William W. and James W. Catacosinos Fellowship
The Catacosinos fellowship was established in 1979. It may be awarded annually to the graduate student who has made the most outstanding contribution during the preceding year in the field of computer science, including applications of techniques of computerization in any academic discipline. The fellowship carries an academic year stipend and provides a full tuition scholarship. Candidates are nominated by their graduate programs.

Pope Fellowship in Italian Studies
The Pope Fellowship is awarded each year by the Center for Italian Studies to a student enrolled in the Italian Graduate Program who is in need of financial assistance and has an outstanding academic record. Fellowships may be renewed for up to three years and are in the amount of $1,500 per year. For further information, contact the Center for Italian Studies.

Sea Grant Scholar Awards
Sea Grant Scholars receive a stipend that permits the student to work directly on Sea Grant-funded research in coastal zone management, marine environmental studies, coastal oceanography, and related fields. The stipend is comparable to that of a graduate assistantship and is renewable for one additional year under the Sea Grant Thesis Completion Award.

Federal Student Aid
Externally Funded Graduate Fellowships
Fellowships are available in various fields from agencies and organizations including the National Science Foundation, U.S. Department of Energy, National Aeronautics and Space Agency, and U.S. Environmental Protection Agency. They are applied for directly by the graduate student and awarded by the funding agency. Some agencies require applicants to be citizens or nationals of the United States. Specific information and applications for these fellowships can be obtained online or on the Graduate School Web site.

Veterans Educational Benefits
Students who are eligible for veterans benefits should obtain an application form from the Office of Veterans Affairs, Room 347, Administration Building, (631) 632-6700. Students are advised to contact the Office of Veterans Affairs concerning veterans benefits as soon as possible, where they can receive assistance in applying for benefits.

Federal Work Study (FWS) and FWS Community Service
This program provides employment opportunities to eligible matriculated students. The award amount is based on the student’s financial need, the availability of funds to the campus, the number of hours the student can work per week, and the current pay rate. The minimum pay rate for jobs is $7.15 per hour.

Federal Subsidized Stafford Loan
Subsidized Stafford loans are available through participating lenders to matriculated students enrolled for at least six credits per semester who demonstrate financial need. The federal government pays the interest while the student is enrolled at least half-time and for six months after leaving school. Graduate yearly limits are $8,500 with a total cumulative limit of $65,000, including undergraduate loans. The interest is 6.8 percent. Fees of up to two percent may be deducted from the loan proceeds by the lender.

Federal Unsubsidized Stafford Loan
Unsubsidized Stafford loans are available to matriculated students enrolled for at least six credits a semester who are unable to demonstrate financial need. Interest begins accruing while in school. Graduate yearly limits are $12,000 with a total cumulative limit of $65,000, including undergraduate loans. The interest is 6.8 percent. Fees of up to two percent may be deducted from the loan proceeds by the lender. Terms and conditions are the same as for the subsidized loans.

Federal Graduate/Professional PLUS Loans
Federal Graduate/Professional PLUS Loans are available to graduate/professional students who have completed the Free Application for Federal Student Aid (FAFSA), have applied for the annual maximum loan eligibility under the Federal Subsidized and Unsubsidized Stafford Loan Program, and have enrolled for at least half-time (six credits per semester). In addition, the student cannot have an adverse credit history. The interest rate is a fixed 8.5 percent. Loan fees totaling three percent of the amount borrowed are deducted from the loan proceeds. Repayment of principal plus interest begins 60 days after the loan is fully disbursed unless a deferment is granted through the lender or loan servicer. The annual loan limit is the student’s cost of attendance minus any anticipated financial aid received.

Federal Perkins Loan
Perkins loans are available to matriculated students based on need. This loan carries a five percent interest rate deferred until nine months after graduation (or until the student falls below six credits for the term). Although the annual federal award
limit is $6,000 per year, the average yearly award at Stony Brook is $1,500. This is due to a limited amount of federal funding. Priority consideration is given to students who file their FAFSA by March 1.

U.S. Department of Education Fellowships: Jacob K. Javits Fellowship

This program provides fellowships to students of superior academic ability and exceptional promise to assist them in undertaking study at the doctoral and Master of Fine Arts levels in selected fields of arts, humanities, and social sciences. Students are selected on the basis of demonstrated achievement and financial need.

For more extensive information about the program, please visit www.ed.gov/programs/jacobjavits/index.html

Graduate Assistance in Areas of National Need (GAANN)

GAANN fellowship grants are held by several programs. Although students are not eligible to directly apply for this grant, those interested should contact their academic department for information. The fellowship provides a stipend in the amount of the individual’s financial need not to exceed $30,000 (in fiscal year 2006) and provides an institutional payment that funds tuition, fees, and related costs associated with the fellow.

State Student Aid

Tuition Assistance Program (TAP)

TAP is available to New York State residents for attendance at accredited New York State campuses. It provides tuition assistance for matriculated graduate students enrolled full-time (12-credit minimum) and in good academic standing according to State Education Department requirements. TAP award amounts are based on New York State taxable income and range from a minimum of $75 to a maximum of $550 for graduate students.

New York State Residency Requirement

Eligibility for state-sponsored scholarships and awards is limited to students who meet New York State residency requirements.

Legal Residence Requirement for Members of the Armed Forces, Their Spouses, and Dependents

1. If the student was a legal resident of New York State when he/she entered into the service and has maintained that legal residence while in the service, HESC presumes the student meets the residency requirement.
2. If the student is the spouse or dependent of a member of the armed forces who is a legal resident of New York State but is stationed out of state, HESC presumes the student meets the residency requirement regardless of how long the member of military has been absent from New York State while on active duty.
3. If the student is a member of the armed forces who is not a legal resident of New York State but who is stationed on full-time active duty in New York State, the residency requirement is waived effective with the 2005-2006 academic year. To qualify for the waiver, the student must submit official documentation confirming full-time active duty status and duty station.
4. If the student is the spouse or dependent of a member of the armed forces who is not a legal resident of New York State but who is stationed on full-time active duty in New York State, the residency requirement is waived effective with the 2005-2006 academic year. The student must submit official documentation confirming both the full-time active duty status and duty station of the member of the armed forces and the student’s status as spouse or dependent of that person.

Duration of Residency: For grant and scholarship programs requiring award recipients to be New York State residents, the student must be a legal resident of New York State for at least 12 months before the term for which assistance is sought. Graduate students who have not been legal residents of New York State for at least 12 months can satisfy this requirement if they are currently legal residents, were legal residents during their last two semesters of undergraduate study, and have continued to be legal residents until matriculation in their graduate programs. However, nonresidents who begin full-time study in New York State during their first year of residence in New York State are not eligible for state-sponsored student aid even though they may have resided in New York State for 12 or more months. Veterans or former National Service Volunteers who were legal residents of New York State upon entry into the service can meet the 12-month requirement if they re-establish legal residency within six months of release from active duty, regardless of how long they were absent from New York State and regardless of legal residencies established elsewhere. Students who were residents of New York State before meeting citizenship requirements are considered to meet New York State residency requirements for any term of study beginning after they have met citizenship requirements if they have been residents of the state for at least 12 months.

Loss of Residency: New York State residency is lost when the student discontinues permanent legal residence in the state. The student is ineligible to receive any state-sponsored financial aid award that requires New York State residency for any term of study beginning after residency is lost.

Disputed Residency: In most instances HESC will provide students whose residency is questioned with a New York State Residence Review Questionnaire before a final residency determination is made. Students who need to document legal residence must complete this questionnaire and return it to HESC. Students who have been denied an award on grounds of residency before submitting a questionnaire may appeal by submitting the questionnaire. Dependent students who wish to apply for recognition of a residency separate from their parents should submit the questionnaire, which is available from HESC by request.

Satisfactory Academic Progress

In order to receive TAP payments, students must comply with the Standards of Academic Progress of the NY State Education Department. These regulations provide that students meet minimum academic achievement requirements in order to receive payment of awards. Good academic standing consists of two elements:

1. **Satisfactory academic progress:** A requirement that students accumulate a specified number of credits and achieve a specified grade point average each term of the award.
2. **Pursuit of program:** A requirement that a student complete (pass or fail) a certain percentage of credits each term of an award.

The chart on page 28 provides a detailed analysis of the State Education Department’s requirements. Note that the minimum achievement standards for payment of awards are less demanding than those established by the University for good academic standing.
A student who fails to meet these minimum standards for any one term will be ineligible to receive an award payment for the following term. Each applicant, if eligible, can be approved for no more than one waiver of the minimum achievement requirements during his or her career as a graduate student. Students who fail to meet these requirements will receive notification in the mail as to their next appropriate course of action.

Information
For more information about financial aid, visit www.stonybrook.edu/financialaid or contact the Office of Student Financial Aid Services (Federal Code 002838), Room 180 Administration Building, Stony Brook, NY 11794-0851; phone: (631) 632-6840; fax: (631) 632-9528; e-mail: finaid@stonybrook.edu.

For more information from agencies other than the University, call the Federal Student Aid Information Center at 1-800-4FEDAID for FAFSA questions (www.fafsa.ed.gov) and the Higher Education Services Corporation at 1-888-NYS-HESC for TAP and loan questions (www.hesc.org).

Residential Information

On-Campus Housing
New graduate and family applicants who apply by May 15 are guaranteed housing. Family housing is not guaranteed, but is subject to availability.

There are a variety of on-campus living arrangements for single graduate students and couples with or without children. The University apartment complexes offer double rooms, and one-, two-, three-, and four-bedroom apartments. (Most new students should expect to be assigned a room with a roommate.)

All housing assignments are made on a first-come, first-serve basis, according to the date the housing application and advance deposit are received by the Division of Campus Residences. Application instructions will be distributed to all new students by their academic departments shortly after acceptance to the program. Space is limited and request of room type cannot be guaranteed. Students are encouraged to apply at the earliest possible date. For more information, call the Division of Campus Residences at (631) 632-6750.

University Apartments
University Apartments provide housing for graduate students at Stony Brook. Apartments are composed of three separate complexes: the Harry F. Chapin Apartments, Arthur A. Schomburg Apartments, and West Apartments. These housing units provide apartment-style living for families and graduate students. All apartments are fully furnished, and selected apartments have been partially adapted to accommodate individuals with mobility-related challenges.

Chapin consists of 12 separate buildings, with a total of 240 apartments. The one- and two-bedroom apartments are assigned primarily to families. The two-bedroom apartments typically house two couples, one in each bedroom, or four single students. Three-bedroom apartments house single students, each with two per bedroom. Several three-bedroom units have been renovated into four-bedroom apartments, each with single occupancy rooms. Three-bedroom apartments have two full bathrooms; two-bedroom apartments have one and one-half bathrooms. All apartments have a kitchen, a dining area, and a living room. No storage facilities are available for furniture or other personal property. Chapin is located on East Campus near the Health Sciences Center and University Hospital.

Schomburg consists of two residential buildings and a separate commons building for the community center. There are a total of 72 apartments consisting of one- and four-bedroom apartments. One-bedroom apartments are reserved for couples without children. Four-bedroom apartments house four single students. The residents’ mailboxes, laundry facilities, and a general-purpose lounge are all located in the community center. The Schomburg apartments are adjacent to Kelly Quad and near the LIRR train station and campus bus routes. (Please note that it is very difficult for new applicants to obtain an assignment in the Schomburg apartments.)

The West Apartments house a mix of upper-division undergraduates and graduate-level students. Single- and double-occupancy bedrooms are available. All units are fully furnished and are equipped with air conditioning/heat ing units. Administrative services, a fitness center, computing center, and community space are provided in the West Apartments Commons.

Many of the graduate residents of University apartments are from countries outside the United States. This rich mix of diverse cultures provides students with a unique opportunity to experience international living.

Eligibility
Eligibility is limited to the following categories (not in any priority order):
1. Families with children are eligible to live only in the Chapin Complex.
2. Only married couples, approved domestic partnerships, and single heads of households may live in the one- and two-bedroom units.
3. Single graduate students

Apartment Rental Rates
Apartment rates vary according to apartment size and the number of occupants. A $200 room deposit is required to ensure a space at the time of application. Rents include utilities, cable TV including HBO, and telephone service. All charges are subject to change without notice. The monthly rents pertaining to the various apartment/room arrangements for 2007-2008 are as follows.

Chapin Apartments
Four-bedroom
(each bedroom) $523 to $587
Full one-bedroom $1,079
Full two-bedroom $1,608
Two-bedroom, shared (each bedroom) $775 to $807
Three-bedroom, shared $387.50 to $405.50
A or C room, shared $358 to $380.50
B room, shared $336 to $354.50

Schomburg Apartments
Full one-bedroom $1,165
Four-bedroom, shared (each bedroom) $599

West Apartments
One-bedroom (in six-bedroom apartment) $856.25

Facilities
Each bedroom in the Chapin and Schomburg apartments comes fully equipped with a phone with free, unlimited incoming and on-campus calling and phone mail. Residents of West Apartments have phone jacks in every room but must provide their own telephones. Additional services, e.g., off-campus, long-distance, and international calling, are also available. Ethernet connectivity is available in Chapin, Schomburg, and West. The telephone lines also provide a closed-circuit TV connection through which residents
receive cable TV service including HBO.

To provide further convenience for residents, pay phones are located in each of the laundry rooms.

Blue-light telephones, for use in emergencies, are located all across campus. The blue-light phones in Chapin are next to the bus stop and outside the complex office. In Schomburg, the blue-light phones are next to the community center and between buildings A and B. These phones can be used only to make on-campus calls.

Parking in the lots for Chapin and Schomburg apartments is reserved for residents’ vehicles only. All authorized vehicles must display a parking sticker.

Coin-operated laundry machines are located in buildings B, C, E, and K in Chapin, in the commons building in Schomburg, and on each floor in West. Laundry rooms are accessible to residents at all times.

Mail is delivered daily, except on Sundays and holidays. The Stony Brook Post Office delivers mail directly to the mailboxes located in each complex.

The Chapin Community Center, Schomburg Commons, and West Commons are available for use by all residents of the University Apartments for parties or other social, cultural, and educational events.

Day care centers are located on West Campus. Residents may also make baby-sitting arrangements among themselves.

Off-Campus Housing

Off-Campus Housing provides information concerning rentals of rooms, apartments, and houses in the local area. All landlords listing property with Off-Campus Housing must sign a statement assuring nondiscriminatory practices; listings do not become available until such assurance is received. Off-Campus Housing and the University may not become involved in landlord-tenant disputes.

The common price per month for a furnished room is $500 to $700. Kitchen privileges are often included in this price. Rooms available in houses rented by other students are also listed. Arrangements can sometimes be made to share a complete house for $400 to $650 per person, per month plus a percentage of the utilities cost. Apartment listings cover those available in standard apartment building complexes and those available in private homes. The usual rental rate of a studio apartment (one large room, bathroom, closets, kitchenette) in a house or apartment complex is approximately $700 to $1,100 per month. Apartments in housing complexes usually provide more space and privacy. A conventional one-bedroom apartment, including living room, dining room, kitchenette, bathroom, and closet space, usually ranges in price from $700 to $1,300 per month. Utility costs, except electricity, are often included in the price. House rentals in the area range from $1,000 to $3,000 per month, not including utilities. The price depends on the number of rooms in the house, the condition of the house, and its distance from the campus. Other, slightly cheaper house rentals are available in towns located to the south and east of campus at a driving distance of some 20 to 30 minutes.

For more information, visit Off-Campus Housing, located in the FSA Suite, Room 250 of the Stony Brook Union, visit interactive Web site http://och.vpsa.sunysb.edu, or phone (631) 632-6770, Monday to Friday, 9:00 am to 4:30 pm.

Student Health Services

Student Health Services is located on the first floor of the Infirmary Building and provides for the health needs of registered students. The Medical Clinic, staffed by board certified physicians, physician assistants, nurse practitioners, and nurses, offers treatment for a multitude of medical and minor surgical problems. Specialty services such as gynecology and dermatology are also available by appointment. Services at the Student Health Services are available throughout the year. All information is confidential. There is a mandatory infirmary fee for all full-time registered students and part-time day students. Fee-for-service care for part-time evening students is available.

The Health Service hours are Monday through Friday, 8:00 am to 12:00 pm and 1:00 pm to 5:00 pm, Tuesdays 8:00 am to 7:30 pm during the semester; 8:00 am to 12:00 pm and 1:00 pm to 4:00 pm in the summer and intercession. In an emergency, students may use the Emergency Department of University Hospital on a fee-for-service basis (not covered by the infirmary fee). Health insurance is required for all full-time, matriculated, domestic students. For information regarding the insurance requirement, please call (631) 632-6054.

For further medical information or any questions, call the Student Health Services at (631) 632-6740.

Mandatory Infirmary Fee

The mandatory Infirmary Fee is included in the graduate student comprehensive fee for all full-time and part-time day students, which funds the Student Health Center. Part-time evening students may use the Health Center on a fee-for-service basis. A summer fee is charged for those registering for classes, for an 800 course, or other zero credit courses. There is a mandatory health and history form required for full-time students before registering for classes, in conjunction with a requirement of proof of immunization for measles, mumps, and rubella.

Student Health Insurance Plans

There are four plans available, depending on employment and citizenship status: the required Student Health Insurance Plan, the Graduate Student Employee Health Plans, and the mandatory International Student and Scholar Health Insurance Plan.

Required Student Health Insurance Plan

All full-time, matriculated non-international students are billed for this insurance plan as soon as they register for classes. It is the default insurance plan if a graduate student is not eligible for one of the other insurance plans described below. In order to remove the insurance charge from the University bill, students must complete an online waiver through their SOLAR account by the due date indicated (this is usually the last date for adding or dropping courses). Late waivers are not accepted; students will remain on SHIP and must pay the bill.

This plan is administered by the Chickering Group and covers a broad range of necessary medical services, both on and off campus. Some of the covered services are physician visits, X rays, diagnostic testing, surgery, in-patient hospitalization, and mental health visits. Use of network providers is the best way to receive low-cost medical services. To find a participating provider, please go to www.chickering.com, and enter policy number 890444 for Stony Brook.

The annual cost of the plan for 2007-2008 was $972, billed by semester. Dependent annual cost was $3,368 for a spouse/partner, and $1,689 for a child (or independent student).
children). Costs are subject to change each year. Coverage runs from August 16 through January 15, and January 16 through August 15 each year, and the cost may be paid through the Time Option Payment Plan or via financial aid.

More information can be found at www.chickering.com, or by contacting the Insurance Office (open Monday-Friday, 9:00 am-4:00 pm in the West Campus Student Health Service) at (631) 632-6331, or by sending an e-mail to sho-rship@notes.cc.sunysb.edu

Graduate Student Employee Plans

Graduate student employees (teaching assistants, or TAs, and graduate assistants, or GAs) are eligible to enroll in a comprehensive health insurance plan negotiated under the auspices of the Graduate Student Employee Union (GSEU). Research assistants (RAs) may enroll in the Research Foundation Graduate Student Employee Health Plan. Both plans provide substantial coverage for enrolled graduate student employees and their dependents or eligible domestic partners. Coverage includes necessary medical care for emergencies, hospitalization, office visits, prescriptions, and many other services, with discounts for dental and vision care.

The Research Foundation and State University of New York (SUNY) pay 90 percent of the cost of individual coverage and 75 percent of the cost of dependent coverage. The student pays the balance through payroll deductions. Both the SUNY and Research Foundation plans are administered by Human Resource Services through the Student Health Insurance Office. For more information, call (631) 632-6144.

To enroll in either of these health insurance plans, eligible TAs, GAs, and RAs must complete an enrollment form within 30 days of the academic appointment. Special orientations will be held during the fall semester to provide students with detailed information and enrollment forms.

Mandatory International Student and Scholar Health Insurance

This insurance plan is a requirement for all non-immigrant international students who wish to attend Stony Brook University. International graduate student employees are also billed for this health insurance plan. The annual fees for 2007-2008 were $850 for the health insurance, and $32 for MEDEX. Fees for 2008-2009 were not available at the time of publication.

Graduate Assistants, Teaching Assistants, and Research Assistants who enroll in either NYSHIP or POMCO (see above section) do not apply for a waiver of the mandatory health insurance. These student employees must first enroll at the Student Health Insurance Office for either the NYSHIP or POMCO insurance plan within 30 days of their academic appointment. The mandatory health insurance fee will then be removed from their accounts by the eighth week of the semester (the MEDEX fee will remain on the University bill and must be paid). Those GAs, TAs, and RAs who do not enroll on time for NYSHIP or POMCO will remain on the mandatory health insurance plan for the entire semester. In addition, GAs, TAs, and RAs are billed for the mandatory health insurance for any period they do not have payroll deductions for either NYSHIP or POMCO. The mandatory health insurance is billed in full monthly amounts, i.e., a minimum of $73.25 per month (during the 2007-2008 year).

Registered students who are dependents of TAs, GAs, or RAs, must do two things at the Insurance Office: they must first enroll in either NYSHIP or POMCO, and then complete a waiver for the mandatory health insurance plan by the third week of the semester. Annual fees (2007-2008) for spouses were $2,034 and for children, $1,095. Fees for 2008-2009 were not available at the time of publication.

Registered graduate students who are studying in their home countries for the entire semester are also billed for the insurance plan and MEDEX. However, these students will be waived from the insurance and MEDEX fees if they inform the Health Insurance Office of their current situation by the third week of the semester via e-mail (or have their academic department inform the Insurance Office by that date): ledelson@notes.cc.sunysb.edu

The international policy covers all necessary medical expenses up to $100,000 per illness or accident. The first $4,000 of medical bills are paid at 100 percent if the first medical visit was to the Student Health Service. The next $3,000 of medical bills is subject to a co-payment of 20 percent. Once medical bills go over $7,000, the insurance pays 100 percent once again.

For information about the mandatory health insurance plan please contact the Health Insurance Office at (631) 632-6054.

Other Expenses

Food

There are many places on campus to get a snack, grab a cup of coffee, or enjoy a full-course meal. Whether you are a resident or commuter student, hungry at 7:30 a.m. or 2:00 a.m., there is a very large selection of food options available.

Campus Dining Services offers several different meal plans to meet the needs of resident and commuter students. To sign up for a meal plan or ask questions about an existing plan, visit the Meal Plan Office, located in the Stony Brook Union, Suite 250, or call (631) 632-6517.

Students who live in residence halls or areas designated non-cooking must enroll in a resident meal plan regardless of class year or tenure. The cost of a resident meal plan ranges from $1,500 to $2,324 (prices are subject to change).

Students who reside in University apartments can sign up for the Apartment 500 or 250 meal plans, which are tax-exempt declining balance plans comprised of Campus Points. When a food or beverage purchase is made, the amount is automatically deducted from the meal plan account. Students may request a receipt from any dining cashier, which lists the balance of the account. These plans are only available to apartment residents. Unused points will carry over from the fall to the spring semester, but not to summer sessions or the following academic year.

An Apartment 500 or 250 can be billed to your student account. You can also replenish your account in increments of $150, $250, or $500 and have it billed to your student account as well.

Commuters and apartment residents can open a Budget Meal Plan, which is a prepaid tax-exempt plan that can be opened with a minimum of $50. This plan is comprised of Campus Points and may be replenished in $25 increments.

To find out about menus, hours, or special events, call (631) 632-MEAL or visit www.campusdining.org

Where to Eat on Campus

Campus Connection at H-Quad
(631) 632-1515
Kelly Dining Center (631) 632-6519
Roth Food Court (631) 632-9377
Student Activities Center (631) 632-1242
Union Deli (631) 632-6528
Union Commons (631) 632-6466
Wolfie’s Restaurant (631) 632-6566
Requirements for Admission

Admission to the Graduate School requires that the applicant have the preparation and ability that—in the judgment of the program and the Graduate School—are sufficient to enable satisfactory progress in the degree program. A U.S. bachelor’s degree or the equivalent is required (for example, a four-year/120-credit-hour accredited program) with a minimum overall grade point average of 3.0 on a 4.0 scale; the student must present evidence that such a degree will be awarded by the time graduate work is to begin.

Application for admission to the Graduate School is made to a specific program for a designated degree. Additional admission requirements are listed in each program’s section of this publication. To be considered for admission, all students must submit a complete application online as well as the following documentation to the graduate program:

- Two official copies of all previous transcripts for all colleges and universities attended, including junior and senior college and graduate transcripts (if transcripts are in a foreign language, certified English translations are required in addition to the original documents);
- Three letters of recommendation;
- Scores for the Graduate Record Examination (GRE) General Test sent directly from ETS (photocopies are not acceptable);
- Documented proficiency in English for international students (see the English Proficiency Requirements for Non-Native Speakers of English below for details).

To fill out an application, students must go to www.grad.sunysb.edu and create an online account. A nonrefundable application of $60 must be charged via credit card when submitting the online application.

Early application is suggested for students seeking financial support. To receive full consideration for admission with financial support, complete application and financial aid applications should be filed by January 15 for the fall semester and October 1 for the spring semester. Admission decisions are made by programs. Late applications will be accepted, but will be considered only by the programs where openings still exist.

An offer of admission to graduate study at Stony Brook is for a specific semester. An applicant who is accepted to a program and is unable to enroll for the semester specified should request a deferment of admission from the primary department or program. If the request is granted, the student will be sent a new offer of admission for the subsequent semester and the Graduate School will be notified accordingly. Students who do not enroll within 12 months of the original offer of admission must submit a new application and fee. International students must submit a new “Request for Certificate of Eligibility and Declaration and Certification of Finances” form to request an updated Form I-20 or IAP-66 valid for the updated semester of admission. Unused Forms I-20 or IAP-66 must first be returned.

Graduate Record Examination

The GRE General Test is required of all prospective graduate students. Several programs also require an Advanced Area Test. Please refer to the admission requirements of the specific program of interest. Applicants who have taken the GRE should request that Educational Testing Service forward scores directly to the Graduate School (the Stony Brook code is 2548). Failure to submit GRE scores with the completed application will prevent the review of student applications by the program. Photocopies are not acceptable.

To register for the GRE, please see the following Web site: www.ets.org

English Proficiency Requirements for Non-Native Speakers of English

Students are expected to read, write, and speak English. They are also expected to comprehend the spoken language. Applicants whose first or primary language is not English must demonstrate proficiency prior to matriculation. To be considered for admission, an applicant must present a passing score for either the TOEFL or IELTS tests. Students who fail to meet this requirement cannot be admitted and must enroll in a course at the Intensive English Center (IEC) and achieve satisfactory grades before admission to graduate study. Students who have taken either of these tests more than two years ago must retake the test.

A minimum score of 550 (paper) or 213 (computer) is considered passing for TOEFL. For the iBT (internet) the score is 80 for general admission and 90 for admission to a doctoral program and to be eligible for consideration for TA/GA support, although candidates with lower scores may be considered in special circumstances.

All doctoral students and master’s students who are awarded a teaching assistantship will be exempt from ESL courses with a TSE of 55, an IELTS speak subscore of 7, or an iBT speak subscore of 28. All other doctoral and TA/GA students will be required to take the SPEAK test on arrival. The TSE and TOEFL iBT are administered at centers throughout the world several times each year; applicants should forward their scores directly to the Graduate School (the Stony Brook code is 2548). The SPEAK test is administered at Stony Brook University during Orientation for all students who have not taken these particular language proficiency exams. Further information is available by contacting the Education Testing Service, Princeton, New Jersey 08540, USA, or at www.toefl.org. Students who take the International English Language Testing System (IELTS) tests instead of the TOEFL are not required to take the TSE. A score of 7 will be considered passing. Further information is available by visiting the IELTS Web site at www.ielts.org

Performance in the IEC and on the SPEAK test will determine whether a student will be cleared or assigned to an ESL (English as a Second Language) course.

Health Records

All accepted students are required by New York State law to file a completed health history and physical examination with the Student Health Service. Transfer students may submit copies of their health forms from their former schools provided they contain the information required by the Student Health Service and are less than two years old.

International Students

Financial Verification

Applicants who are not citizens or permanent residents of the United States must provide the University with verification that the necessary funds are available to finance their education at Stony Brook and for living expenses. The University form SUSB103R2 must be submitted for this purpose before immigration documents
will be sent to the admitted students. (The form SUSB103R2 may also be downloaded at www.grad.sunysb.edu under the heading “International Students.”)

I-20 Documentation
Government regulations require that every international student attend the institution that issued the I-20 used for entry into the United States. Transfers between institutions may be possible if a student can show that he or she was admitted to the institution with the appropriate clearance.

Non-Matriculated Status (GSP)
Any person holding a bachelor’s degree, its equivalent, or an advanced degree from an accredited institution of higher learning is eligible to be considered for admission to the University as a non-matriculated graduate student. Such students may enroll in graduate courses through the School for Professional Development (SPD) as non-degree students after submitting a completed application form to SPD. Contact SPD for additional information at (631) 632-7050 or at http://ses.cc.sunysb.edu/spd/. Non-degree students who later wish to pursue a graduate degree will need to make a formal application for admission to the Graduate School and a degree program and may transfer a maximum of 12 credits taken in non-matriculated status to the graduate degree program.

Transfer of Credit
A maximum of 12 credits may be transferred to a master’s program at Stony Brook with the approval of the program and the Graduate School provided that they have not been used toward the satisfaction of any degree requirements here or at another institution. A candidate for the doctoral degree may transfer those graduate credits that are allowed by the appropriate departmental or program committee.

Transfer from Non-Matriculated Status
Students transferring from non-matriculated status are limited to a maximum of 12 graduate credits for master’s degrees. Students must be formally matriculated into a degree program before the petition to transfer is submitted. All graduate courses completed in non-matriculated status will be counted as part of the total graduate grade point average (GPA).

Transfer from Other Institutions
A candidate for the master’s degree may petition to transfer a maximum of 12 graduate credits from another institution toward their master’s degree requirements. These credits must be from an institution authorized to grant graduate degrees by recognized accrediting commissions and meet the following guidelines:
- Credits must not have been used to fulfill the requirements for either a baccalaureate or another advanced degree or certificate.
- Credits must not be more than five years old at the time the application is submitted to graduate study at Stony Brook. Courses older than five years will be accepted only in rare circumstances.
- A course listed as both graduate and/or undergraduate level will not be considered for transfer.
- Credits must carry the grades of A or B. “Pass” or “Satisfactory” grades are not transferable unless these grades can be substantiated by the former institution as B (3.0) or better.
- Grades earned in transferred courses are not counted as part of the overall GPA at Stony Brook.
- Work from one master’s degree is not transferable to a second one.

Transfer Between Primary and Secondary Programs
A maximum of 12 graduate credits from Stony Brook, which were earned in a primary program prior to a student being accepted into a secondary program, can be applied to the secondary program. Credits applied to the degree requirements of a primary program cannot be applied toward the degree requirements of a secondary program.

Special Circumstances

Waiver of Application Fee
All applicants are required to pay the application fee. Exceptions include:
- Students who reapply for admission within one academic year;
- Students who are U.S. citizens and have current documentation from a financial aid administrator of an appropriate college or university officially substantiating that they are currently enrolled and that the payment of the application would create a financial hardship (complete financial information for the current academic year must be provided, including total cost of education and amount and types of financial aid received);
- Currently enrolled undergraduate students in a U.S. institution who hold a cumulative GPA of 3.75 or better. A current transcript is required for this to be approved
- Students who have a fellowship/scholarship through McNair, Project 1000, SEEK, and AGEP.

To qualify, students must request a waiver from the program they are applying to when they apply for admission, and should include any necessary documentation listed above. The department will then make a formal request to the Graduate School using the “Waiver Requests Form” provided by the Graduate School.

Readmission
Graduate students who have interrupted their attendance at Stony Brook by withdrawing from the University or by taking a Leave of Absence must be readmitted to reactivate their graduate career. The student initiates the process by submitting a completed “Readmission” form to their program. The form can be downloaded at www.grad.sunysb.edu

- Students returning from a currently approved Leave of Absence are generally guaranteed readmission.
- Students not on an official Leave of Absence must pay a $500 readmission fee.
- International students must also submit a new financial affidavit and be cleared by an international student advisor before the readmission process can be concluded.

If the program approves the request, the readmission form is submitted to the Graduate School for final approval. The program or the Graduate School may set specific requirements to be fulfilled by the readmitted student during the first year of their readmission.

Conditional Admission
In exceptional cases where certain admission requirements are not met or the undergraduate preparation is inadequate, an applicant may be admitted conditionally. Such applicants will be considered on probation during the first semester. Program recommendation and Graduate School approval are required for conditional admission.
Students admitted conditionally for a low cumulative GPA must earn an overall graduate average of at least a B (3.0) during the first semester of enrollment to be permitted to continue. In this case, the student is considered to have achieved regular status.

A student admitted conditionally because of a low cumulative GPA who fails to earn a B (3.0) average in the first semester will not be permitted to reenroll. Both the student’s program and the Graduate School may set conditions that the student must satisfy during the early period of graduate work.

Change of Graduate Program and/or Academic Level
Should a student wish to change programs or academic levels following admission and matriculation, a “Change of Graduate Program and/or Academic Level” form must be submitted to the Graduate School with original signatures by both prior and new department or program chairs and advisors. The form can be downloaded at www.grad.sunysb.edu. In addition, international students who seek to change their program must obtain approval of an international student advisor.

Secondary Program
Should a student wish to add a secondary program to his or her primary program of study, a “Permission to Enroll in a Secondary Degree or Certificate Program” form must be submitted to the Graduate School with original signatures by both the primary and new department or program chairs. Final approval rests with the Graduate School. International students are required to obtain approval of an international student advisor.

Academic Level

Full-Time Students
Students admitted for full-time study to the Graduate School will usually register for either 12 or nine credit hours per semester based on their academic level. Responsibility for certifying the full-time status of graduate students rests with the Office of the Registrar.

Incoming full-time graduate students are classified as G1, G2, G3, or G4 depending on the program to which they have been admitted and their previous graduate training.

G1: First-year master’s student. G1 students must register for 12 credits per semester.

G2: Advanced master’s student who has completed 24 or more graduate credits or a master's degree in a closely related graduate degree program at Stony Brook University are coded as G2. G2 students must register for nine credits per semester.

G3: First-year doctoral student. G3 students must register for 12 credits per semester.

G4: Advanced doctoral student who has completed 24 or more graduate credits or a master's degree in a closely related graduate degree program at Stony Brook University are coded as G4. G4 students must register for nine credits per semester.

G5: Advanced graduate student enrolled in a doctoral degree program that has been advanced to candidacy for the doctoral degree by the tenth day of a semester or term. G5 students must register for nine credits unless instructed otherwise.

A G1 will be automatically converted to a G2 when the student has completed 24 or more graduate credits at Stony Brook; a G3 will be automatically converted to a G4 when the student has completed 24 or more graduate credits at Stony Brook; Incompletes are not completed credits. The conversion of G4 to G5 is an administrative change that is done by the program and the Graduate School upon advancement to candidacy.

Part-Time Students
Incoming part-time students admitted to the Graduate School will register for no more than 11 credit hours per semester. Programs may, in consultation with the Dean of the Graduate School, regulate the proportion of part-time students in their graduate program.

Part-time students are classified as G1, G2, G3, or G4 depending on the program to which they have been admitted and their previous graduate training.

The academic level of a G1 or G3 student who has completed 24 credits of coursework at Stony Brook is changed to G2 or G4, respectively.

Combined Bachelor’s/Master’s Programs
Five-year bachelor’s/master’s programs are available in several academic departments. Some are joint programs between two departments or colleges. Students are allowed to take a specified number of graduate credits that will count towards the undergraduate and graduate requirements, subsequently reducing the total time for completion of the master's degree. For more information, please contact the specific department or program of interest.
Academic Regulations and Procedures
All programs, regulations, and schedules of dates are subject to change or withdrawal depending on the availability of funds and the approval of programs by appropriate state authorities.

It is the student's responsibility to be aware of University regulations and procedures as set forth in this Bulletin and in official campus publications and notices.

Organization of Graduate Education at Stony Brook

Under the direction of the provost, Graduate School administration rests with the Dean and the administrative staff of the Graduate School in conjunction with the Graduate Council.

The Graduate Council

The membership of the council includes one representative from the library, one professional employee and two representatives each from the faculty of the Health Sciences Center, the College of Engineering and Applied Sciences, the Division of Humanities and Fine Arts, the Division of Social and Behavioral Sciences, and the Division of Natural Sciences. One of the two Health Sciences Center representatives must be from Basic Health Sciences. Additional members include two graduate students chosen by the Graduate Student Organization. Elected faculty members serve for three years with staggered terms. The chair and the secretary of the Graduate Council are elected by the council. Among other duties detailed in the “Faculty By-Laws,” the council must approve all graduate programs before their submission to the SUNY System Administration Office and the State Department of Education.

The Department/Program

Each department exercises a large measure of responsibility for its graduate programs. Under the general responsibility of the departmental chair, each department has a Graduate Program Director who administers graduate activities. Each program also has an appeals and grievances committee comprised of equal numbers of faculty and graduate student members. Individual programs select graduate applicants and recommend them for admission to the Dean of the Graduate School. The programs are responsible for the nomination of students and applicants for fellowships, traineeships, assistantships, and tuition scholarships, as well as for the administration of graduate programs, including coursework, supervised research, teaching assistantships, and graduate examinations. It is the program that certifies to the Graduate School that the student has completed all degree requirements.

Graduate programs not housed in specific departments are governed by interdepartmental faculty committees chaired by a Graduate Program Director. For purposes of graduate education, they function as do departments in other disciplines.

Registration

All students enrolled in the Graduate School in any program, whether in residence or absentia, must register each fall and spring for at least one graduate credit until all degree requirements have been met. A student is not considered to have registered until enrollment is posted on the University system, SOLAR, and arrangements regarding tuition and fees have been made with the Bursar's Office.

- Students who hold a TA, GA, RA, fellowship, or tuition scholarship must be registered as full-time students by the fifteenth day of classes each semester.
- Students failing to register before the first day of classes or before late registration begins may still register during the first 15 days of the semester, but will be charged a late fee of $40.
- Students who have not been granted an official Leave of Absence by the Dean of the Graduate School and have not yet registered will be considered to have withdrawn from the University.
- Students are responsible for making sure they are registered on time.

Programs or individual faculty members do not have authority to waive these rules.

Course and Credit Enrollment

The majority of credits taken during any semester must apply toward a student's primary degree program. Failure to comply with the guidelines below will result in the tuition scholarship being rescinded for the semester.

- All students must have prior permission from their department/program to take any courses outside of their primary degree plan.
- Tuition scholarships only apply to courses that fulfill degree requirements in the program providing the scholarship. A student with a full-time nine-credit tuition scholarship from a primary program may take a course in a secondary program. However, if a student with a nine-credit tuition scholarship from their primary program wishes to take a course in a secondary program, it must be in addition to the nine credits applying toward the primary program during the same semester.

Course Changes

- Graduate students may add or register for classes through the fifteenth day of classes.
- Through the fifth day of classes, graduate students may drop classes without incurring a tuition liability and without a W (withdrawal) being recorded.
- From days 6 to 10, students may be able to drop classes with an approved petition from the Graduate School without a W (withdrawal) being recorded. Tuition liability may be removed by Student Accounts on request.
- From days 11 to 15, graduate students may only drop from courses if an even number of credits are added in a single transaction (i.e., a swap of 12 credits for 12 credits), or they may withdraw from a class. When a student withdraws from a class, a W is posted and tuition is charged based on the Tuition Liability schedule. This information is available at the Registrar's Web site: http://ws.cc.suny sb.edu/registrar. For swaps between these dates, graduate students must petition to the Graduate School. Students can swap only if they petition to the Graduate School using the appropriate forms; swaps cannot be done on SOLAR.
- Retroactive add/drop petitions must have the approval of the Graduate Program Director and the Graduate School and will not be processed by the Registrar's Office until the $20 processing fee is paid.

Advancement to Candidacy

A student may be advanced to candidacy (G5 status) after completing Graduate School and program requirements other than the dissertation or its equivalent.
• Students on academic probation cannot be advanced to candidacy.
• Advancement to candidacy is granted by the Dean of the Graduate School upon recommendation of the Graduate Program Director.
• Students must advance to candidacy at least one year before the beginning of the semester in which they plan to defend their dissertation. Students in the D.M.A. program may be advanced for one semester prior to their final recital and graduation semester.
• Requests for advancement to candidacy must be received by the Graduate School from the program by the tenth day of classes for the advancement to take effect that same semester.

Degree Candidacy
All degree candidates must register for at least one graduate credit during thesis or dissertation research for the semester in which the degree is awarded. Students on approved Leaves of Absence do not register for those semesters for which a leave has been granted; however, they must be readmitted and register for the semester in which the degree is awarded.

Leave of Absence
Leaves are generally granted for one semester or year at a time, renewable upon request for a maximum of two years, and should be requested prior to the beginning of the semester. To request a leave, the student must have been registered for the previous semester. The Request for Leave of Absence form can be downloaded at www.grad.sunysb.edu and should be submitted to the Graduate Program Director for approval. If the Graduate Program Director approves the request, approval is then recommended to the Dean of the Graduate School. In addition, international students who seek a Leave of Absence must obtain approval of an international student advisor. Military Leave of Absence will be granted for the duration of obligated service to students in good standing.

• A student on academic probation may be granted a Leave of Absence with the understanding that re-enrollment is subject to conditions imposed by the Graduate School and the program. These conditions will be specified in writing at the time the leave is approved.

• Any semester in which a student is on an approved Leave of Absence does not count in the calculation of the student’s time limit for degree completion.
• Students planning to return from leaves should complete a “Readmission Form for Graduate Students.” This form can be downloaded at www.grad.sunysb.edu. Students should submit this form to their program for departmental approval by the chair or director. The program then forwards this form to the Graduate School for final approval and processing. Students are advised to begin the readmission process preferably two months in advance of the term for which they wish to register.

Withdrawal from the University
The process of withdrawing from the University is a formal procedure, which the student must initiate. A student finding it necessary to withdraw from the University must submit a letter of intention to the Graduate Program Director and the Graduate School.

• Students may withdraw from the University up to the last day of classes; however, financial liability to the University still remains. Permission may be granted by the Graduate School by submitting a completed “Retroactive Withdrawal” which can be downloaded at www.grad.sunysb.edu.
• Students are urged to discuss all withdrawals with their Graduate Program Director and academic advisor before such an action is taken.

International students must discuss withdrawals with an international student advisor before initiating the process as a withdrawal may jeopardize their immigration status.

Unauthorized Withdrawal
A student who leaves the University without obtaining an official withdrawal may forfeit the privilege of honorable withdrawal and endanger prospects of readmission to the Graduate School. Such students will be reported as having failed all courses for which they were registered the semester they left the University.

SUNY Exchange Program
When the special educational needs of a doctoral student at one SUNY institution or the Graduate Center of CUNY can be served best by taking courses at another unit of the SUNY system or at the graduate center of CUNY, the student should obtain an application from the Program Director to apply for admission to take the desired courses at the host institution.

• The recommendation from the program should state that the student has the proper prerequisites and that, if the courses are successfully completed, credit for them will be accepted toward the degree.
• The statement from the program director requires approval from the Dean of the Graduate School. The approval will then be sent to the Dean of the Graduate School of the host institution, who will clear it with the department concerned. When approval is obtained, the student will be admitted to take the courses requested.
• The student will pay appropriate tuition and fees at the host institution. If the student has a tuition scholarship at Stony Brook, that scholarship will be recognized by the host institution.

At the completion of courses, the host institution will, on request, send a transcript to Stony Brook.

Inter-University Doctoral Consortium
The Inter-University Doctoral Consortium (IUDC) is comprised of several universities in and around New York City, including Columbia, CUNY, Fordham, New School University, Princeton, and Rutgers. Eligible graduate students in the arts and sciences will be able to register for some courses at these institutions for Stony Brook credit, and library privileges will also be extended to participants while registered. Interested students should contact their Graduate Program Director.

• Students may only register for courses not available at their home institution.
• Students will pay appropriate tuition and fees at their home institution.
• Consortium registration is intended for advanced doctoral candidates and is restricted to graduate courses.

Grading System
The following grading system will be used for graduate students in graduate courses: A (4.0), A- (3.67), B+ (3.33), B (3.00), B- (2.67), C+ (2.33), C (2.00), C- (1.67), F (0.00). Pass/No Credit (P/NC) and grades of D are not approved grades for graduate students.
A student’s permanent academic record must reflect a final grade or a withdrawal grade for each course in which he or she is enrolled.

If a final grade has not been reported by the scheduled deadline, or if the deadline has not been appropriately extended, an F will be recorded.

Graduate students may repeat courses without limit. Credits will be counted toward the degree only once, and only the most recent grade will be used to calculate the cumulative GPA. This option does not apply to variable or repetitive courses.

A student’s official transcript will show all grades received and the cumulative GPA will reflect all grades.

I (Incomplete)
An I is an interim grade given at the discretion of the instructor at the student’s request and upon evidence that good cause, such as serious illness, prevented the student’s completion of course requirements. In granting a grade of I, the instructor signifies a willingness to receive student work and submit grades in accordance with these deadlines.

Auditing a subsequent offering of the course may not make up an Incomplete.

Final grades for students granted temporary reports of an Incomplete must be submitted by the first day of classes of the semester following the Incomplete. However, the instructor may require that the work be completed at any time prior to the end of the Incomplete extension period. Students should confer with their instructors to establish how far in advance of the deadline work must be completed.

An instructor may request an extension of the original Incomplete by sending written notification to the Office of Records/Registrar before the first day of classes. Any extension will usually be limited to the last day of classes of the semester following that in which the course was taken. Any subsequent extension must be appealed by the student with a written letter of support or denial by the faculty member addressed to the Graduate School.

If final grades are not reported to the Office of Records/Registrar by the specified dates, the grade of I will automatically change to I/F.

S/U (Satisfactory/Unsatisfactory)
A grade of S indicates passing work (equivalent to the grade of B or higher) in those courses so designated by the program and approved by the Graduate Council where the usual mode of evaluation is impractical. A grade of U indicates unsatisfactory work. S/U grades are not calculated as part of a student’s cumulative or semester GPA.

Courses that are usually offered on a S/U basis are so indicated in the graduate class schedule published for each term.

R (Registered)
R is assigned to indicate attendance during the first semester in a year-long course. The final grade will be assigned after the completion of two semesters.

NR (No Record)
An instructor may assign a temporary report of NR only for students who have never, to the instructor’s knowledge, participated in the course in any way. An NR report is not to be interpreted as a grade but only as an indication of a temporary state of affairs that requires prompt resolution leading either to removal of the course from a student’s program or to the assignment of a grade.

Change of Grade
Grades appearing on a student’s academic record may not be changed after one calendar year from the start of term in which the grade was incurred.

• A final grade may not be changed on the basis of work completed after a term has ended.
• A final grade appearing on a student’s academic record at the time of graduation cannot be changed to any other grade subsequent to the graduation date.

Grade changes that involve changing one grade to another, changing an incomplete to a letter grade after the first day of classes, or changing an incomplete to a letter grade after an extension has expired, must be approved by the Dean of the Graduate School.

Auditing
Auditing is permitted by special arrangement between student and instructor. No record is kept of such courses.

Academic Probation
When a student’s cumulative graduate GPA falls below B (3.0) for grades earned in courses numbered 500 and above taken at Stony Brook, the student shall be placed on probation.

• If the student’s overall GPA has been raised to B (3.0) by the end of the next semester of enrollment after being first notified of probation, the student will be returned to regular status.
• Students may be on probation for a maximum of two semesters.
• A student on academic probation who fails to achieve a 3.0 cumulative GPA by the end of the second semester on probation will usually not be permitted to re-enroll.
• A student who has changed a registered area of graduate studies may, upon the request of the new program, have their record treated as two separate records. The GPA for the new area of graduate studies may be calculated from the beginning of the semester in which the change became effective.
• A student enrolled part time who has accumulated six semester credits with a cumulative average below 3.0 will have two semesters, or six additional credits (whichever comes first) to bring their cumulative GPA to 3.0.
• An unreported grade or Incomplete is not calculated in determining the eligibility for academic probation.

Programs may have additional requirements as specified in program literature. Failure to meet these requirements may result in academic probation.

Standards of Academic Conduct
The University expects all students to cooperate in developing and maintaining high standards of scholarship and conduct. Graduate students come under rules and regulations outlined in the online Graduate School Policy Manual, located at www.grad.sunysb.edu/policies.shtml.

Students are expected to meet academic requirements outlined in this Bulletin and financial obligations as specified in “Financial and Residential Information” to remain in good standing. Certain non-academic rules and regulations must also be observed.

The University wishes to emphasize
the policy that all students are subject to the rules and regulations of the University currently in effect, or which, from time to time, are put into effect by appropriate authorities. Students, in accepting admission, indicate their willingness to subscribe to, and be governed by, these rules and regulations. They also acknowledge the right of the University to take such disciplinary action, including suspension and/or expulsion, as may be deemed appropriate. University authorities will take action in accordance with due process.

Academic Honesty and Scholarly Misconduct

Intellectual honesty is the cornerstone of all academic and scholarly work. Therefore, the University views any form of academic dishonesty as a serious matter. Detailed procedures for hearings and other functions at the judiciary processes are available in the Graduate School or in the Graduate School Policy Manual, which may be found at www.grad.sunysb.edu

Appeals and Grievance Procedures

A variety of appeals and grievance procedures are available. These complement other means to address and resolve concerns of graduate students, such as the Graduate Student Organization, Graduate Student Employees Union, the Graduate Student Advocate, and for graduate research assistants, the Research Foundation. Students encountering difficulties with program or Graduate School policy or procedure, or with faculty or staff, should discuss the problem with their advisors and their Graduate Program Directors whenever possible.

- The Graduate Program Director or program chair may refer a student’s grievance to the Departmental Grievance Committee, which may not include anyone named in an individual grievance case.
- Grievances that either cannot be resolved or should not be reviewed at the department/program level may be brought to the Dean of the Graduate School. The Dean will consult as needed with the Graduate Council Appeals Committee.
- Grievances that involve allegations of scholarly misconduct must be adjudicated by the Office of the Vice President for Research.

Detailed procedures for the appeals and grievance process are available in the Graduate School or in the Graduate School Policy Manual, which can be found at www.grad.sunysb.edu

Student Educational Records

The Family Educational Rights and Privacy Act permits current or former students to inspect and review their educational records. Students are also accorded the right to a hearing to question the contents of their educational records. Written consent of students may be required before personally identifiable information about them will be released from their educational records as provided by law.

Specific guidelines and procedures are contained in the Policy Manual of the University, T-507, “Family Educational Rights and Privacy Act.” A copy of this manual is available in the Reference Room of the Melville Library.

After administrative remedies available at the University have been exhausted, inquiries or complaints may be filed with the Family Educational Rights and Privacy Act Office, Department of Health and Human Services, 330 Independence Avenue, S.W., Washington, DC 20201.

Applicants or students may waive their rights to inspect confidential letters or statements of recommendation.

Transcripts

Students who wish to have Stony Brook transcripts forwarded to another institution or agency, or to themselves for their own use, must submit their requests at least two weeks before the transcripts are needed. Requests can be made via a student’s SOLAR account, an online request form, mail, facsimile, or in person at the cashier window of the Bursar’s Office. The fee for each transcript is $5. Each request must include:

- Your name;
- Your social security number or student ID;
- Your current address and telephone numbers (both day and evening);
- Your degree date or term of last attendance;
- The exact address to which you want your transcript sent.

For the online request form, visit http://ws.cc.sunysb.edu/registrar/tranreg.htm. If making requests by mail, address a letter and mail payment to Transcripts, P.O. Box 619, Stony Brook, NY 11790-0619. Fax requests require a VISA, MC, or Discover card number and expiration, and your signature as approval to charge your credit card; send information to (631) 632-9318. For additional information, visit http://ws.cc.sunysb.edu/registrar

All financial obligations to the University must be satisfied before a transcript can be released. A request for a transcript must be made by the student. Students who have both an undergraduate and a graduate transcript and want only one of them sent should specify it in their request. Partial transcripts of either the undergraduate or graduate academic records are not issued.

Equivalent Opportunity/Religious Absences

As students may be unable to attend classes on certain days because of religious beliefs, section 224-a of the Educational Law provides that:

- No person shall be expelled from or be refused admission as a student to an institution of higher education for the reason that he or she is unable, because of religious beliefs, to attend classes on a particular day or days.
- Any student in an institution of higher education who is unable, because of religious beliefs, to attend classes on a particular day or days, be excused from any examination or any study or work requirements.
- It shall be the responsibility of the faculty and of the administrative officials of each institution of higher education to make available to each student who is absent from school, because of religious beliefs, an equivalent opportunity to make up any examination, study, or work requirements that he or she may have missed because of such absence on any particular day or days.
- No fees shall be charged by the institution for making available to the said student such equivalent opportunity.
- If classes, examinations, study, or work requirements are held on Friday
after 4:00 pm or Saturday, similar or makeup classes, examinations, study or work requirements shall be made available on other days, where it is possible and practicable to do so. No special fees shall be charged to the student for these classes, examinations, study, or work requirements held on other days.

- It shall be the duty of the faculty and of the administrative officials of each institution of higher education to exercise the fullest measure of good faith. No adverse or prejudicial effects shall result to any students because of their availing themselves of the provisions of this section.
- Any student who is aggrieved by the alleged failure of any faculty or administrative official to comply in good faith with the provisions of this section shall be entitled to maintain an action or proceeding in the supreme court of the county in which such institution of higher education is located for the enforcement of his or her rights under this section.
- As used in this section, the term “institution of higher education” shall mean schools under the control of the Board of Trustees of the State University of New York, the Board of Higher Education of the City of New York, or any community college.

Academic Calendar

Stony Brook University operates on a semester system, with fall registration occurring during the last week of August. The fall semester usually starts the first week of September and finishes before December 25. The spring semester usually begins the last week of January and finishes the third week of May. The last week of each semester is devoted to final examinations. In addition to these two semesters, classes are offered during a January Winter Session term and two Summer Session terms.

A detailed academic calendar is prepared each year and is available at http://ws.cc.sunysb.edu/registrar
It is possible to learn without being educated. Learning merely implies the amassing of knowledge. An educated person is much more than a receptacle for facts. He or she is able to present those facts to others with grace and clarity, and to manipulate and juxtapose them with a broader base of knowledge to gain new insights. Finally, an educated person never ceases to test his or her knowledge against the highest standards of scholarship and to develop new ways of thinking about the facts that he or she encounters or uncovers in the course of a lifetime.

Education at the graduate level clearly implies the amassing of knowledge beyond that gained in an undergraduate degree, but the nature of the knowledge and the ways in which it is gained and used are also significantly different. It is expected that graduate students will gain detailed knowledge about a more specialized field than at the undergraduate level. The process of acquiring that knowledge is also much more independent and more reliant upon the initiative of the student. In spite of the necessarily specialized nature of the new knowledge, at Stony Brook graduate students are expected to maintain a broad perspective on their studies, such that they are able to take part in scholarly discourses in the broadest possible range of disciplines. Graduate students are, therefore, responsible for extracurricular self-education within and beyond their own fields of study; the mere satisfaction of the technical requirements for a degree is not sufficient to make one an educated person.

With education comes responsibility. Stony Brook demands the highest level of scholarly ethics from all members of the academic community. Graduate students must make themselves aware of the ethical issues of academia in general, and of their own fields in particular. No degree candidate can be considered fully educated who lacks an appreciation of these values and a dedication to upholding them.

The degree requirements listed in the Bulletin are correct as of the press date and apply to graduate students first matriculated in the academic years 2008-2010. The requirements in this section are the minimal ones mandated by the Graduate School; the individual graduate programs may set additional requirements. Any changes in requirements will apply only to students who first matriculate in their particular program after the change is approved and communicated to students at the time of admission. The University reserves the right to alter these regulations without notice.

The Degrees of Master of Arts, Master of Business Administration, Master of Fine Arts, Master of Music, and Master of Science

Master of Arts, Master of Business Administration, Master of Fine Arts, Master of Music, and Master of Science are advanced degrees implying the acquisition of knowledge and skills beyond those required for a baccalaureate.

- Some of these degrees may be taken en route to a doctoral degree, while others are terminal.
- All master's degrees imply the recognition of their holders as skilled practitioners of their disciplines.
- To be awarded a master's degree, it is necessary to demonstrate a grasp of advanced knowledge through coursework and the ability to learn independently and to communicate effectively with one's peers.
- The granting of the master's degree is based upon the completion of any special program requirements in addition to the items listed below.

A. Courses and Grade Point Average

- A student must achieve a 3.0 overall GPA in all graduate courses taken at Stony Brook to receive a degree. A minimum of 30 to 60 credits of graduate work is required to receive a master's degree.
- At the written request of the new program, the record of a student who has changed his or her registered area of graduate study may be treated as two separate records for the purposes of meeting degree requirements. The GPA for the new area of graduate study may be calculated unofficially from the beginning of the semester in which the change was effective.

B. Language Proficiency

Although the Graduate School does not require proficiency in a foreign language for the master's degree, programs oversee their own foreign language requirements and the evaluation of proficiency. Students must comply with program requirements.

C. Teaching

Some departments require at least one semester of practicum in teaching under supervision. The form this practicum takes may differ by discipline. It might include seminar or class presentations, assisting in laboratories, leading discussion sections, or grading. Grading experience by itself will not be considered sufficient for satisfaction of this requirement. Faculty are responsible for providing informal feedback and formal evaluation.

D. Thesis and Comprehensive Examination

The requirement for the thesis and comprehensive examination varies from program to program. Some programs require a thesis and others require a comprehensive examination, while some require only a master's paper.

- For specific requirements, refer to each program's section of this Bulletin.
- If a thesis is to be filed with the Graduate School, it must be prepared according to the Guidelines for the Preparation of Theses and Dissertations available on the Graduate School Web page.
- Multiple authorship of a thesis is not permissible.

E. Degree Application

Students must apply for graduation online at the Graduate School Web page in accordance with published deadlines. This includes doctoral students who intend to receive a master's degree during the course of their doctoral career. If degree requirements are not met, students must reapply for any subsequent awarding periods.

F. Registration

Degree candidates must be registered in the semester they intend to graduate. Students who intend to graduate in the spring or fall must register for at least one graduate credit. Students who intend to graduate in the summer can register for zero credits, but it still must be a graduate level course.

G. Program Recommendation

When all program requirements are completed, the Graduate Program Director may recommend to the Dean of the Graduate School that the master's degree be granted.

H. Time Limit

The following guidelines apply to all first-time matriculated students enrolled in the Graduate School.
• Full-time students must complete all degree requirements within three years.
• Part-time students must complete all degree requirements within five years.
• In exceptional cases where the program cannot be completed within these periods, students may petition for an extension of the time limit. Petitions may be in letter form and require the approval of the student’s advisor and Graduate Program Director. Requests for a time-limit extension must be filed before the limit is exceeded and must contain a significant justification. The final decision rests with the Dean of the Graduate School, who may impose additional requirements.
• The “Request for Waiver of Graduate Time Limit” form can be found by selecting the forms link from the Graduate School Web page at www.grad.sunysb.edu. These petitions require the approval of the student’s advisor and Graduate Program Director. Requests for a time limit extension must be filed before the limit is exceeded and must contain a significant justification. The final decision rests with the Dean of the Graduate School, who may impose additional requirements.

I. Standards
Appreciation of the ethical questions and adherence to the highest ethical standards of the discipline are required.

Master of Arts in Liberal Studies Degree
This is a terminal, non-research degree offered by the School of Professional Development (SPD). See the SPD section of this Bulletin for more information.

The Ph.D. Degree
The degree of Doctor of Philosophy was historically the first degree to be conferred by universities. It is granted in recognition of a candidate’s high level of scholarly competence and demonstrated ability to conduct and report significant research independently and effectively.

“Doctor” is the Latin Word for “teacher.” “Philosophy” in its broadest definition means “all knowledge.” The modern sense of the title “Doctor of Philosophy” refers to one who comprehends all knowledge in his or her chosen field and has mastered an area of specialization. He or she has added in a significant way to that body of knowledge and has transmitted the new knowledge, thus teaching the world something new. A person who has received the doctorate has mastered appreciation of the ethical questions and has adhered to the highest ethical standards of the discipline. It is further expected that the future work of the candidate for the Ph.D. will maintain and uphold the same standards of scholarship demanded for the degree, so the title and its meaning continue to apply.

The three requirements for the Ph.D. are assessed in the final defense of a dissertation.
• The dissertation should demonstrate significant original work.
• The final dissertation should be presented with clarity of thought and excellence of exposition that make it suitable for publication as a book or a series of papers in learned journals.
• The dissertation should demonstrate a breadth and depth of the candidate’s knowledge beyond the confines of his or her own research and is also critically assessed in the defense and at various examinations during the student’s studies.

Admission to the Graduate School does not automatically qualify a student as a candidate for the Ph.D. degree. Formal recommendation of advancement to candidacy for the Ph.D. degree must be made to the Graduate School by the program after a review of the student’s performance in courses, independent study, and program examinations. A candidate for the Ph.D. degree engages in research leading to a dissertation. Listed below are the minimal requirements mandated by the Graduate School. The individual programs may set additional requirements.

A. Courses and Grade Point Average
The student will follow an approved program of courses determined to meet his or her needs and to satisfy program requirements.
• A student must achieve a minimum 3.0 overall GPA in graduate courses taken at Stony Brook to receive a doctoral degree.
• At the written request of the new program, the record of a student who has changed his or her registered area of graduate study may be treated as two separate records for the purposes of meeting degree requirements. The GPA for the new area of graduate study may be calculated unofficially from beginning of the semester in which the change was effective.

B. Language Proficiency
Although the Graduate School itself does not require proficiency in a foreign language for the Ph.D. degree, programs oversee their own foreign language requirement and evaluation of proficiency. Students must comply with program requirements. The proficiency examination must usually be passed before permission is given to take the preliminary examination.

C. Preliminary Examination
The purpose of the preliminary examination is to ascertain the breadth and depth of the student’s preparation and to appraise readiness to undertake significant original investigation.
• At the discretion of the program, the preliminary examination may be oral, written, or both, and may consist of a series of examinations.
• The preliminary examining committee is appointed by the Graduate Program Director.
• The preliminary examining committee must include at least two faculty members from the program and may include one or more members from outside the University or program.
• Results of the preliminary examination will be communicated to the student as soon as possible and to the Graduate School within one week of the completion of the examination.
• A repetition of the preliminary examination, upon failure, may be scheduled at the discretion of the program. The Dean of the Graduate School must approve a second repeat.

D. Advancement to Candidacy
A student may be advanced to candidacy when all Graduate School and program requirements for the degree other than the dissertation have been completed.
• Students on academic probation cannot be advanced to candidacy.
• Students must be classified as a G4 at the time of request.
• Advancement to candidacy is granted by the Dean of the Graduate School upon recommendation of the Graduate Program Director.
• Students must advance to candidacy one year (minimum two semesters) before the beginning of the semester in which they plan to graduate.
E. Dissertation
A dissertation is required for the Ph.D. degree. It must convey in a clear and convincing manner the results of an original and significant scholarly investigation.

- Depending on the character of the student’s research, the Graduate Program Director will appoint an appropriate advisor or supervisory committee in consultation with whom the student will conduct an investigation and write a dissertation.
- The dissertation must be prepared according to the Guidelines for the Preparation of Theses and Dissertations available on the Graduate School Web page.
- Multiple authorship of a dissertation is not permissible.

F. Dissertation Examining Committee
The dissertation must be approved by a dissertation examining committee including at least two faculty members of the program, one member outside the program or University, and one member who may be either internal or external to the program.

- The dissertation advisor cannot serve as the external member.
- The chairperson must be a member of the program and cannot be the dissertation advisor.
- The outside member should have expertise in the student’s research field so as to be able to understand, criticize, and contribute to the dissertation, as well as to judge the quality and significance of the research.
- Requests for committee approval must be sent to the Graduate School at least four weeks in advance of the scheduled dissertation defense.
- Graduate programs must send requests for dissertation examining committee approval to the Graduate School by the fifteenth day of classes for the semester in which the student is defending or at least four weeks before the defense, whichever comes first.

G. Dissertation Defense
Examination of the dissertation involves a formal oral defense. This event will be conducted by the dissertation examining committee and will not be chaired by the advisor of the dissertation.

- The formal defense must be announced at least three weeks in advance and is open to all interested members of the University community.
- All candidates must provide the Graduate School with a dissertation abstract or recital program, as well as other relevant details, at least three weeks in advance of the proposed event. The Doctoral Defense Announcement form is available on the Graduate School Web page.
- The Graduate School will be responsible for advertising the defense to the University community.
- All dissertation defenses shall take place on campus and require the full attendance of the dissertation examining committee. Any exceptions from this practice will require approval from the Dean of the Graduate School.
- The examination that follows the public defense may be either open to the public or closed, at the discretion of the dissertation examining committee.
- The signatures on a committee approval form, which appear on page ii of the student’s dissertation, will indicate approval of the defense of the dissertation itself.
- The student has three months following a successful defense to submit the final version of their dissertation to the Graduate School. The semester the student submits the dissertation will be the semester that the degree will be awarded.
- A student may register for no more than one additional semester following the successful defense of the dissertation.

H. Teaching
At least one semester of practicum in teaching under supervision is required. The form this practicum takes may differ by discipline. The experience might include making seminar or class presentation, assisting in laboratories, or leading discussion sessions. Grading experience by itself will not be considered sufficient for satisfaction of this requirement. Faculty are responsible for providing informal feedback and formal evaluation.

I. Residence Requirements
At least two consecutive semesters of full-time graduate study in the program granting the degree are required. The purpose of the residence requirement is to ensure that the graduate student participates in the professional life of the program beyond class attendance. Some program residence requirements may vary from the Graduate School norm and are described in the individual program requirements for the degree. Unless specified, however, the Graduate School regulation takes precedence.

J. Degree Application
The student must apply for graduation online at the Graduate School Web page in accordance with published deadlines. If degree requirements are not met, students must reapply for any subsequent awarding periods.

K. Registration
Students who intend to graduate in the spring or fall must register for at least one graduate credit. Students who intend to graduate in the summer can register for zero credits, but it still must be a graduate level course.

L. Program Recommendation
When all program requirements are completed, the Graduate Program Director may recommend to the Dean of the Graduate School that the Ph.D. degree be granted.

M. Time Limit
The time limit for a doctoral degree is seven years for a student who has a previous graduate degree or 24 credits of graduate study in such a degree program. For all other students, the time limit for a doctoral degree is seven years after completion of 24 graduate-level credits at Stony Brook University.

- In exceptional cases where the program cannot be completed within these periods, students may petition for an extension of the time limit.
- The “Request for Waiver” of Graduate Time Limit form can be found by selecting the forms link from the Graduate School Web page at www.grad.sunysb.edu. These petitions require the approval of the student’s advisor and Graduate Program Director.
- Requests for a time limit extension must be filed before the limit is exceeded and must contain a significant justification.
- The final decision rests with the Dean of the Graduate School, who may impose additional requirements.

The Doctor of Musical Arts Degree
The degree of Doctor of Musical Arts (D.M.A.) is the only nonclinical doctoral degree offered at Stony Brook other
than the Ph.D. The fundamental requirements for the D.M.A. are essentially those for the Ph.D. with the exception that the scope of the original work and the scale of the research are somewhat reduced.

The requirements for expertise within the subject area and for clear exposition are equal to those for the Ph.D. In the case of the D.M.A., clarity of exposition is demonstrated through the medium of recital.

Admission to the Graduate School does not automatically qualify a student as a candidate for the D.M.A. degree. Formal recommendation of advancement to candidacy for the D.M.A. degree must be made to the Graduate School by the Music program after a review of the student’s performance in courses, independent study, and program examinations. The requirements listed below are the minimal ones mandated by the Graduate School. The Music program may set additional requirements.

A. Course and Grade Point Average
The student will follow a program of courses determined to meet his or her needs and to satisfy the program requirements:
- A student must achieve a minimum 3.0 overall GPA in graduate courses taken at Stony Brook to receive the D.M.A. degree.
- At the written request of the new program, the record of a student who has changed his or her registered area of graduate studies may be treated as two separate records for the purposes of meeting degree requirements. The GPA for the new area of graduate studies may be calculated unofficially from the beginning of the semester in which the change became effective.

B. Contract Toward Candidacy
The student must fulfill the specific requirements of an approved contract toward candidacy.

C. Language Proficiency
Although the Graduate School does not require proficiency in a foreign language, the Music program oversees its own foreign language requirements and the evaluation of proficiency. Students must comply with their program requirements (see the Music section of the Graduate Bulletin).

D. Advancement to Candidacy
A student may advance to candidacy after completion of the following requirements:
- Completion of three of the four public recitals;
- Completion of the two graduate seminars or proseminars required for the generation of doctoral essays and completion of two MUS 695 courses with a grade of B or better to work on revisions for each essay;
- Completion of requirements C through I of the Music section of the Graduate Bulletin.
- Students on academic probation cannot be advanced to candidacy.
- Students must be classified as a G4 at the time of request.
- Advancement to candidacy is granted by the Dean of the Graduate School upon recommendation of the Graduate Program Director.
- D.M.A. students may advance to candidacy one semester prior to graduation.

E. Doctoral Recital
The student must demonstrate a distinguished level of performance in the doctoral recital. A cassette recording of the recital is to be kept permanently in the University Library. In addition, an unofficial copy of the program must be submitted to the Graduate School.

F. Teaching
At least one semester of practicum in teaching under supervision is required. The form this practicum takes may differ by discipline.
- It might include making seminar or class presentations, leading discussion sections, or grading.
- Grading experience by itself will not be considered sufficient for satisfaction of the requirement.
- Faculty are responsible for providing informal feedback and formal evaluation.

G. Residence Requirement
At least two consecutive semesters of full-time graduate study in the program granting the degree are required. The purpose of the residence requirement is to ensure that the graduate student participates in the professional life of the program beyond class attendance. Some program residence requirements may vary from the Graduate School norm and are described in the individual program requirements for the degree. Unless specified, however, Graduate School regulation pertains.

H. Degree Application
The student must apply for graduation online at the Graduate School Web page in accordance with published deadlines. If degree requirements are not met, students must reapply for any subsequent awarding periods.

I. Registration
Students who intend to graduate in the spring or fall must register for at least one graduate credit. Students who intend to graduate in the summer can register for zero credits, but it still must be a graduate level course.

J. Program Recommendation
When all program requirements are completed, the Graduate Program Director may recommend to the Dean of the Graduate School that the D.M.A. degree be granted.

K. Time Limit
The candidate must satisfy all requirements for the D.M.A. degree within seven years after completing 24 graduate-level credits at Stony Brook University.
- The Request for Waiver of Graduate Time Limit form can be found by selecting the forms link from the Graduate School Web page at www.grad.sunysb.edu. These petitions require the approval of the student's advisor and graduate program director.
- Requests for a time-limit extension must be filed before the limit is exceeded and must contain a significant justification.
- The final decision rests with the Dean of the Graduate School, who may impose additional requirements.

The Master of Philosophy Degree
The degree of Master of Philosophy is intended as a formal recognition of what is informally known as “ABD” status. This degree is normally reserved for students who have advanced to candidacy in a Ph.D. program but are unable to complete the remaining requirements. The degree implies educational achievements well beyond those required for a regular master’s degree. The Master of Philosophy degree is available in every program that awards the Ph.D. Requirements for the M. Phil. are identical to those for the Ph.D., except that the submission and defense of the dissertation are not required.
Awarding of the Degree
When all requirements have been completed, the Graduate Program Director will so certify to the Dean of the Graduate School and recommend that the degree be awarded. Degrees are awarded three times a year: May, August, and December. A formal ceremony, however, takes place only at the May and December commencements. To be eligible for a degree, a student must have completed all University requirements, all program degree requirements, satisfied any provisional admission requirements, submitted the appropriate manuscripts, obtained all University clearances, and have maintained matriculation according to the regulations outlined under the section “Maintaining Matriculated Status,” elsewhere in this Bulletin.

Waiver of Regulations
The Dean of the Graduate School in individual instances may waive specified requirements. A petition for such a waiver must be endorsed by the Graduate Program Director, who shall append the reasons for believing that requested waiver would not result in a breach of the spirit of the regulations.
Degrees and Advanced Graduate Certificates Awarded
Degrees and Advanced Graduate Certificates Awarded

The Graduate School at Stony Brook University offers graduate degrees through a number of departments and programs. Graduate curricula at Stony Brook are grouped below by the graduate degree programs that have been approved and registered with System Administration of the State University of New York and the State Education Department. All graduate degrees are awarded in the name of the program. Some of the degrees listed have concentrations below them (in italics). These refer to an approved and regulated curriculum within the graduate program organized to focus on an area of special interest. The codes shown in this list are abbreviations for the disciplines in which a student can receive a degree or advanced graduate certificate; they are designators for courses offered by the program.

The list below does not include graduate degrees offered by the School of Dental Medicine, School of Medicine, School of Nursing, School of Health Technology and Management, and School of Professional Development.

Graduate Programs (Codes)

Africana Studies (AFH)
 M.A. in Africana Studies

Anatomical Sciences (HBA)
 Ph.D. in Anatomical Sciences

Interdepartmental Doctoral Program in Anthropological Sciences (DPA)
 Ph.D. in Anthropology
 Archaeology
 Cultural Anthropology
 Physical Anthropology

Anthropology (ANT)
 M.A. in Anthropology
 Archaeology
 Physical Anthropology
 Socio-Cultural Anthropology

Applied Mathematics and Statistics (AMS)
 M.S. and Ph.D. in Applied Mathematics and Statistics
 Computational Applied Mathematics
 Operations Research
 Statistics
 Advanced Graduate Certificate in Operations Research
 Advanced Graduate Certificate in Quantitative Finance

Art (ARH, ARS)
 M.A. and Ph.D. in Art History and Criticism
 M.F.A. in Studio Art
 Advanced Graduate Certificate in Art and Philosophy

Biochemistry and Structural Biology (BSB)
 Ph.D. in Biochemistry and Structural Biology

Biomedical Engineering (BME)
 Ph.D. in Biomedical Engineering
 M.S. in Biomedical Engineering
 Medical Physics
 Advanced Graduate Certificate in Biomedical Engineering

College of Business (MBA)
 M.B.A. in Business Administration
 M.B.A. in Business Administration (Exec. Option)
 M.S. in Technology Management
 M.S. in Management and Policy
 Advanced Graduate Certificate in Finance
 Advanced Graduate Certificate in Health Care Management
 Advanced Graduate Certificate in Human Resource Management
 Advanced Graduate Certificate in Information Systems Management

Chemistry (CHE, TCH)
 Ph.D. in Chemistry
 Chemical Biology
 Chemical Physics
 M.S. in Chemistry
 M.A.T. in Chemistry (TCH)

Comparative Literary and Cultural Studies (CLG)
 M.A. and Ph.D. in Comparative Literary and Cultural Studies
 Advanced Graduate Certificate in Cultural Studies

Computer Science (CSE)
 M.S. and Ph.D. in Computer Science

Creative Writing and Literature (CLG)
 M.F.A. in Creative Writing and Literature

Ecology and Evolution (BEE)
 Ph.D. in Ecology and Evolution
 M.A. in Biological Sciences
 Applied Ecology

Economics (EDO)
 Ph.D. in Economics

Electrical and Computer Engineering (ESE)
 M.S. and Ph.D. in Electrical Engineering
 Ph.D. in Computer Engineering
 Advanced Graduate Certificate in Computer Integrated Engineering

English (EGL, TEN)
 M.A. and Ph.D. in English
 M.A.T in English (TEN)

European Languages, Literatures, and Cultures (GER, RLF, RLI, SLV, DLG, DLF, DLI, DLL, DLR)
 D.A. in Foreign Languages (French, German, Italian, Russian)
 M.A. in Germanic Languages and Literature
 M.A. in Romance Languages and Literature
 M.A. in Slavic Languages and Literature
 M.A.T. in Russian, French, German, Italian (TRU, TFR, TGR, TIL)

Genetics (BGE)
 Ph.D. in Genetics

Geosciences (GEO)
 M.S. and Ph.D. in Geosciences

Hispanic Languages and Literature (SPN)
 M.A. and Ph.D. in Hispanic Languages and Literature
 M.A.T in Spanish

History (HIS)
 M.A. and Ph.D. in History
 M.A.T. in Social Studies

Information Systems Engineering (CSE)
 M.S. in Information Systems Engineering

Linguistics (LIN, ESL)
 M.A. and Ph.D. in Linguistics
 M.A. in Teaching English to Speakers of Other Languages (TESOL)

Marine and Atmospheric Sciences (MAS)
 M.S. and Ph.D. in Marine and Atmospheric Sciences
 Advanced Graduate Certificate in Ocean Sciences

Materials Science and Engineering (ESM)
 M.S. and Ph.D. in Materials Science and Engineering

Mathematics (MAT)
 M.A. and Ph.D. in Mathematics
 M.A.T. in Mathematics

Mechanical Engineering (MEC)
 Ph.D. in Mechanical Engineering
 Mechanical Design
 Solid Mechanics
 Thermal Sciences and Fluid Mechanics
DEGREES AND ADVANCED GRADUATE CERTIFICATES AWARDED

M.S. in Mechanical Engineering
Manufacturing

Molecular and Cellular Biology (MCB)
Ph.D. in Molecular and Cellular Biology
Biochemistry and Molecular Biology
Cellular and Developmental Biology
Immunology and Pathology

Molecular and Cellular Pharmacology (HBH)
Ph.D. in Molecular and Cellular Pharmacology

Molecular Genetics and Microbiology (HBM)
Ph.D. in Molecular Genetics and Microbiology

Music (MUA, MUP)
M.A. and Ph.D. in Music
Composition
Ethnomusicology
Music History and Theory
M.M. and D.M.A. in Music Performance

Neuroscience (NEU)
Ph.D. in Neuroscience

Optoelectromechanical Systems Engineering (ESE)
M.S. in Optoelectromechanical Systems Engineering

Oral Biology and Pathology (BHS, HDO)
M.S. and Ph.D. in Oral Biology and Pathology

Philosophy (PHI)
M.A. and Ph.D. in Philosophy
Advanced Graduate Certificate in Art and Philosophy

Physics and Astronomy (PHY)
Ph.D. in Physics
Biophysics
Chemical Physics
M.S. in Physics
Scientific Instrumentation
M.A. in Physics

Physiology and Biophysics (HBY)
Ph.D. in Physiology and Biophysics

Political Science (POL)
Ph.D. in Political Science
American Politics
Political Economy and Public Policy
Political Psychology/Behavior
M.A. in Political Science
M.A. in Public Policy

Psychology (PSY, BIP, CLP, EXP, SCP)
Ph.D. in Biopsychology (BIP)
Ph.D. in Clinical Psychology (CLP)
Ph.D. in Experimental Psychology (EXP)
Ph.D. in Social/Health Psychology (SCP)
M.A. in Psychology (PSY)

Social Welfare (HWD)
Ph.D. in Social Welfare

Sociology (SOC)
M.A. and Ph.D. in Sociology

Technology and Society (EST)
M.S. in Technological/Systems Management
Educational Technology
Energy and Environmental Systems
Global Operations Management

Theatre Arts (THR, DRM)
M.A. in Theatre
M.F.A. in Dramaturgy

Women’s Studies (WNS)
Advanced Graduate Certificate in Women’s Studies

Writing and Rhetoric (WRT)
Advanced Graduate Certificate in Composition Studies
Degree and Advanced Graduate Certificate Program Descriptions
Africana Studies (AFH)

Assistant to the Chair: Phyllis Zenker, Ward Melville Social and Behavioral Sciences Bldg., S-249, (631) 632-7470

Degree awarded: M.A. in Africana Studies

The Department of Africana Studies, in the College of Arts and Sciences, offers a course of studies leading to the degree of Master of Arts in Africana Studies. The purpose of the M.A. in Africana Studies is threefold: to meet the need for academic inquiry at the graduate level into the history, experiences, and perspectives of peoples of African heritage worldwide; to broaden the scope of academic offerings at the graduate level within the SUNY system and at Stony Brook University specifically; to enhance professional development in careers in a range of professions where knowledge of the Black experience is increasingly useful, such as cinema studies, education, law, management, medicine, museum curator studies, public health, public service, and social welfare.

The M.A. degree requires a total of 30 graduate course credits with an overall minimum GPA of 3.0. Eighteen of these credits will be in the Africana Studies Graduate Core Curriculum. Twelve credits may be part of an elective mix of AFS graduate courses and electives taken outside the Department of Africana Studies. The 12 credits include a master's thesis (six credits); tutorials; or study abroad. The foundation courses are required of all students pursuing an M.A. degree in Africana Studies. The two-semester sequence will introduce students to the theoretical and methodological issues of Africa, Caribbean/Latin America, and the United States. A required research seminar introduces students to the historiography of the African Diaspora.

Students will be afforded an opportunity to participate in a study aboard program conducted in Africa and/or the Caribbean/Latin America. Stony Brook's International Academic Programs Office (IAP) is committed to travel-study programs in the Caribbean and in Africa both in the summer months and during the University's winter session in efforts to widen the range of approaches to international understanding. A small number of the courses offered by the M.A. program in Africana Studies could also be taken by students in the M.A.T. program in Social Studies Education to fulfill the requirements of that program.

The Department of Africana Studies provides academic excellence in teaching and research on African Diasporic life and culture as part of its mission at Stony Brook University. The M.A. faculty of the Department of Africana Studies is composed of full-time AFS core faculty, AFS joint appointees, and Affiliate faculty from other departments.

Facilities and Resources
Research and laboratory facilities are accessible in the Ward Melville Social and Behavioral Sciences Main Library. It subscribes to more than 35 electronic journals related to Africana Studies. In most cases virtually the entire run of an important journal is available online through JSTOR. The Departmental facilities consist of the Richard B. Moore Library, a generous gift of 1,000 books from Joyce and W. Burghardt Turner, a civil rights activist and faculty emeritus of the Department of History. The AFS Library, with a computer terminal and projection screen, serves as a primary study space and as a seminar room for graduate courses. The AFS Media Center and Archives room may be used to expand a graduate emphasis on film studies and digital imaging.

Faculty

Professors
Ferguson, David, Ph.D., 1980, University of California, Berkeley: Joint appointment with Department of Technology and Society; quantitative methods; computer applications (especially intelligent tutoring systems and decision support systems); mathematics, science, and engineering education.
Fouron, Georges, Ed.D., 1985, Columbia University: Social studies education; bilingual education; identity, Haiti; immigrants' experience in America; transnationalism.

Associate Professors
Cash, Floris, Ph.D., 1986, Stony Brook University: African American history; African American women's studies; U.S. social and political history; Latin American history, slavery, and women.
Frank, Barbara, Ph.D., 1988, Indiana University: African American and African Diaspora art history.
Hurley, E. Anthony, Ph.D., 1992, Rutgers University: Francophone literature of the Caribbean and Africa; Caribbean poetics; Afro-Caribbean culture; Caribbean American literature.
Owens, Leslie, Ph.D., 1972, University of California, Riverside: African American history; U.S. southern history.
Joseph, Peniel, Ph.D., 2000, Temple University: African American history; civil rights black power movements; black cultural, social, political, and intellectual history, black feminism; African diaspora; global studies; race and urban history.
Walters, Tracey, Ph.D., 1999, Howard University: African American, Caribbean, and African literature; Pan-African literature; Black British literature and culture; 20th-century American and British literature; journalism.

Assistant Professors
Brown-Glaude, Winnifred, Ph.D., 2003, Temple University: Race and ethnicity in the Caribbean and Latin America; gender and development; intersectionality; women and informal economics; race and race relations in the United States; sociology of the body; Black feminism; social research; feminist research method.

Affiliate Faculty
Arens, William, Ph.D., Dean, International Academic Programs (IAP), 1970, University of Virginia: Social anthropology; conservation; Africa and the Mediterranean.
Kaplan, Elizabeth A., Director of the Humanities Institute, Ph.D., 1970, Rutgers University: Literary and film theory; feminist studies; modern American literature; 19th-century American literature; postcolonial British literature, film.
Kittay, Eva, Ph.D., 1978, City University of New York: Philosophy of language; philosophy and literature; feminism.
Miller, Wilbur, Ph.D., 1973, Columbia University: U.S. social and political history; Civil War and Reconstruction; crime and criminal justice history.
Admission

The admission standards and selection procedures will be identical to those followed by the Graduate School of Stony Brook University. In addition to the minimum Graduate School requirements, the Department of Africana Studies has specific degree requirements.

A. A bachelor's degree is required with a minimum grade point average of 3.00 (B).

B. Two official copies of previous college transcripts must be submitted.

C. Three letters of recommendation that address the applicant’s potential to succeed in a program of graduate study.

D. Submission of scores from the Graduate Record Examination (GRE) General Test.

E. A personal interview is encouraged.

Degree Requirements

Requirements for the M.A in Africana Studies

The requirements for the master's degree in Africana Studies are intended to bring sharper focus to what the Department of Africana Studies has long identified as teaching and research in the African Diaspora.

In addition to the requirements imposed by the Graduate School, the following are required:

Course Requirements

1. Foundations in Africana Studies, I, II
AFS 500; AFS 501 (6 credits)

2. Research Methods in Africana Studies
AFS 502 (3 credits)

3. Three courses (9 credits) from the following courses:
AFH 520, AFH 524, AFH 528, AFS 530, AFS 433, AFS 536, AFS 540, AFS 550, AFS 555, AFS 570

4. Additional 12 credits chosen in consultation with the student's advisor: including a master's thesis, AFS/AFH 599 (6 credits); electives chosen in consultation with advisor; or study abroad

Electorive courses offered by other departments may be accepted for the M.A. degree:

PHI 504 Racialized Oppression and the Idea of Humanity

MUS 507 Studies in Music History: African Music

HIS 515 Race, Citizenship, and Global Culture

MUS 541 Music and Race: Black Music (Cross Cultural Study and Music)

ARH 547 Topics in Global, Colonial, and Diasporic Art

HIS 562 Introduction to Modern African History

FRN 564 Seminar in Francophone Literature

HIS 616 Twentieth-Century African Political History

Courses

AFH 520 The Caribbean and the Literary Imagination

An examination of the literary representation of the Caribbean through an extensive study of selected fictional and theoretical writings. This seminar will include an examination of the representations of the Caribbean by African American as well as Caribbean writers. 3 credits, ABCF grading

AFH 524 Contemporary African Diasporic Literature and Film

Contemporary African American Diasporic Literature and Film offers a comparative analysis of 20th- and 21st-century African Diasporic writers and filmmakers and their explorations of race, class, and gender. To establish the shifting nature of African Diasporic intellectual thought, we shall consider how each successive generation of writers and filmmakers builds upon discussions of racial identity, black sexuality, and social mobility. To demonstrate how discussions of race have evolved over time texts will be read in conjunction with each other. For example, Fanon's seminal text Black Skin White Masks, a text that seeks to explain the racialization of society, the double consciousness of black people, and the superiority complex of white people, will be read against Paul Gilroy's Against Race, a text arguing for the deconstruction and reconfiguration of race as a cultural construct. Other topics for discussion focus on how “newer” writers delve into questions of sexuality from a fresh perspective. Comparing Morrison's Sula with Cheryl West's play Before it Hits Home, for example, demonstrates that writers are now exploring questions of sexuality in more provocative ways, i.e., West's uncovering of the “downlow” lifestyle lived by Black men, and the health concerns related and the dangers of sexually transmitted diseases such as HIV/AIDS. 3 credits, ABCF grading

AFRICANA STUDIES
AFH 528 Contemporary Black Literature and Cultural Criticism
This course is designed to introduce students to some of the major contemporary literary and cultural theorists from the 20th and 21st centuries (Fanon, Patterson, Baker, Christian, Gilroy, Mercer, Morrison, Gates, Patterson, CLR James, etc.). Earlier scholars from the 19th century such as Anna Julia Cooper or Du Bois will be referenced also, but the main focus will be on the 20th- and 21st-century writers. Through an examination of major literary and cultural movements such as Negritude, the Caribbean Artists Movement, The Black Arts Movement, and the Post-Black Artists Movement, students will gain insight into how black scholars both critique and contribute to the artistic, political, and social discourse of the day. An application of Postcolonial, Feminist/Womanist, and Cultural Criticism will aid the students in their reading of the critical materials.
Fall, alternate years, 3 credits, ABCF grading

AFH 564 Seminars in Francophone Literature
Close examination of the literature written in French of the Francophone world outside of France, with special emphasis on the literature of the Caribbean and Africa. This course will pose and explore questions such as: What is Francophone literature and what are the implications of a literature considered as “Francophone”? What are the functions of writing in French in a “postcolonial” context?
Prerequisite: Permission of advisor
3 credits, ABCF grading

AFS 500 Foundations in Africana Studies
Core course required of all students pursuing a master's degree in Africana Studies. The two-semester foundation courses will introduce students to the theoretical issues of the Africana Diaspora. The term Diaspora became popular during the mid-1960s among American and African American scholars who were studying the black experience as an aspect of the African experience. The parameters of Africana Diaspora studies will cover the themes of involuntary and voluntary migration, the historical, political, and cultural perspective of the black experience. The course will promote an understanding of the Black Diaspora.
Prerequisite: Permission of advisor
3 credits, ABCF grading

AFS 501 Foundations in Africana Studies
Core course required of all students pursuing a master's degree in Africana Studies. The two-semester foundation courses will introduce students to the theoretical issues of the Africana Diaspora. The term Diaspora became popular during the mid-1960s among American and African American scholars who were studying the black experience as an aspect of the African experience. The parameters of Africana Diaspora studies will cover the themes of involuntary and voluntary migration, the historical, political, and cultural perspective of the black experience. The course will promote an understanding of the Black Diaspora.
Prerequisite: Permission of advisor
3 credits, ABCF grading

AFS 502 Research Methods in Africana Studies
This course is an introductory graduate course in research methods that will provide social science research applied to studies of the African Diaspora. It provides an introduction to the fundamentals of social research by comparing the approaches of several different research methods. Focusing on research design, data collection, data analysis, and the ethics of research, we will explore the strengths and weaknesses of the different research methods. We will ask how ideas arise around race, class, and gender shape the kinds of research questions we ask, the types of materials we use, and how we define our relationships with our subjects. A central purpose of this course is for students to demonstrate knowledge about the fundamentals of research design, specifically as they pertain to the African Diaspora. Students will be required to develop a research proposal that will be critiqued by the instructor and students in the class.
Fall, 3 credits, ABCF grading

AFS 504 Racialized Oppressions and the Idea of Humanity
When one reads accounts of slavery, genocide, the systematic denial of rights to a group because of a racial identity, the question always arises whether the oppressors view the racialized other as fully human? This question and what it means to view an individual or group as “fully human” will be explored. How have philosophical understandings of the moral importance and the moral meaning of “humanity” served to exacerbate, moderate, or fight against racial oppression? How does racial and gender oppression compare in this respect? Is there a comparison to be made between racial oppression and the treatment accorded to disabled people with respect to the understanding of what it is to be human? Does it make sense to use a biologically based concept such as “humanity” to a philosophical concept of “personhood” serve to justify or serve as a tool against these identity-based oppressions? Does shifting the ground justify the analogy of racism with the abuse of animals, as in the idea of “speciesism”? We will explore as many of these questions as interest dictates and time permits.
Prerequisite: Permission of advisor
Fall, 3 credits, ABCF grading

AFS 507 African Music
This is a selective introduction to African music and the music of the African Diaspora. We will read from major scholars in the field of African music studies such as Simha Arom, Berliner’s Rhythm and African Sensibility, and Paul Berliner’s The Soul of M'bira. Students will present their research to class towards the end of the term.
Prerequisite: Permission of course instructor
3 credits, ABCF grading

AFS 530 Slavery and the Atlantic World
This course will examine the experiences of people of African descent as participants in a coerced migration that created the African Diaspora. The transatlantic slave trade led to an enduring image of black men and women as transported commodities. Therefore, it has had the greatest impact on the construction of the African Diaspora giving rise to new communities of people across the globe.
Fall, alternate years, 3 credits, ABCF grading

AFS 533 Race Gender and Globalization
This seminar explores current issues and debates relating to the racialized and gendered effects of globalization. Topics include an overview of the sociology of globalization and theories of globalism/the global system, transnational migrations and the new global labor market, globalization and race/ethnicity, women and globalization, local-global linkages, and resistance to globalization.
Prerequisite: Permission of advisor
Fall and Spring, alternative years, 3 credits, ABCF grading

AFS 536 Africa and Globalization
This seminar will discuss the interconnection between this enduring crisis of the modern African state and the impact of globalization, especially after the collapse of communism in Eastern Europe. We will critically explore the implications of these complex regional and global political and economic forces for emerging African social formation, the viability of African states and societies, new migration patterns, transnationalism, and diasporic connections especially since the decolonization process in the 1960s.
Spring, alternate years, 3 credits, ABCF grading

AFS 540 The Black Power Movement
This course examines the Black Power Movement. Stokely Carmichael's call for Black Power broke through the consciousness of everyday politics during 1960s Meredith March Against Fear; Soon after, and for the next decade, Black Power galvanized African American politics, engendering radical movements for social, political, and cultural transformation that impacted blacks in the United States and beyond. An emerging historiography traces the roots of Black Power in the postwar black freedom movement, finding cultural and political touchstones for future Black Power activism among civil rights renegades, trade unionists, and black nationalists. We will examine works produced during the Black Power era and this new scholarship to analyze the Black Power movement's legacy in the politics and culture of African Americans.
Permission of advisor is required. This course is offered as both HIS 540 and AFS 540.
3 credits, ABCF grading

AFS 547 African Art
This course will examine African art and its relationship to African history, culture, and politics. The course will be divided into three parts: pre-colonial Africa, colonial Africa, and post-colonial Africa. The course will cover a variety of art forms, including but not limited to: sculpture, architecture, textiles, and photography. Students will be required to complete a research project of 16 to 18 pages. For the book review, students will write about a monograph on African Music such as John Miller Chernoff's African Rhythm and African Sensibility or Paul Berliner's The Soul of M'bira. Students will present their research to class towards the end of the term.
Prerequisite: Permission of course instructor
3 credits, ABCF grading
AFS 541 Music and Race: Black Music (Cross-Cultural Study and Music)
This seminar will examine how certain widely held conceptualizations about race (and in some instances, ethnicity) are articulated, reinforced, or challenged in music making and consumption, on the one hand, and in scholarship about music on the other. Writings on race and music have tended to be about Black culture(s). In this course we will critique this focus and the construct of Black music in great detail. The course requires extensive readings on these topics; listening to musical examples (in-depth knowledge of music theory is not necessary); vigorous class discussion and written reaction papers; and a final research paper and class presentation. Students may choose to explore other aspects of music and race besides Black music in their final papers (for example, how Orientalism has been constituted in music and musical criticism and scholarship).
Prerequisite: Permission of advisor
AFS 550 Women of Color in the Modern World; Shifting Identities and Feminist Visions
This course explores the various ways in which gender, race, and class, along with other aspects of identity, shape the lives and experiences of women of color in the United States and globally. It presents the ongoing debates concerning the interconnections of gender, race, and shifting identities. It will examine the relationships between the construction of personal identities, identity statuses, cultural and ideological meaning systems, and the search for alternative images. Cross-listed with WST 550.
Prerequisite: Permission of advisor
AFS 555 Sociology of Gender and Development
The 1900s marked a transition in global economic relations, one characterized by colonial extraction and exploitation, to sustainable development emphasizing economic growth and the alleviation of poverty. It was quickly discovered, however, that the effects of development were beneficial for some but devastating for others, especially poor women. The discovery led many scholars and practitioners, especially those who embrace feminist ideologies, to demand that development agencies and policies be sensitive to gender issues. This seminar will focus on gender and development, in theory and practice, in the global South. It will promote students’ understanding of the central role that gender plays in the success and assessment of development strategies.
Prerequisite: Permission of advisor
AFS 562 Introduction to Modern African History
This seminar is an extensive exploration of African history in the 20th century. It examines the major themes that have shaped the formation and the decline of the modern African state since the imposition of colonial rule in the late 19th century. Drawing from monographs and journal articles on 20th-century African social and political history, and the recent scholarship on state/society relations, the seminar will explore the interactions between state institutions and structures of society in colonial and post-colonial Africa.
Prerequisite: Permission of advisor
AFS 570 The Black Radical Tradition
This course examines the black radical tradition from slavery to the present, paying particular attention to 20th-century social movements and the intersection between trade unionism, black nationalism, internationalism, and Marxism. Black radicalism has a long history in the United States and beyond. At its core, this tradition has housed diverse, at times conflicting, ideological strains, personalities, and organizations ranging from black feminists, Marxists, socialists, liberals, trade unionists, artists, and intellectuals. In the process this tradition has run afloat of more mainstream expressions of Black protest (although in certain eras such as during the Black Power movement it has represented the mainstream), and the black radicals are often marginalized as wild-eyed dreamers, naive to the ways of the world.
Prerequisite: Permission of advisor
AFS 570 The Black Radical Tradition
This course examines the black radical tradition from slavery to the present, paying particular attention to 20th-century social movements and the intersection between trade unionism, black nationalism, internationalism, and Marxism. Black radicalism has a long history in the United States and beyond. At its core, this tradition has housed diverse, at times conflicting, ideological strains, personalities, and organizations ranging from black feminists, Marxists, socialists, liberals, trade unionists, artists, and intellectuals. In the process this tradition has run afloat of more mainstream expressions of Black protest (although in certain eras such as during the Black Power movement it has represented the mainstream), and the black radicals are often marginalized as wild-eyed dreamers, naive to the ways of the world.
3 credits, ABCF grading
AFS 616 Twentieth-Century African Political History
This seminar is an extensive exploration of African political history in the 20th century. It examines the major themes that have shaped the formation and the decline of the modern African state since the imposition of colonial rule in the late 19th century. Drawing from monographs and journal articles on 20th-century African social and political history, and the recent scholarship on state/society relations, the seminar will explore the interactions between state institutions and structures of society in colonial and post-colonial Africa. The seminar is broadly structured around key themes which are presented in chronological order. These themes are divided into three major sections. The first section, which deals with the colonial period, will examine the following themes: partition and conquest, African resistance to early colonialism, the historical processes of state formation in Africa, the colonial economy, and the interaction between the world religions (Christianity and Islam) and colonial rule. The second section on the postcolonial era examines the following themes: the historical processes of state formation in Africa, communal identities and social change since colonialization, the patriarchal society and the crisis of the state, and the new debates on democratization and civil society in the post-Cold War era. The final section examines the international politics of African states from both theoretically and historical perspectives. The relevant themes here include the impact of the major powers on African subregions in the Cold War and post-containment eras; the impact of multilateral agencies on African political, economic, and social developments; and regional organizations and African states. The structure of the course is intended to be coherent but flexible, so some basic trends in the reading assignments can be identified and
Anatomical Sciences (HBA)

Chair: William Jungers, Health Sciences Center T-8, Room 040, (631) 444-3122
Graduate Program Director: Maureen A. O’Leary, Health Sciences Center T-8, Room 088, (631) 444-3730
Staff Associate: Christine Johnson, Health Sciences Center T-8, Room 040, (631) 444-3114

Degree awarded: Ph.D. in Anatomical Sciences

Multidisciplinary Graduate Program in Anatomical Sciences

The Department of Anatomical Sciences, within the Health Sciences Center, offers a multidisciplinary graduate program leading to the Ph.D. degree. Students receive comprehensive training to prepare them for teaching and research in the areas of evolutionary morphology, functional morphology, musculoskeletal biology, systematics, and vertebrate paleontology. Graduate students are guided through a program of courses designed for their particular needs. In this regard, the Department of Anatomical Sciences interacts not only with other departments in the School of Medicine but also with those in the College of Arts and Sciences (e.g., Departments of Anthropology, Ecology and Evolution, and Geosciences), as well as other regional doctoral programs (American Museum of Natural History, City University of New York).

The program is concerned with the analysis and interpretation of gross vertebrate structure in relation to adaptation and systematics. Training and research focus on (a) an evolutionary perspective in the analysis of morphology, including the roles of function, structure, and phylogenetic history, and (b) the structural adaptations of bone as a load-bearing tissue, including the physiologic mechanisms of osteogenesis and osteolysis. Both the locomotor and the craniodental systems are regions of current interest and investigation within the program. Several faculty in the Department specialize in the application of experimental and quantitative techniques to the analysis of the relationship between form and function. Studies of skeletal adaptations are also facilitated by collaboration with the Musculoskeletal Research Laboratory of the Department of Orthopaedics. Questions of systematics are approached at many different levels, ranging from alpha taxonomy to higher-order relationships utilizing such techniques as phylogenetic systematics.

Students in the program have the opportunity to master a variety of research methods and analytical strategies: behavioral ecology, biogeography, cineradiography, electromyography, finite element analysis, kinematics and kinetics, in vivo bone strain measurement, phylogenetic systematics, principles of paleontological fieldwork, quantitative morphology including scaling (allometry) and multivariate morphometrics, and scanning electron microscopy and tandem-scanning, reflected-light microscopy.

Facilities

The Department has exceptionally well-equipped research facilities. These include a primate colony and the apparatus necessary for telemetered electromyography; cineradiographic and cineradiographic motion analysis equipment; force-plates; scanning and transmission electron microscopes; tandem-scanning, reflected-light microscopes; three-dimensional reflex microscopes; and two-dimensional and three-dimensional sonic digitizers. For students with a focus on paleontology, the Department has a recently constructed Vertebrate Fossil Preparation laboratory with contemporary equipment for preparation, molding, and casting original fossil material. The Department also has original fossil collections, extensive cast collections, and several ongoing paleontological field projects in Africa, China, Madagascar, and the western interior of North America. Finally, the program offers extensive microcomputing and excellent mainframe computing facilities.

Admission

In addition to the minimum Graduate School requirements, the following are required:

A. A bachelor’s degree with the following minimal preparation: mathematics through one year of calculus; chemistry, including organic chemistry; general physics; and one year of biology with laboratory;

B. A minimum grade point average of 3.0 in all undergraduate coursework and 3.25 in science courses;

C. Letters from three previous instructors;

D. Results of the Graduate Record Examination (GRE) General Test and TOEFL for international students;

E. Acceptance by the Department of Anatomical Sciences and by the Graduate School.

In special cases, students not meeting requirements A through D may be admitted on a provisional basis. These students must act to remedy deficiencies within the first year, following the requirements of the individual graduate studies.

Faculty

Distinguished Professor
Fleagle, John G., Ph.D., 1976, Harvard University: Evolutionary biology of higher primates; vertebrate paleontology; behavioral and experimental analysis of comparative musculoskeletal anatomy; skeletal growth and development.

Distinguished Service Professor
Krause, David W., Ph.D., 1982, University of Michigan: Vertebrate paleontology; mammalian evolution; functional morphology of masticatory and locomotor systems.

Distinguished Teaching Professor
Stern, Jack T., Jr., Ph.D., 1969, University of Chicago: Functional gross morphology; relationship between primate locomotor behavior and structure; human muscle function in relation to athletic activity and orthopaedics; radiotelemetered electromyography.

Professors
Brink, Peter R., Ph.D., 1976, University of Illinois: Physiology and biophysics of junctional and excitable membranes.
Demes, A. Brigitte, Ph.D., 1982, University of Bochum, Federal Republic of Germany: Biomechanics; functional morphology; scaling effects on locomotion.
Grine, Frederic E., Jr., Ph.D., 1984, University of Witwatersrand, South Africa: Hominid evolution; functional morphology of the masticatory system; vertebrate paleontology; dental structure and comparative odontology.
Doran, Diane M., Associate Professors
- gross anatomy.
- of primates; evolution of apes and humans;
- Chicago: Functional morphology and behavior

Susman, Randall L., Ph.D., 1976, University of
- England: Structural adaptation in

O’Leary, Maureen A.,
- relationship of positional behavior and morphology.

Martin, Lawrence B.,
- human and primate evolution; telemetered
- and nonhuman primate locomotor systems;
- Wisconsin: Functional morphology of human
- primate paleontology and systematics.

Larson, Susan G., Ph.D., 1982, University of
- comparative primate anatomy; biomechanics;
- University of Michigan: Paleoanthropology;
- placental mammals, biogeography.

Jungers, William L., Chair, Ph.D., 1976,
- University of Michigan: Paleoanthropology;
- comparative primate anatomy; biomechanics;
- primate paleontology and systematics.

Larson, Susan G., Ph.D., 1982, University of Wisconsin:
- Functional morphology of human
- and nonhuman primate locomotor systems;
- human and primate evolution; telemetered
electromyography.

Martin, Lawrence B., Dean of the Graduate School, Ph.D., 1983, University of London,
- England: Primate evolution; thickness,
- development, and microstructure of dental
- enamel; neogene vertebrate paleontology.

Rubin, Clinton T., Ph.D., 1982, Bristol
- University, England: Structural adaptation in
- bone; skeletal remodeling and morphology.

Susman, Randall L., Ph.D., 1976, University of Chicago: Functional morphology and behavior
- of primates; evolution of apes and humans;
- gross anatomy.

Associate Professors
- Doran, Diane M., Ph.D., 1989, Stony Brook
- University: Behavior and ecology of African apes;
- relationship of positional behavior and morphology.

O’Leary, Maureen A., Ph.D., 1997, Johns
- Hopkins University: Vertebrate paleontology;
- phylogenetic systematics; mammalian evolution.

Assistant Professors
- Kley, Nathan J., Ph.D., 2001, University of
- Massachusetts Amherst: Functional morphology
- and evolution of feeding and locomotor systems
- in vertebrates; phylogenetic origin,
- interrelationships, and early evolution of snakes.

Seiffert, Erik, Ph.D., 2003, Duke University:
- Primate systematics, evolutionary history of
- placental mammals, biogeography.

Adjunct Faculty
- Jouffroy, Francoise K., Ph.D., 1962, Université
de Paris: Comparative vertebrate anatomy;
- functional morphology of locomotion; histo-
- chemistry and immunohistochemistry of muscle.

Leakey, Meave G., Ph.D., 1968, University of
- North Wales: Human evolution, primate
- evolution, Africa.

Mittermeier, Russell, Ph.D., 1977, Harvard
- University: Ecology and behavior of primates;
- primate conservation.

Number of teaching, graduate, and research
- assistantships: Fall 2007: approximately 7
- 1) Joint appointment, Department of Anthropology
- 2) Joint appointment, Department of Physiology
- 3) Joint appointment, Department of Biomedical
- Engineering
- 4) Joint appointment, Department of Earth and
- Space Sciences

Degree Requirements

M.S. Degree Requirements
- Graduate Studies in Anatomical Sciences
does not accept students whose goal is a
- master's degree. In exceptional
- instances, a student already in the
- program may be awarded an M.S. degree
- upon completing an approved course of
- study, including a minimum of 30 gradu-
- ate credit hours, and either passing a
- comprehensive examination, or submit-
- ting and defending a master's thesis.

Requirements for the Ph.D. Degree
- In addition to the minimum requirements
- of the Graduate School, the following
- are required:

A. Formal Course Requirements
- The following courses are required for
- all students in the program:
- 1. Human Gross Anatomy and
- Embryology
- 2. An approved course in Statistics

B. Preliminary Examination
- All students are required to take
- an oral preliminary examination upon
- completion of formal courses, normally at
- the beginning of their fourth semester.
- All students will be examined in human
- gross anatomy and embryology. The
- third subject will depend on the
- student’s area of specialization, such as
- musculoskeletal biology, neuroanatomy,
- or vertebrate evolution.

C. Advancement to Candidacy
- The faculty will recommend a student
- to the Graduate School for advancement
- to candidacy upon satisfactory completion
- of all required coursework and the
- preliminary examination. The student
- then becomes a formal candidate
- for the Ph.D.

D. Dissertation Proposal Examination
- Following advancement to candidacy,
- the student selects a dissertation advisor
- and committee consisting of at least two
- additional members of the Department
- of Anatomical Sciences and one person
- from outside the Department. In consul-
- tation with this committee, the student
- prepares a dissertation proposal.
- The dissertation proposal examination
- consists of an oral presentation of this
- proposal to the Department as a whole,
- followed by an oral defense before the
- dissertation committee. This examination
- should occur no later than 12 months
- after passing the oral preliminary
- examination.

E. Ph.D. Dissertation
- The student, under the supervision of the
- dissertation committee, performs
- the research leading to the preparation
- of a written dissertation. The dissertation
- must contain the results of original
- and significant investigation.

F. Dissertation Defense
- Following completion of the disserta-
- tion, the student presents his or her
- findings in a formal public oral defense.
- The defense is conducted by the disserta-
- tion committee, but is not chaired
- by the student’s advisor. Following the
- presentation of results, the student
- is questioned by members of the committee
- and by other members of the audience.

G. Teaching Requirement
- Every student is required to teach
- medical human gross anatomy (HBA
- 531) at least once before graduation. In
- addition, students receiving a teaching
- assistantship are required to teach.

H. Residence Requirement
- The University requires at least two
- consecutive semesters of full-time gradu-
- ate study. Generally, the demands of
- the course of study necessitate a longer
- period of residence. However, pursuit
- of a degree on a part-time basis will be
- considered under special circumstances.

Courses

HBA 521 Gross Anatomy of Head, Neck,
- and Trunk
- Tutorial laboratories with emphasis on dis-
- sections of the human head, neck, and trunk.
- Prerequisites: Permission of instructor
- Fall modules, 8 credits, ABCF grading
HBA 531 The Body
A lecture and laboratory with emphasis on dissection of the entire human body. Topics include functional and topographic anatomy, embryology, clinical correlations, and an introduction to radiology.
Prerequisite: Permission of instructor
Fall, 8 credits, S/F grading

HBA 540 Human Anatomy for Physical Therapists
Lecture followed by laboratory dissection of the human body. Regional approach to the gross anatomy of the human body for physical therapy graduate students (DPT). The course is presented in three modules. Module one covers the back, thorax, abdomen, pelvis, and perineum. Lectures will cover the regional anatomy of the above as well as conceptual information about the peripheral nervous system, the heart, and respiratory system. Module two covers the brain, head, and neck. Lecture will address the anatomy and organization of the central nervous system, the cranial nerves, introduction to the anatomy of the special senses, and mastication. Module three will offer an expanded view of the functional anatomy of the limbs and musculoskeletal system. Lectures will address the functional anatomy of the hand and the foot as well as posture and locomotion. In module three clinical faculty will address the latest developments in radiology and skeletal imaging, and the clinical anatomy of the back, shoulder, elbow, hand, hip, knee, and foot.
6 credits, ABCF grading

HBA 541 Evolutionary Anatomy
A lecture and laboratory with emphasis on dissection of the entire human body. Includes functional and comparative anatomy with special emphasis on the musculoskeletal morphology of humans and higher primates. This course is offered as both DPA 541 and HBA 541.
Prerequisite: Permission of instructor
Fall, 8 credits, ABCF grading

HBA 550 Vertebrate Evolution
Survey of the fossil record of vertebrate evolution. The course emphasizes the origin, phylogeny, comparative and functional morphology, biogeography, and paleontology of vertebrate animals. Laboratory included. The lectures and laboratories will utilize an extensive collection of comparative anatomical material, fossil casts, and slides.
Prerequisite: Previous course in human or vertebrate anatomy and permission of instructor
Spring, alternate years, 4 credits, ABCF grading

HBA 561 Human Gross Anatomy
A lecture and laboratory course that includes dissections of the entire human body. The course is organized in three modules: (1) thorax and abdomen, (2) head and neck, including neuroanatomy, and (3) limbs. It covers regional and conceptual information on the gross anatomy of all organ systems in the human body.
Prerequisite: Permission of instructor for students not enrolled in Stony Brook's Occupational Therapy, Physician Assistant, or Respiratory Therapy programs
Summer, every year, 5 credits, ABCF grading
May be repeated once for credit

HBA 563 Aspects of Animal Mechanics
An introduction to biomechanics. Covers freebody mechanics and kinetics as applied to vertebrate locomotion. Considers the structural and physiology of muscle as it relates to adaptations of the musculoskeletal system. This course is offered as both HBA 563 and DPA 563.
Prerequisite: Introductory physics and biology or permission of instructor
Spring, odd years, 2 credits, ABCF grading

HBA 564 Primate Evolution
The taxonomic relationships and evolutionary history of primates as documented by their fossil record and structural and chemical evidence. Emphasis on primates prior to the origin of the human lineage. This course is offered as both HBA 564 and DPA 564.
Prerequisite: Introductory physics and biology or permission of instructor
Spring, even years, 4 credits, ABCF grading

HBA 565 Human Evolution
A survey of the fossil record of hominid evolution through the Pliocene and Pleistocene with emphasis on the morphological structure and function of locomotor, masticatory, and locomotor neural systems. Includes utilization of comparative anatomical material and extensive cast and slide collections. This course is offered as ANT 565, DPA 565, and HBA 565.
Fall, even years, 5 credits, ABCF grading

HBA 566 Studies in Functional Morphology
Introduction to the theory and methods of functional morphology. Various methods of analysis and the application of experimental techniques such as electromyography or bone strain analysis are discussed as they pertain to the understanding of the interaction between form and function. Special emphasis is placed on the analysis of human and nonhuman primate morphology, and the application of this analysis to interpretation of the fossil evidence for human and nonhuman primate evolution. This course is offered as both HBA 566 and DPA 566.
Prerequisite: Permission of instructor
Summer, even years, 2 credits, ABCF grading

HBA 582 Comparative Anatomy of Primates
The comparative anatomy of living primates. Laboratory dissection with emphasis on relating structural diversity to behavior and biomechanics. This course is offered as both HBA 582 and DPA 582.
Prerequisite: HBA 364 and previous course in human or vertebrate anatomy and permission of instructor

HBA 590 Projects in Anatomical Sciences
Individual laboratory projects closely supervised by faculty members to be carried out in staff research laboratories.
Prerequisite: Permission of instructor
Fall and spring, 1-6 credits, S/U grading
May be repeated up to three times for credit

HBA 656 Cell Biology
Introduction to the structural and functional organization of cells and tissues and to the way structure relates to function. Particular emphasis is placed on nuclear and chromosomal structure, signal transduction, protein translocation, the cytoskeleton, and the extracellular matrix. The interaction of cellular structures and components and their regulation is stressed as is the organization and interaction of cells in tissues. The course is comparative and includes examples of cells and tissues from vertebrates, invertebrates, plants, and prokaryotic systems.
Prerequisite: Matriculation in graduate program or permission of instructor
Summer, 4 credits, ABCF grading

HBA 690 Graduate Seminar
Seminars by graduate students on current literature in the areas of the anatomical sciences.
Prerequisite: Permission of instructor
Fall and spring, 1-2 credits, S/U grading
May be repeated three times for credit

HBA 692 Advanced Topics in Anatomical Sciences Literature
Tutorial readings in anatomical sciences with periodic conferences, reports, and examinations arranged with the instructor.
Prerequisite: Permission of instructor
Fall and spring, 1-2 credits, S/U grading
May be repeated for credit

HBA 695 Practicum in Teaching
Practical instruction in the teaching of anatomical sciences carried out under faculty supervision.
Prerequisite: Permission of instructor
1-4 credits, S/U grading
May be repeated for credit

HBA 699 Dissertation Research on Campus
Original investigation under supervision of thesis advisor and committee.
Prerequisite: Advancement to candidacy (G5); permission of thesis advisor; major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

HBA 700 Dissertation Research off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students

HBA 699 Dissertation Research on Campus
must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

HBA 701 Dissertation Research off Campus—International

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan they must file a waiver by the second week of classes; the charge will only be removed if other plan is deemed comparable); all international students must receive clearance from an International Advisor.

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

HBA 800 Full-Time Summer Research

Full-time laboratory research projects supervised by staff members.

Prerequisites: Permission of instructor and full-time graduate student status

0 credit; S/U grading

May be repeated
Interdepartmental Doctoral Program in Anthropological Sciences

The Interdepartmental Doctoral Program in Anthropological Sciences (IDPAS), in the College of Arts and Sciences, is an interdisciplinary and interdepartmental program leading to the Ph.D. degree that draws upon faculty and resources from the Departments of Anatomical Sciences, Anthropology, Asian Studies, Geosciences, and History. The goal of the IDPAS is to train students for careers in research and teaching in archaeology, cultural anthropology, and physical anthropology. Students in the Ph.D. program who have already been advanced to candidacy may, upon petition, receive a master's degree without submitting a master's thesis.

Facilities and Research Opportunities

Extensive laboratory space as well as desk space is available for all graduate students. The archaeology and physical anthropology labs housed in the Department of Anthropology provide facilities for the analysis of artifact collections—especially stone tools and faunal remains, application of remote sensing and Geographic Information Systems (GIS), analysis of primate or human remains, and advanced electron microscopy (EM). Housed in the Department are archaeological collections from Africa, Long Island, the Near East, and South America. A fully equipped preparation lab provides opportunities for state-of-the-art mineralized tissue research.

Outside of the Department of Anthropology, interested students have access to excellent libraries and collections and to campus computing services.

Fieldwork opportunities are available in archaeology, paleontology, and primatology. There are active sites for primate behavior research in Central Africa, Madagascar, and Thailand. The new Turkana Basin Institute provides IDPAS students with access to field opportunities for paleontology and archaeology in northern Kenya. Additionally, the archaeology faculty have active field sites in Eritrea, Kenya, Long Island, Sudan, and Turkey. Paleontological field research is ongoing in Argentina, Ethiopia, India, Kenya, Madagascar, Mali, North America, and South Africa. Ethnographic work is ongoing in China, East Timor, Indonesia, Madagascar, Mexico, Spain, and Venezuela. Students may be invited to participate in these projects.

The Institute for Long Island Archaeology conducts cultural resource management studies throughout the New York metropolitan area and provides support for graduate students interested in local archaeology. The Institute has a research library with extensive holdings in local archaeology and history, and its large collections of prehistoric and historic materials are available for student research projects.

Admission to the Ph.D. Program

Application procedures and requirements determined by Stony Brook University, as set forth in this bulletin, must be followed. Applications will be reviewed by the admissions committee of the IDPAS, and successful applicants will be considered for financial assistance through the award of a teaching assistantship (TA) by the TA committee of the IDPAS. All rules, regulations, and requirements of the Graduate School, Stony Brook University, must be satisfied in addition to those described in this section. Interested students should request information and application forms as early as possible, especially if they plan to apply for financial aid.

In addition to the admission requirements of the Graduate School, the IDPAS requires:

A. A bachelor's degree from an accredited college and a minimum grade point average of 3.0 (B) in all undergraduate coursework and 3.25 in the major field of concentration;
B. Results of the Graduate Record Examination (GRE) General Test;
C. Test of English as a Foreign Language for international students—minimum score: 550 (paper exam) or 220 (computer-based exam);
D. Acceptance by the IDPAS and the Graduate School.

Faculty

Distinguished Professors

Distinguished Professor: Fleagle, John, Ph.D., 1976, Harvard University: Primate and human evolution; primate behavior; functional morphology; growth and development.
Distinguished Service Professor: Krause, David W., Ph.D., 1982, University of Michigan: Evolution, form, and function of mammalian dentition; evolutionary history and paleobiology of early mammals, particularly primates.
Distinguished Teaching Professor: Stern, Jack T., Jr., Ph.D., 1969, University of Chicago: Functional morphology of primates; biomechanics of muscle.

Professors

Arens, W., Ph.D., 1970, University of Virginia: Social anthropology; conservation; Africa and the Mediterranean.
Chittick, William C., Ph.D., 1974, Tehran University, Iran: Comparative religious systems; Islam; Middle East.
Doran-Sheehy, Diane M., Ph.D., 1989, University at Stony Brook: Primate behavior and ecology, socioecology of African apes.
Gilmore, David, Ph.D., 1975, University of Pennsylvania: Complex societies, stratification, and peasant culture; Europe; Mediterranean.
Grine, Frederick E., Ph.D., 1984, University of the Witwatersrand, South Africa: Hominid evolution; functional morphology of the masticatory apparatus; diet reconstruction; dental anthropology; mineralized tissues.
Hicks, David*, Professor, D.Phil., 1972, Oxford University, England: Religion; kinship; Southeast Asia.
Krause, David W., Ph.D., 1982, University of Michigan: Evolution, form, and function of mammalian dentition; evolutionary history and paleobiology of early mammals, particularly primates.
Larson, Susan, Ph.D., 1982, University of Wisconsin, Madison: Functional morphology; primates; biomechanics.
Martin, Lawrence, Dean of the Graduate School, Ph.D., 1983, University of London, England: Hominoid evolution; enamel thickness; enamel microstructure and development.
Stone, Elizabeth C., Ph.D., 1979, University of Chicago: Old World archaeology; state formation; ancient economy and society; Near East, remote sensing and GIS.
Wright, Patricia C., Ph.D., 1985, City University of New York: Primate behavior and ecology; rainforest conservation; Madagascar.
*Recipient of the State University Chancellor's Award for Excellence in Research and Creative Endeavor

Research Professor
Leakey, Meave G., PhD., 1968, University of North Wales: Human evolution, primate evolution, Africa.

Associate Professors
Bernstein, David J., Ph.D., 1988, State University of New York at Binghamton: New World archaeology; paleoecology; coastal societies; subsistence studies.
Koenig, Andreas, Ph.D., 1992, Georg-August University, Goettingen, Germany: Primate ecology and behavior; evolution of social behavior; Asia.
Kramer, Karen, Ph.D., 1998, University of New Mexico: Life history theory, reproductive ecology, demography, household economics, evolution of human juvenility, cooperative breeding, Maya, Mesoamerica, Madagascar agriculturalists.
Ruf, Gregory A., Ph.D., 1994, Columbia University: History and anthropology; political and economic anthropology; theory and methodology; rural industrialization; transitions from socialism; East Asia, China, Overseas Chinese, Japan.
Shea, John J., Ph.D., 1991, Harvard University: Old World paleolithic archaeology; lithic analysis; Near East; Europe; Africa.

Research Associate Professor
Borries, Carola, Ph.D., 1989, Georg-August University, Goettingen, Germany: Primate ecology and behavior; sociology; Asia.

Assistant Professors
Rasbury, Troy, E., Ph.D., 1998, University at Stony Brook: Sedimentary geochemistry; chronostratigraphy; geochronology.
Rossie, James, Ph.D., 2003, Yale University: Primate evolution, fossil catarhines, East Africa.
Twiss, Katheryn C., Ph.D., 2003, University of California, Berkeley: Old World archaeology; zooarchaeology; origins of agriculture; food; Near East.

Degree Requirements
Requirements for the Ph.D. Degree in Anthropology
For a full description of IDPAS requirements and deadlines, please request “IDPAS Rules, Regulations, Requirements, and Procedures” from the graduate secretary.

A. Course Requirements
Completion of a minimum of 48 graduate credits, maintaining a minimum 3.0 average in all graduate courses. Not more than four credits of SPD or equivalent coursework may be applied toward the satisfaction of IDPAS course requirements.

1. Physical Anthropology: Required courses are (a) DPA 564 Primate Evolution, (b) DPA 565 Human Evolution, (c) DPA 567 Primate Behavior and Ecology. Other required courses toward completion of study in the Evolutionary Morphology track include (a) BEE 551 Principles of Evolution, (BEE 561 Macroevolution may be substituted for BEE 551 with the permission of the faculty in the student’s track), (b) BEE 552 Biometry (an equivalent statistics course, e.g., PSY 501 and PSY 502, may be substituted with permission of the physical anthropology faculty), and (c) DPA 541 Human Evolutionary Anatomy.

2. Archaeology Program: Required courses that form the basis of the qualifying examination are:
(a) ANT/DPA 515 Archaeological Theory, (b) a graduate-level Statistics course, and (c and d) two survey courses chosen from ANT/DPA 511 Paleolithic Archaeology, ANT/DPA 513 Origins of Agriculture, or ANT/DPA 512 Comparative Civilizations.

Additional requirements include (a) ANT/DPA 516 Research Design in Archaeology, (b) one laboratory methods course chosen from ANT/DPA 517 Primitive Technology, ANT/DPA 518 Lithic Technology, ANT/DPA 519 Zooarchaeology, ANT/DPA 526 Remote Sensing and GIS, or an additional laboratory course approved by committee, and (c) one area course chosen from ANT/DPA 560 Ancient Mesopotamia, ANT/DPA 562 Long Island Archaeology, ANT/DPA 564 African Stone Age, ANT/DPA 585 Prehistoric Peoples of the Americas, or ANT/DPA 650, 651, 652, 653 (with committee approval). Students must also take one elective course outside the archaeology subdiscipline (e.g., ANT/DPA 565 Human Evolution, ANT/DPA 566 Hunters and Gatherers, ANT/DPA 582 Human Demography, ARH 541 Topics in Ancient Art, GEO 521 Isotopes and Trace Element Geology). Students must have had one season of archaeological fieldwork (with committee approval) before advancing to candidacy.

3. Cultural Anthropology: Required courses that form the basis of the
qualifying examination are (a) DPA 501 Development of Anthropological Theory, (b) DPA 540 Readings in Ethnography and Ethnology, and (c) DPA 580 Principles of Social and Cultural Anthropology. Other courses required for completion of the cultural anthropology program include (a) DPA 620 Research Seminar in Topical Problems, (b) DPA 640 Research Seminar in Ethnography and Ethnology, and (c) three additional credits of DPA 540 Readings in Ethnography and Ethnology. Other courses that may be taken at the discretion of the student’s guidance committee include DPA 500 Seminar in European Ethnography, DPA 561 Peasant Societies and Cultures, and a statistics course.

B. Qualifying Exam

The qualifying examination must be taken after two or three semesters of study (depending upon subfield) and passed at an appropriate level. The qualifying examination is administered to each student by the examination committee of IDPAS. The examination varies by subfield. Students in Physical Anthropology are required to develop a publishable research paper, students in archaeology take an oral exam, while students in cultural anthropology take a written exam. The material covered in the qualifying examination comprises that covered in the courses specified above as well as that covered by the prescribed reading list for the selected field.

C. Language Requirement

The student must select the suitable language(s) necessary for the chosen field of specialization with the approval of the guidance committee. Language tests must be passed prior to advancement to candidacy. Language tests are administered by members of the IDPAS faculty, by special arrangements, or through standardized tests. Before recommending that a student be permitted to engage in fieldwork, the guidance committee may ask the student to demonstrate ability to speak the language required for fieldwork.

D. Preparation of Dissertation Research Proposal

The dissertation proposal is prepared under the direction of the dissertation guidance committee, which is composed of at least three IDPAS faculty members and an external member. The dissertation proposal will be defended orally at a seminar open to the academic community and to which all IDPAS faculty and students are invited at least two weeks in advance. Students should aim to complete and defend their dissertation proposal during their third year in the program. Upon successful defense of the proposal, the student may be advanced to candidacy. The M.A. may be awarded at this point. Dissertation research, writing, and examination are supervised by the dissertation guidance committee.

E. Teaching Requirement

In accordance with Graduate School regulations, every student must gain some teaching experience. This may involve the presentation of a number of lectures in a course offered by a member of an IDPAS faculty. Upon advancement to candidacy, a student may be assigned greater teaching responsibility in the form of an under-graduate course to be prepared and taught under the supervision of an IDPAS faculty member. This arrangement will be made in consultation with the student and with the approval of the TA committee and the student’s advisor. No student will be required to teach more than one course per year, and credit for teaching assignments will be given under the aegis of DPA 600.

F. Written Dissertation and Defense

The approval of a written thesis and its successful oral defense to the committee and the University community at large are required.

G. Time Limit

The candidate must satisfy all requirements for the Ph.D. degree within seven years after completing 24 credit hours of graduate courses at the Stony Brook University department or program in which the candidate is to receive his or her degree.

Courses

DPA 501 Development of Anthropological Theory
Survey of the development of anthropological theory from the 19th century to the present. This course is offered as both ANT 501 and DPA 501.

Spring, 4 credits, ABCF grading

DPA 502 Social Ecology
This course explores theoretical and methodological issues in the study of human social activity and its relationship to ecological systems and the environment. Readings include both classic studies as well as contemporary research, with particular emphasis placed on the various dimensions and scales of social organization and activity, and on the role of cultural, religious, and political institutions in shaping ecological relationship as well as economic behavior.

3 credits, ABCF grading

DPA 503 Social Organization
This course explores theoretical models and empirical observations of human social organization in a comparative perspective, including such topics as demography and behavioral ecology, kinship and marriage, reciprocal exchange, and political dimensions of resource mobilization in small-scale as well as complex societies. Organized around different layers of human sociality, the course examines social dependence among humans and nonhuman primates, evolutionary explanations for human mating strategies, cooperation in child-rearing, paradigms of descent and affinity, and the dynamics of hierarchy and alliance in egalitarian cultures as well as stratified states.

3 credits, ABCF grading

DPA 509 Seminar in European Ethnography
Investigation and discussion of selected topics and problems concerning European societies and cultures. The perspectives of culture history and current fieldwork are employed. This course is offered as both ANT 509 and DPA 509.

Fall, 3 credits, SU grading

May be repeated for credit

DPA 511 Paleolithic Archaeology
A survey of the archaeological record of foraging peoples in Africa, Europe, and Asia prior to the emergence of agriculture. The course emphasizes particular problems including the relationship between behavioral and biological change, different adaptive strategies in temperate and tropical zones, the origins of modern humans, and the emergence of complex hunter-gatherer societies. This course is offered as both ANT 511 and DPA 511.

Prerequisite: Any other archaeology course
Fall, 3 credits, ABCF grading

DPA 512 Comparative Civilizations
A comparative study of the processes of sociocultural evolution from the beginnings of sedentary life to the achievement of early civilization in the Near East, Egypt, the Indus Valley, China, Mesoamerica, and the Andean area. The seminar covers such topics as urbanization, demography, irrigation, craft specialization, militarism, and trade and exchange. This course is offered as both ANT 512 and DPA 512.

Prerequisite: Graduate standing or permission of instructor
Spring, 4 credits, ABCF grading

DPA 513 Origins of Agriculture
This course will trace the history of anthropological thought on the origins of agriculture and will assess the evidence from the Old and New Worlds for this economic revolution. The course will not only explore areas where early agriculture is evidenced, but will also contrast these areas with those
where agriculture was a later development. Emphasis will be on the environmental, technological, biological, social, and cultural processes associated with the “Neolithic Revolution.” This course is offered as both ANT 513 and DPA 513.

Fall, 4 credits, ABCF grading

DPA 515 Theory and Method in Archaeology

Theoretical and methodological approaches employed in archaeology. The goals of the course are to provide an historical perspective on the growth of theory and method in archaeology and to examine in detail some of the pertinent research topics being studied today. This course is offered as both ANT 515 and DPA 515.

Fall, 4 credits, ABCF grading

DPA 516 Research Design in Archaeology

An examination of the ways in which archaeologists develop successful research strategies for arriving at answers to key questions in the field. Students will analyze grant proposals that received funding from the major sources of funding for archaeology before developing research proposals of their own. The aim of the course is to provide the class with the skills needed to plan their future research and compete successfully for funding both for their thesis research and in their future careers.

Fall, alternate years, 4 credits, ABCF grading

DPA 517 Primitive Technology

An introduction to the technology of hunter-gatherers. The course examines how archaeologists use both ethnography and experimentation to shed light on prehistoric human technological adaptations. Techniques for making and using primitive tools are practiced in weekly laboratory sessions.

Fall, alternate years, 4 credits, ABCF grading

May be repeated for credit

DPA 518 Lithic Technology

A detailed overview of the methods archaeologists use to extract behavioral information from prehistoric stone tools. The course examines raw material economy, technological strategies, tool use, and discard behavior. Analytical methods are practiced through the computer-assisted analysis of stone tools from simulated archaeological sites.

Spring, alternate years, 4 credits, ABCF grading

DPA 519 Archaeozoology

An introduction to the study of animal bones from archaeological sites. Special emphasis is on identification of fragmented bone, identification of bone surface modification, calculation of indexes of abundance, and measurement and metrical analysis of mammalian bone. Computer analysis is stressed, and the class seeks to synthesize traditional archaeozoology and actualistic studies. This course is offered as both ANT 519 and DPA 519.

Fall, odd years, 4 credits, ABCF grading

DPA 520 Principles of Social and Cultural Anthropology

Concepts and principles of social and cultural anthropology; historical background, structure and function of social processes, transactions, culture, culture communication, continuity, and other change; topics and problems of contemporary interest. Some ethnographic monographs are discussed in terms of their relevance to the general concepts and principles treated in the seminar. This course is offered as both ANT 520 and DPA 520.

Fall, 4 credits, ABCF grading

DPA 526 The Use of Remote Sensing and GIS in Environmental Analysis

An introduction to the use of aerial and satellite imagery in environmental analysis and the manipulation of geographic data sets of all types using Geographic Information Systems. This course is designed to teach students in archaeology, physical anthropology, and related disciplines how satellite imagery combined with various maps can be manipulated using GIS software to perform powerful geographic analysis. Although students are eventually likely to use these tools in many different parts of the world, this course focuses on Long Island as a research area, and each student designs and completes a research project on a particular section of the area, focusing on the habitats of local wildlife, the locations of archaeological sites, coastal regimes, etc. This course presumes computer literacy and familiarity with database management. This course is offered as both ANT 526 and DPA 526 and coscheduled as HPH 658.

Spring, 3 credits, ABCF grading

DPA 527 Field Methods and Techniques in Archaeology

The course will be held during the summer only. It consists of field and laboratory work on an aspect of Long Island’s archaeological heritage. Students’ time is divided between surveying and excavation in the field and artifact analysis in the laboratory. Such techniques as map and air photo reading, survey, instruments, stratigraphy, conservation, typology construction, etc., are taught. Students are exposed to the full range of excavation, survey, and laboratory methods and techniques. This course is offered as both ANT 527 and DPA 527.

Prerequisite: Graduate standing or permission of instructor

Summer, even years, 3-9 credits, ABCF grading

DPA 540 Readings in Ethnography and Ethnology

A survey of the more important and better documented cultures and societies of selected world ethnographic areas, and the implications of data from these for current approaches and problems in ethnology. This course is offered as both ANT 540 and DPA 540.

Spring, 3 credits, ABCF grading

May be repeated for credit

DPA 541 Evolutionary Anatomy

A lecture and laboratory with emphasis on dissection of the entire human body. Includes functional and comparative anatomy with special emphasis on the musculoskeletal morphology of humans and higher primates. This course is offered as both DPA 541 and HBA 541.

Prerequisite: Permission of instructor

Fall, 8 credits, ABCF grading

DPA 550 Theory and Methodology in Primatology

Comprehensive overview of the theory and methodology used in the study of primate behavioral ecology. Includes ecological field methods, behavioral observations, behavioral techniques, nonparametric statistics as well as planning, presenting, and reviewing research. Offered as both ANT 550 and DPA 550.

Fall, even years, 3 credits, ABCF grading

DPA 559 Archaeology of Food

Explores the archaeological study of food and foodways. The emphasis is on the social aspects of food, particularly its roles in past power structures, social relationships, conceptions of identity, ritual practices, and gender roles. Also covers the theoretical and methodological approaches archaeologists use to study food in the past.

Fall, alternate years, 3 credits, ABCF grading

DPA 560 Ancient Mesopotamia

An examination of the cultural history of Mesopotamia based on the archaeological, textual, and art historical record. Focusing on the fourth through second millennia, this course investigates both the long-term developmental process of this civilization, and ways to understand its settlement systems, urban structure, social and political organization, economic structure, and the role played by religion.

Fall, even years, 4 credits, ABCF grading

DPA 561 Peasant Societies and Cultures

The concept of peasantry is examined from political, religious, and social class viewpoints as well as from the more traditional economic view. These agricultural peoples, who are essentially preliterate and preindustrial, are described and analyzed as they exist in relation to the national societies of which they form a part. This course is offered as both ANT 561 and DPA 561.

Spring, 3 credits, ABCF grading

DPA 562 Long Island Archaeology

Life on Long Island and the surrounding area from its first settlement by Native Americans 12,000 years ago until the end of the 19th century. Trends and changes in human behavior are studied in the context of environmental and cultural processes affecting all of northeastern North America.

Spring, 3 credits, ABCF grading

DPA 563 Aspects of Animal Mechanics

An introduction to biomechanics. Covers freebody mechanics and kinetics as applied to vertebrate locomotion. Considers the structure and physiology of muscle as it relates to adaptations of the musculoskeletal system. This course is offered as both HBA 563 and DPA 563.

Prerequisites: Introductory physics and biology or permission of instructor

Spring, odd years, 2 credits, ABCF grading
DPA 564 Primate Evolution
The taxonomic relationships and evolutionary history of primates as documented by their fossil record and structural and chemical evidence. Emphasis on primates prior to the origin of the human lineage. This course is offered as both ANT 564, DPA 564, and HBA 564. Spring, even years, 4 credits, ABCF grading

DPA 565 Human Evolution
A survey of the fossil record of hominid evolution through the Pliocene and Pleistocene with emphasis on the morphological structure and function of locomotor, masticatory, and neutral systems. Includes utilization of comparative anatomical material and extensive cast and slide collections. This course is offered as ANT 565, DPA 565, and HBA 565. Fall, even years, 4 credits, ABCF grading

DPA 566 Studies in Functional Morphology
Introduction to the theory and methods of functional morphology. Various methods of analysis and the application of experimental techniques such as electromyography or bone strain analysis are discussed as they pertain to the understanding of the interaction between form and function. Special emphasis is placed on the analysis of human and nonhuman primate morphology, and the application of this analysis to interpretation of the fossil evidence for human and nonhuman primate evolution. This course is offered as both HBA 566 and DPA 566. Prerequisite: Permission of instructor Spring, even years, 2 credits, ABCF grading

DPA 567 Primate Behavior and Ecology
A comparative approach to the behavior and ecology of living lemurs, monkeys, and apes. Emphasis is placed on sociobiological theory; life history strategies; morphological adaptations; comparisons of primate communities in Asia, Africa, Madagascar, and South America; and primate conservation. This course is offered as both ANT 567 and DPA 567. Fall, odd years, 4 credits, ABCF grading

DPA 568 Hunters and Gatherers
An examination of the relationship between ecology and adaptation to explore the cross-cultural diversity of hunter/gatherers. The first part of the course looks at a number of key theoretical issues and debates that surround the study of hunter/gatherers. Once this foundation is laid, students learn about modern and historic hunter/gatherers from all the major geographic regions of the world. This overview draws on studies from behavioral ecology, ethnography, and cultural anthropology. The focus of the course is both to explore hunter/gatherer variation in relationship to their environment, and to give the students an appreciation of the ways in which hunter/gatherers have been historically documented. The course is designed to be applicable to archaeologists, anthropologists, and those in other disciplines who make inferences about past ways of life. Spring, 3-4 credits, ABCF grading

DPA 582 Comparative Anatomy of Primates
The comparative anatomy of living primates. Laboratory dissection with emphasis on relating structural diversity to behavior and biomechanics. This course is offered as both HBA 582 and DPA 582. Prerequisites: HBA 364 and previous course in human or vertebrate anatomy and permission of instructor Spring, alternate years, 4 credits, ABCF grading

DPA 583 Human Demography
The study of human demography has had a long-standing focus in anthropology, archaeology, economics and sociology for the simple reason that the distribution and density of people fundamentally shapes many other aspects of the human condition. Human Demography gives students an overview of population dynamics both as they change through time and differ across cultures. The course starts with outlining the history of population studies. Following this introduction, the three major components of population change—fertility, mortality, and migration—are explored in depth. We then survey the seminal transitions in human demographic history from hunting and gathering through modern postindustrial times. Drawing from the ethnographic, human ecology, demographic, and archaeological literature, students read and discuss human demography from a variety of perspectives. The course includes some simple computations and a lab. Spring, 3-4 credits, ABCF grading

DPA 585 Prehistoric Peoples of the Americas
Life on Long Island and the surrounding area from its first settlement by Native Americans 12,000 years ago until the end of the 19th century. Trends and changes in human behavior are studied in the context of environmental and cultural processes affecting all of northeastern North America. Summer, alternate years, 3 credits, ABCF grading

DPA 600 Practicum in Teaching
1-12 credits, S/U grading May be repeated once for credit

DPA 602 Research Seminar in Anthropological Theory
This course is offered as both ANT 602 and DPA 602. Fall and spring, 0-12 credits, S/U grading May be repeated for credit

DPA 610 Individual Research
Research supervised by faculty. Students must have permission of instructor and enroll in appropriate section. This course is offered as both ANT 610 and DPA 610. Fall and spring, 1-12 credits, S/U grading May be repeated for credit

DPA 620 Research Seminar in Topical Problems
This course is offered as both ANT 620 and DPA 620. Fall and spring, 3 credits, S/U grading May be repeated for credit

DPA 630 Research Seminar in Physical Anthropology
This course is offered as both ANT 630 and DPA 630. Fall and spring, 3 credits, S/U grading May be repeated for credit

DPA 640 Research Seminar in Ethnography and Ethnology
This course is offered as both ANT 640 and DPA 640. Fall and spring, 1-3 credits, S/U grading May be repeated for credit

DPA 650 Research Seminar in Archaeology
4 credits, S/U grading

DPA 680 Special Seminar
Selected topics in critical and social anthropology. Topics reflect current interests of faculty and graduate students. This course is offered as both ANT 680 and DPA 680. Fall and spring, 1-3 credits, S/U grading

DPA 699 Dissertation Research Off Campus
Prerequisite: Must be advanced to candidacy (GS); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

DPA 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (GS); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

DPA 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (GS); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan they must file a waiver by the second week of classes; the charge will only be removed if other plan is deemed comparable); all international students must receive clearance from an International Advisor Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

DPA 800 Summer Research
This course is offered as both ANT 800 and DPA 800. 0 credit; S/U grading May be repeated
Anthropology (ANT)

Chair: Diane M. Doran-Sheehy, Ward Melville Social and Behavioral Sciences Building N-533, (631) 632-9445
Graduate Program Coordinator: Jean Moreau, Ward Melville Social and Behavioral Sciences Building S-501, (631) 632-7606

Degree awarded: M.A. in Anthropology

The Department of Anthropology, within the College of Arts and Sciences, offers a graduate program leading to the M.A. degree. In the M.A. program candidates may study toward a master's in anthropology with a concentration in archaeology, physical anthropology, or sociocultural anthropology. Admission and degree requirements are the same but the course of study differs.

Facilities and Research Opportunities

Research and teaching facilities are maintained for the study of dental structure and microwear, human and primate evolution, lithic technology, paleoethnobotany, remote sensing and geographic information systems (GIS), and zooarchaeology. The archaeology and physical anthropology laboratories contain state-of-the-art scanning and digitizing equipment and a variety of microscopes. The GIS Laboratory contains eight networked Pentium computers configured to run ArcGIS 9 software.

Teaching collections include extensive primate and hominin fossil cast collections as well as modern human skeletons; Near Eastern ceramics; stone tools from Africa, Europe, the Middle East and North America; and faunal assemblages from North America and Southwest Asia. In addition, the Institute for Long Island Archaeology (ILIA) maintains a large collection of library and archival materials relating to the history and archaeology of coastal New York.

For students interested in anthropological research in the New York/Long Island area, there is a research room containing an expanding collection of documentary material. The Institute for Long Island Archaeology performs cultural resource surveys and environmental impact statements for the area and provides equipment for survey, excavation, and data analysis.

Students may be invited to participate in ongoing archaeological, ethnographic, paleontological, or primatological research conducted by the faculty in Africa, East and Southeast Asia, Europe and the Mediterranean, Madagascar, North America, and Southwest Asia (the Middle East).

M.A. in Anthropology

The M.A. program in Anthropology is designed for students who wish to pursue anthropological training for careers in education or for those whose undergraduate training did not prepare them for doctoral-level work in Anthropology. Full-time or part-time attendance is possible. Students are expected to choose their subfield (archaeology, physical anthropology, or social/cultural anthropology) and contact the person with whom they wish to study prior to application. However, admissions decisions are made by the admissions committee, not by individual faculty members. By the time they have completed 15 credits of graduate work, students are expected to request a guidance committee consisting of three faculty members, at least two of whom must be members of the Department of Anthropology, who will guide them through the preparation of a thesis proposal and the completion of the M.A. thesis.

Admission

In addition to the admission requirements of the Graduate School, the Department of Anthropology requires:

A. A bachelor's degree from an accredited college with a minimum grade point average of 3.0 (B) in all undergraduate coursework and 3.25 (3.0=B) in the major field of concentration;

B. Results of the Graduate Record Examination (GRE) General Test;

C. Test of English as a Foreign Language for international students with a minimum score of 550 (paper exam) or 220 (computer-based exam);

D. Acceptance by the Department of Anthropology and the Graduate School.

Faculty

Professors

Arens, William, Dean of International Academic Programs, Ph.D., 1970, University of Virginia: Social anthropology; conservation; Africa and the Mediterranean.

Doran-Sheehy, Diane M., Chair, Ph.D., 1989, Stony Brook University: Primate behavior and ecology; socioecology of African apes.

Gilmore, David, Ph.D., 1975, University of Pennsylvania: Complex societies; stratification; peasant culture; Europe; Mediterranean.

Grine, Frederick E., Ph.D., 1984, University of Witwatersrand, South Africa: Hominid evolution; functional morphology of the masticatory system; vertebrate paleontology; dental structure and comparative odontology.

Hicks, David, Ph.D., 1971, London; D.Phil., 1972, Oxford University: Oral literature, ritual and belief, mythology, kinship, politics, Southeast Asia, East Timor.

Stone, Elizabeth C., Ph.D., 1979, University of Chicago: Old World archaeology; state formation; ancient economy and society; Near East; remote sensing and GIS.

Wright, Patricia C., Ph.D., 1985, City University of New York: Primate behavior and ecology; rain forest conservation; Madagascar.

Research Professor

Leakey, Meave E., Ph.D., 1968, University of North Wales: Human evolution; primate evolution; Africa.

Associate Professors

Bernstein, David J., Ph.D., 1988, University at Binghamton: New World archaeology; paleoecology, coastal societies; subsistence studies; cultural resource management.

Koenig, Andreas, Ph.D., 1992, University of Göttingen, Germany: Primate behavioral ecology; social evolution; community ecology; Asia.

Shea, John J., Ph.D., 1991, Harvard University: Old World Paleolithic archaeology; lithic analysis; Near East; Europe; Africa.
Research Associate Professor
Bonies, Carola, Ph.D., 1989, University of Göttingen, Germany: Primate reproductive strategies; behavioral ecology; social structure; Asia.

Assistant Professors
Hildebrand, Elisabeth, Ph.D., 2003, Washington University (St. Louis): Archaeology; early farming; Africa; paleoethnobotany.
Rosse, James, Ph.D., 2003, Yale University: Primate evolution; fossil carnivores; East Africa.
Twiss, Katheryn C., Ph.D., 2003, University of California, Berkeley: Old World archaeology; zooarchaeology; transition to agriculture; food; Near East.

Research Assistant Professor
Leaky, Louise, Ph.D., 2001, University College London: Mammalian evolution, climate change, Africa.

Degree Requirements
Requirements for the M.A. in Anthropology with Concentrations in Archaeology, Physical Anthropology, and Social/Cultural Anthropology
In addition to the requirements of the Graduate School, the following are required:

A. Completion of a minimum of 30 graduate credits, maintaining a 3.0 average;

B. A course of study planned and carried out with the approval of the student’s M.A. guidance committee (this may require examinations, library research, laboratory study, and/or fieldwork as the basis of the M.A. thesis, which must be accepted by a committee appointed by the program—no final defense is required);

C. Minimum residence of one year.

The requirements for the three tracks in Anthropology differ, but students may take courses in the other subdisciplines as electives. The requirements are as follows:

Archaeology Credits
1. ANT 515 Theory and Method in Archaeology 4
2. ANT 527 Field Methods and Techniques in Archaeology* 6
3. Graduate Statistics Course

(Approved by Committee)
4. ANT 599 M.A. Thesis Research 6
5. Electives chosen from among ANT 510, 511, 512, 513, 514, 516, 517, 518, 519, 526, and other courses offered in Anthropology, Ecology and Evolution, History, Marine Sciences, or other programs chosen with the approval of the student’s guidance committee. 10

Total 30

* In some instances equivalent courses may be accepted if they have been previously approved by the student’s guidance committee.

Physical Anthropology Credits
1. ANT 564 Primate Evolution 4
2. ANT 565 Human Evolution 4
3. ANT 567 Primate Behavior and Ecology 4
4. BEE 552 Biometry 4
5. ANT 599 M.A. Thesis Research 6
6. Electives chosen from among other courses in Anthropology, Physical Anthropology, and Social/Cultural Anthropology, or other programs chosen with approval of the student’s guidance committee. 8

Total 30

Social/Cultural Anthropology Credits
1. ANT 520 Principles of Social and Cultural Anthropology 4
2. ANT 540 Readings in Ethnography and Ethnology 3
3. ANT 599 M.A. Thesis Research 6
4. Electives chosen from among ANT 500, 501, 509, 561, 602, 620, 640, and other courses offered in Anthropology, Psychology, Sociology, or other programs chosen with the approval of the student’s guidance committee. 17

Total 30

Courses
ANT 500 Social and Cultural Anthropology
Study of the forms of social organizations: family, kinship, economic, political, and religious, as found among simple and complex societies. A basic graduate-level course designed for students whose previous background is in other fields.
Fall, 3 credits, ABCF grading
May be repeated for credit

ANT 501 Development of Anthropological Theory
Survey of the development of anthropological theory from the 19th century to the present. This course is offered as both ANT 501 and DPA 501.
Spring, 4 credits, ABCF grading

ANT 502 Social Ecology
This course explores theoretical and methodological issues in the study of human social activity and its relationship to ecological systems and the environment. Readings include both classic studies as well as contemporary research, with particular emphasis placed on the various dimensions and scales of social organization and activity, and on the role of cultural, religious, and political institutions in shaping ecological relationships as well as economic behavior.
3 credits, ABCF grading

ANT 503 Social Organization
This course explores theoretical models and empirical observations of human social organization in a comparative perspective, including such topics as demography and behavioral ecology, kinship and marriage, reciprocal exchange, and political dimensions of resource mobilization in small-scale as well as complex societies. Organized around different layers of human sociality, the course examines social dependence among humans and nonhuman primates, evolutionary explanations for human mating strategies, cooperation in child-rearing, paradigms of descent and affinity, and the dynamics of hierarchy and alliance in egalitarian cultures as well as stratified states.
3 credits, ABCF grading

ANT 509 Seminar in European Ethnography
Investigation and discussion of selected topics and problems concerning European societies and cultures. The perspectives of culture history and current fieldwork are employed. This course is offered as both ANT 509 and DPA 509.
Fall, 3 credits, S/U grading
May be repeated for credit

ANT 511 Paleolithic Archaeology
A survey of the archaeological record of foraging peoples in Africa, Europe, and Asia prior to the emergence of agriculture. The course emphasizes particular problems including the relationship between behavioral and biological change, different adaptive strategies in temperate and tropical zones, the origins of modern humans, and the emergence of complex hunter-gatherer societies. This course is offered as both ANT 511 and DPA 511.
Prerequisite: Any other archaeology course
Fall, 3 credits, ABCF grading

ANT 512 Comparative Civilizations
A comparative study of the processes of sociocultural evolution from the beginnings of sedentary life to the achievement of early civilization in the Near East, Egypt, the Indus Valley, China, Mesoamerica, and the Andean area. The seminar covers such topics as urbanization, demography, irrigation, craft specialization, militarism, and trade and exchange. This course is offered as both ANT 512 and DPA 512.
Prerequisite: Graduate standing or
ANT 519 Archaeozoology
An introduction to the study of animal bones from archaeological sites. Special emphasis is on identification of fragmented bone, identification of bone surface modification, calculation of indexes of abundance, and measurement and metric analysis of mammal bone. Computer analysis is stressed, and the class seeks to synthesize traditional archaeozoology and actualistic studies. This course is offered as both ANT 519 and DPA 519.

Fall, odd years, 4 credits, ABCF grading

ANT 520 Principles of Social and Cultural Anthropology
Concepts and principles of social and cultural anthropology; historical background, structure and function, social processes, transactions, culture, communication, continuity, and other change; topics and problems of contemporary interest. Some ethnographic monographs are discussed in terms of their relevance to the general concepts and principles treated in the seminar. This course is offered as both ANT 520 and DPA 520.

Fall, 4 credits, ABCF grading

ANT 526 The Use of Remote Sensing and GIS in Environmental Analysis
An introduction to the use of aerial and satellite imagery in environmental analysis and the manipulation of geographic data sets of all types using Geographic Information Systems. This course is designed to teach students in archaeology, physical anthropology, and related disciplines, how satellite imagery combined with various maps can be manipulated using GIS software to perform powerful geographic analysis. Although students are eventually likely to use these tools in many different parts of the world, this course focuses on Long Island as a research area, and each student designs and completes a research project on a particular section of the area, focusing on the habitats of local wildlife, the locations of archaeological sites, coastal regimes, etc. This course presumes computer literacy and familiarity with database management. This course is offered as both ANT 526 and DPA 526 and or HPH 658.

Spring, 3 credits, ABCF grading

ANT 527 Field Methods and Techniques in Archaeology
The course will be held during the summer only. It consists of field and laboratory work on an aspect of Long Island's archaeological heritage. Students' time is divided between surveying and excavation in the field and artificial analysis in the laboratory. Such techniques as map and air photo reading, survey, instruments, stratigraphy, conservation, typology construction, etc. are taught. Students are exposed to the full range of excavation, survey, and laboratory methods and techniques. This course is offered as both ANT 527 and DPA 527.

Prerequisite: Graduate standing or permission of instructor

Summer, even years, 3-5 credits, ABCF grading

ANT 540 Readings in Ethnography and Ethnology
A survey of the more important and better documented cultures and societies of selected world ethnographic areas and the implications of data from these for current approaches and problems in ethnology. This course is offered as both ANT 540 and DPA 540.

Spring, 4 credits, ABCF grading

ANT 550 Theory and Methodology in Primatology
Comprehensive overview of the theory and methodology used in the study of primate behavioral ecology. Includes ecological field methods, behavioral observations, analytical techniques, nonparametric statistics as well as planning, presenting, and reviewing research. Offered as both ANT 550 and DPA 550.

Fall, even years, 3 credits, ABCF grading

ANT 559 Archaeology of Food
Explores the archaeological study of food and foodways. The emphasis is on the social aspects of food, particularly its roles in past power structures, social relationships, conceptions of identity, ritual practices, and gender roles. Also covers the theoretical and methodological approaches archaeologists use to study food in the past.

Fall, alternate years, 4 credits, ABCF grading

ANT 560 Ancient Mesopotamia
An examination of the cultural history of Mesopotamia based on the archaeological, textual, and art historical record. Focusing on the fourth through second millennia, this course investigates both the long-term developmental process of this civilization and ways to understand its settlement systems, urban structure, social and political organization, economic structure, and the role played by religion.

Fall, alternate years, 4 credits, ABCF grading

ANT 561 Peasant Societies and Cultures
The concept of peasantry is examined from political, religious, and social class viewpoints as well as from the more traditional economic view. These agricultural peoples, who are essentially preliterate and preindustrial, are described and analyzed especially in relation to the national societies of which they form a part. This course is offered as both ANT 561 and DPA 561.

Spring, 3 credits, ABCF grading

ANT 562 Long Island Archaeology
Life on Long Island and the surrounding area from its first settlement by Native Americans 12,000 years ago until the end of the 19th century. Trends and changes in human behavior are studied in the context of environmental and cultural processes affecting all of northeastern North America.

Spring, 3 credits, ABCF grading

ANT 564 Primate Evolution
The taxonomic relationships and evolutionary history of primates as documented by their fossil record and structural and chemical evidence. Emphasis on primates prior to the origin of the human lineage. This course is offered as ANT 564, DPA 564, and HBA 564.

Spring, even years, 4 credits, ABCF grading

ANT 565 Human Evolution
A survey of the fossil record of hominid evolution through the Pliocene and Pleistocene
with emphasis on the morphological structure and function of locomotor, masticatory, and neutral systems. Includes utilization of comparative anatomical material and extensive cast and slide collections. This course is offered as ANT 565, DPA 565, and HBA 565.

ANT 567 Primate Behavior and Ecology
A comparative approach to the behavior and ecology of living lemurs, monkeys, and apes. Emphasis is placed on sociobiological theory; life history strategies; morphological adaptations; comparisons of primate communities in Asia, Africa, Madagascar, and South America; and primate conservation. This course is offered as both ANT 567 and DPA 567.

ANT 568 Hunters and Gatherers
The course focuses on the relationship between ecology and adaptation to explore the cross-cultural diversity of hunter/gatherers. The first part of the course looks at a number of key theoretic issues and debates that surround the study of hunter/gatherers. Once this foundation is laid, students learn about modern and historic hunter/gatherers from all the major geographic regions of the world. This overview draws on studies from behavioral ecology, ethnarchaeology, and cultural anthropology. The focus of the course is both to explore hunter/gatherer variation in relationship to the environment, and to give students an appreciation of the ways in which hunter/gatherers have been historically documented. The course is designed to be applicable to archaeologists, anthropologists, and to those in other disciplines who make inferences about past ways of life.

ANT 583 Human Demography
The study of human demography has had a long-standing focus in anthropology, archaeology, economics, and sociology since the distribution and density of people fundamentally shapes many other aspects of the human condition. Human Demography gives students an overview of population dynamics both as they change through time and differ across cultures. The course starts with an outline of the history of population studies. Following this introduction, the three major components of population change—fertility, mortality, and migration—are explored in depth. We then survey the seminal transitions in human demographic history from hunting and gathering to domestication and through modern postindustrial times. Drawing from the ethnoarchaeographic, human ecology, demographic, and archaeological literature, students read and discuss human demography from a variety of perspectives. The course includes some simple computations and labs.

ANT 585 Prehistoric Peoples of the Americas
Life in the Americas from the first settlement at the end of the Ice Age until the arrival of the Europeans in the 15th and 16th centuries. The culture, history, and evolution of prehistoric peoples of North, Central, and South America are treated. Specific topics covered include settlement by North Americans, hunting-gathering lifeways, plant and animal domestication, the origins of village life, and state-level societies.

ANT 599 M.A. Thesis Research
Fall, spring, and summer, 0-6 credits, S/U grading

ANT 602 Research Seminar in Anthropological Theory
This course is offered as both ANT 602 and DPA 602.

ANT 610 Individual Research
Research supervised by faculty. Students must have permission of instructor and enroll in appropriate section. This course is offered as both ANT 610 and DPA 610.

ANT 620 Research Seminar in Topical Problems
This course is offered as both ANT 620 and DPA 620.

ANT 630 Research Seminar in Physical Anthropology
4 credits, S/U grading

ANT 640 Research Seminar in Ethnography and Ethnology
This course is offered as both ANT 640 and DPA 640.

ANT 650 Research Seminar in Archaeology
3 credits, S/U grading

ANT 660 Summer Research
This course is offered as both ANT 660 and DPA 660.

ANT 680 Special Seminar
Selected topics in cultural and social anthropology. Topics reflect current interests of faculty and graduate students. This course is offered as both ANT 680 and DPA 680.

ANT 800 Summer Research
This course is offered as both ANT 800 and DPA 800.

May be repeated
The Department of Applied Mathematics and Statistics, within the College of Engineering and Applied Sciences, offers programs in computational applied mathematics, computational biology, operations research, and statistics, leading to the M.S. and Ph.D. degrees. The Department offers an integrated series of courses and seminars, supervised reading, and facilities for research. Emphasis is on the study of real-world problems, computational modeling, and the development of necessary analytical concepts and theoretical tools. A state-of-the-art, computational laboratory is operated for student education and research. A University-based, 100TF BlueGene supercomputer and an xx node linux cluster are available for student access. This laboratory includes an advanced parallel supercomputer that is one of the most powerful machines of its type on the East Coast. It also features a network of advanced Unix workstations and modern printing facilities. The laboratory's full-time staff is available to help students become familiar with the laboratory facilities.

Students participate in joint research with five national laboratories, several industrial groups, and various science, biomedical, and engineering programs. Students, who receive a broad training, find themselves excellently prepared for careers in government and industry in which mathematics is used as a computational or conceptual tool.

Faculty research programs receive significant external funding and provide students with an opportunity for active participation in a variety of projects in all areas of the Department. Faculty interests include applied graph theory, biostatistics, combinatorial optimizations, computational biology, computational fluid dynamics, computational statistics, data analysis, flow through porous media, fracture mechanics, inverse problems, mixed-boundary value problems, nonlinear conservation laws, nonparametric statistics, reliability theory, robust estimation, sequential decision making and control theory, stochastic modeling, and structure-based drug design. Most doctoral students are supported through either a research or teaching assistantship.

The Ph.D. program normally takes about four to five years for students with a strong analytical and computing background. The M.S. programs, when pursued on a full-time basis, may be completed in three or four semesters. Students who have taken graduate courses before enrolling at Stony Brook may request transfer of credit (limited to six credits). If such a request is approved, it may be possible to complete the M.S. degree in two semesters. It is strongly urged that all applicants develop some facility in computer programming.

A more detailed description of the graduate program is available from the Departmental office. This includes specific distribution requirements, fields of specialization, and information on the preliminary and qualifying examinations. Interested students should request information and application forms as early as possible, especially if they plan to apply for financial aid.

Admission

For admission to graduate study, the minimum requirements are as follows:

A. A bachelor's degree in chemistry, engineering, mathematics, physics, or the social sciences with a strong mathematics background;

B. A minimum grade point average of at least 3.00 in all courses in pertinent or related fields;

C. Results of the Graduate Record Examination (GRE) General Test;

D. Three letters of reference and all transcripts of undergraduate study completed;

E. Acceptance by both the Department of Applied Mathematics and Statistics and the Graduate School;

F. Students admitted provisionally must satisfy designated course and grade point average requirements during the first year of graduate study before being admitted to full degree candidacy.

Advanced Graduate Certificate Program in Operations Research

This advanced certificate program of 18 credits, consisting of six three-credit courses, trains students in the fundamental mathematical tools for working in the operations research profession. Operations research is the field of applied mathematics related to efficient management of the activities of government agencies, nonprofit organizations, and private companies. The following courses are required for the certificate:

1. AMS 507 Introduction to Probability
2. AMS 540 Linear Programming
3. AMS 550 Stochastic Models
4. AMS 553 Simulation and Modeling
5. AMS 572 Statistical Methods for Social Scientists
6. Elective chosen by student in consultation with advisor

Combined B.S./M.S. Degree

Undergraduate applied mathematics majors with strong academic credentials (minimum of 3.00 in the Applied Mathematics major) may apply for admission to the special Bachelor of Science-Master of Science program in Applied Mathematics and Statistics at the end of the junior year. The combined B.S./M.S. program in Applied Mathematics and Statistics allows students with superior academic records to use up to nine graduate credits toward the B.S. and M.S. requirements. In essence, those nine credits count toward two goals simultaneously. Normally, it would take six years to complete two separate degrees. With the combined B.S./M.S. program, there is only a five-year commitment (10 semesters). The
advantage of the combined program is that the M.S. degree can be earned in less time, thus costing less money, than required by the traditional course of study.

In the first semester of the senior year, students in the B.S./M.S. program may take up to six graduate credits. In the second semester of the senior year, they become enrolled as graduate students, and continue on as graduate students during the fifth year. Because students in this program only need to earn 111 undergraduate credits, they are usually finished with undergraduate coursework by the first semester of their senior year. If needed, they may continue to take some undergraduate courses after they become graduate students.

When the student is accepted, permission will be granted to take six graduate credits that will be applied toward the master's degree. The requirements for the B.S. degree must be completed before admission to the graduate program. At least 24 additional credits including the requirements stated in the Graduate Bulletin must be earned to qualify the student for the master's degree. Further information about the combined program may be obtained from either the graduate program director or the undergraduate program.

Part-Time Graduate Studies
In addition to the full-time graduate program leading to the M.S. and Ph.D. degrees with specializations in computational applied mathematics, operations research, and statistics, the Department conducts a part-time program on campus. The part-time program is governed by regulations governing the resident full-time program with the exception that students in the part-time program have greater flexibility in choosing the time for the qualifying examination if they are contemplating pursuing the Ph.D.

The purpose of the part-time program is to provide an opportunity for men and women who are employed full time to pursue graduate study leading to advanced degrees in applied mathematics, operations research, and statistics. Applicants who hold a bachelor's degree in applied mathematics, engineering, mathematics, life sciences, physical sciences, or social sciences with a strong background in undergraduate mathematics, will be considered for admission to this program. Qualified students may continue beyond the master's degree for the Ph.D. degree.

Additional information may be obtained from the graduate program director at the Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600.

Faculty

Distinguished Professors
Glimm, James, Chair, Ph.D., 1959, Columbia University: Nonlinear equations, conservation laws; computational fluid dynamics; mathematical physics.

Distinguished Teaching Professors
Tanur, Judith, Ph.D., 1972, Stony Brook University: Application of statistics in social sciences; survey methodology.

Tucker, Alan, Ph.D., 1969, Stanford University: Graph theory; combinatorial algorithms.

Professors

Ahn, Hongshik, Ph.D., 1992, University of Wisconsin, Madison: Biostatistics; tree-structured regression.

Arkin, Esther, Ph.D., 1986, Stanford University: Combinatorial optimization; network flows; computational geometry.

Chen, Yung Ming, Emeritus, Ph.D., 1963, New York University: Numerical analysis and methods; numerical methods for solving inverse problems; large-scale numerical simulations.

Deng, Yuefan, Ph.D., 1989, Columbia University: Molecular dynamics; parallel computing.

Feinberg, Eugene, Ph.D., 1979, Vilnius State University, Lithuania: Probability theory and statistics; control theory and applications in communication systems; transportation; computer networks and manufacturing.

Finch, Stephen, Ph.D., 1974, Princeton University: Robust estimation and nonparametric statistics.

Li, Xiaolin, Ph.D., 1987, Columbia University: Computational fluid dynamics; numerical analysis. Lindquist, Brent, Ph.D., 1981, Cornell University: Flow in porous media; computational fluid dynamics.

Mendell, Nancy, Ph.D., 1972, University of North Carolina at Chapel Hill: Biostatistics.

Mitchell, Joseph, Ph.D., 1986, Stanford University: Operations research; computational geometry; combinatorial optimization.

Reinitz, John, Ph.D., 1988, Yale University: Theory of fundamental biological processes; bioinformatics; optimization; developmental biology and gene regulation.

Srivastav, Ram P., Emeritus, Ph.D., 1958, Lucknow University, India; Ph.D., 1963, D.Sc., 1972, Glasgow University, Scotland: Fracture mechanics; integral equations; mixed boundary value problems.

Tewarson, Reginald P., Emeritus, Ph.D., 1961, Boston University: Numerical analysis and computational methods; sparse matrices; generalized inverses and large nonlinear systems; mathematical models of diffusion problems in biology and medicine.

Zhu, Wei, Ph.D., 1996, University of California, Los Angeles: Biostatistics; optimal experimental design; linear models; structural equation modeling.

Associate Professors

Samulyak, Roman, Ph.D., 1999, New Jersey Institute of Technology: Mathematical physics, computational applied mathematics.

Assistant Professors

Green, David, Ph.D., 2002, MIT: Computational biology; protein structure.

Hu, Jiaqiao, Ph.D., 2006, University of Maryland: Stochastic optimization, dynamic programming.

Rizzo, Robert, Ph.D., 2001, Yale University: Computational biology; structure-based drug design.

Xing, Haipeng, Ph.D., 2005, Stanford University: Financial econometrics; time series modeling.

Research Professor

Research Assistant Professor

Yu, Yan, Ph.D., 2005, Stony Brook University: Numerical analysis and computational fluid dynamics.

Adjunct Faculty

Badr, Hussein G.,1 Associate Professor, Ph.D., 1980, Pennsylvania State University: Operating systems; computer system performance evaluation.

Bender, Michael,1 Associate Professor, Ph.D., 1996, Harvard University: Combinatorial algorithms.

Dubey, Pradeep,2 Professor, Ph.D., 1975, Cornell University: Game theory; mathematical economics.

Ferguson, David,3 Professor, Ph.D., 1980, University of California, Berkeley: Mathematics education; educational technology.

Grove, John,* Professor, Ph.D., 1984, Ohio State University: Conservation laws; front tracking.
Pinezich, John, Professor, Ph.D., 1998, Stony Brook University: Radar; ballistics; sonar; acoustics.

Sharp, David, Professor, Ph.D., 1963, California Institute of Technology: Mathematical physics; computational fluid dynamics.

Simmerling, Carlos, Associate Professor, Ph.D., 1995, University of Illinois at Chicago: Protein structure.

Skiena, Steven, Professor, Ph.D., 1995, University of Illinois: Combinatorial algorithms; computational geometry; data structures.

Skorin-Kapov, Jadranka, Professor, Ph.D., 1998, University of British Columbia, Canada: Mathematical programming; production management.

Sokal, Robert R., Emeritus Distinguished Professor, Ph.D., 1952, University of Chicago: Numerical taxonomy; theory of systematics; geographic variation; spatial models in ecology and evolution.

Spirov, Alexander, Associate Professor, Ph.D., 1987, Irktsk State University: Computational biology.

Weinig, Sheldon, Professor, Ph.D., 1955, Columbia University: Manufacturing management; material sciences.

Number of teaching, graduate, and research assistants, Fall 2007: 75

1) Department of Computer Science
2) Department of Economics
3) Department of Technology and Society
4) Los Alamos National Laboratory
5) Advanced Accoustical Concepts
6) Department of Chemistry
7) W. Averell Harriman School for Management and Policy
8) Department of Ecology and Evolution
9) Department of Electrical and Computer Engineering

Degree Requirements Requirements for the M.S. Degree

In addition to the minimum Graduate School requirements, the following are required:

A. Course Requirements

The M.S. degree in the Department of Applied Mathematics and Statistics requires the satisfactory completion of a minimum of 30 graduate credits in letter-graded (A, B, C, F) graduate courses.

All credits in satisfaction of the degree must be at the graduate level. The Department may impose additional requirements as described below. In addition, the average for all courses taken must be B or higher, and at least 18 credits of all courses taken must carry a grade of B or higher.

The student pursues a program of study planned in consultation with an academic advisor. The program and any subsequent modifications require approval by the graduate program director.

Core Requirements for the M.S. Degree

1. Applied Mathematics
 - AMS 501 Differential Equations and Boundary Value Problems
 - AMS 503 Applications of Complex Analysis
 - AMS 504 Foundations of Applied Mathematics
 - AMS 505 Applied Linear Algebra
 - AMS 526 Numerical Analysis I
 - AMS 527 Numerical Analysis II
 - AMS 595 Fundamentals of Computing

2. Computational Biology
 - AMS 507 Probability
 - AMS 510 Analytical Methods for Applied Mathematics and Statistics
 - MCB 520 Graduate Biochemistry OR CHE 541 Biomolecular Structure and Analysis
 - AMS 530 Principles in Parallel Computing
 - AMS 532 Laboratory Rotations and Journal Club in Computational Biology
 - AMS 533 Numerical Methods and Algorithms in Computational Biology
 - AMS 535 Intro to Computational Structural Biology and Drug Design
 - CSE 549 Computational Biology

3. Operations Research
 - AMS 510 Analytical Methods for Applied Mathematics and Statistics
 - AMS 507 Introduction to Probability
 - AMS 540 Linear Programming
 - AMS 550 Stochastic Models

4. Statistics
 - AMS 510 Analytical Methods for Applied Mathematics and Statistics
 - AMS 504 Foundations of Applied Mathematics and
 - AMS 505 Applied Linear Algebra
 - AMS 507 Introduction to Probability
 - AMS 570 Mathematical Statistics I
 - AMS 572 Exploratory Data Analysis
 - AMS 575 Internship in Statistical Consulting
 - AMS 578 Regression Theory
 - AMS 582 Design of Experiments
 - AMS 585 Fundamentals of Computing

Elective Requirements for the M.S. Degree

Any graduate-level AMS or other graduate-level courses in a related discipline approved by the graduate program director may be used to satisfy the credit requirement beyond the core course requirement.

B. Final Recommendation

Upon fulfillment of the above requirements, the faculty of the graduate program will recommend to the Dean of the Graduate School that the M.S. degree be conferred or will stipulate further requirements that the student must fulfill.

C. Time Limit

All requirements for the M.S. degree must be completed within three years of the student's first registration as a full-time graduate student.

Requirements for the Ph.D. Degree

A. Course Requirements

The course of study prescribed for the M.S. degree provides basic guidelines for doctoral study. The student pursues a program of study planned in consultation with an academic advisor. The program and any subsequent modifications require approval of the graduate program director.

B. Qualifying Examination

A student must pass a qualifying examination to be allowed to continue.
toward the Ph.D. degree. The qualifying examination is given twice a year at the beginning and end of the spring semester and is designed to test the student’s preparation to do research in Applied Mathematics. Each student must demonstrate competency in algebra and analysis and in-depth knowledge in one of the following areas:

- Computational Applied Mathematics
- Computational Biology
- Operations Research
- Statistics

C. Research Advisor

After completion of at least one year of full-time residence and prior to taking the preliminary examination, the student must select a research advisor who agrees to serve in that capacity.

D. Preliminary Examination

This is an oral examination administered by a committee and given to the student when he or she has developed a research plan for the dissertation. The plan should be acceptable to the student’s research advisor.

E. Mathematical Writing Requirement

The mathematical writing requirement is associated with the preliminary oral examination. The student must submit a document, typically 20 to 25 double-spaced pages long, containing the literature search synopsis for the proposed dissertation as well as research work accomplished to date. It must be given to the members of the preliminary examination committee at least one week before the oral presentation. The document must have the written approval for good English and writing style as well as correct content by the student’s thesis advisor and a faculty member, not of the preliminary examination committee, who is appointed by the graduate program director. International students may need extensive writing assistance from the ESL Tutoring Center established to provide exactly this kind of technical writing tutorial support. Tutorial assistance in writing, if needed, will also be provided to native students.

F. Advancement to Candidacy

After successfully completing all requirements for the degree other than the dissertation, the student is eligible to be recommended for advancement to candidacy. This status is conferred by the Dean of the Graduate School upon recommendation from the graduate program director.

G. Dissertation

The most important requirement of the Ph.D. degree is the completion of a dissertation, which must be an original scholarly investigation. The dissertation must represent a significant contribution to the scientific literature and its quality must be comparable with the publication standards of appropriate and reputable scholarly journals.

H. Dissertation Defense

The student must defend the dissertation before an examining committee. On the basis of the recommendation of this committee, the Department of Applied Mathematics and Statistics will recommend acceptance or rejection of the dissertation to the Dean of the Graduate School. All requirements for the degree will have been satisfied upon successful defense of the dissertation. There must be at least one year between advancing to candidacy and scheduling a dissertation defense.

I. Minimum Residence

At least two consecutive semesters of full-time study are required.

J. Time Limit

All requirements for the Ph.D. degree must be completed within seven years after the completion of 24 graduate credits in the program. The time limits for the qualifying and preliminary examinations and advancement to candidacy are described in the Departmental Graduate Student Handbook.

K. Teaching Requirement

One academic year of teaching experience is required.

Courses

- **AMS 501 Differential Equations and Boundary Value Problems I**
 Prerequisite: AMS 505; recommended prerequisite AMS 504
 Spring, 3 credits, ABCF grading

- **AMS 502 Differential Equations and Boundary Value Problems II**
 Analytic solution techniques for, and properties of solutions of, partial differential equations, with concentration on second order PDEs. Techniques covered include: method of characteristics, separation of variables, eigenfunction expansions, spherical means, Green’s functions and fundamental solutions, and Fourier transforms. Solution properties include: energy conservation, dispersion, dissipation, existence and uniqueness, maximum and mean value principles.
 Prerequisite: AMS 501
 3 credits, ABCF grading

- **AMS 503 Applications of Complex Analysis**
 A study of those concepts and techniques in complex function theory that are of interest for their applications. Pertinent material is selected from the following topics: harmonic functions, calculus of residues, conformal mapping, and the argument principle. Application is made to problems in heat conduction, potential theory, fluid dynamics, and feedback systems.
 Spring, 3 credits, ABCF grading

- **AMS 504 Foundations of Applied Mathematics**
 An introductory course for the purpose of developing certain concepts and techniques that are fundamental in modern approaches to the solution of applied problems. An appropriate selection of topics is based on the concepts of metric spaces, compactness, sequences and convergence, continuity, differentiation and integration, function sequences, contraction mapping theorem. Strong emphasis on proofs.
 Fall, 3 credits, ABCF grading

- **AMS 505 Applied Linear Algebra**
 Review of matrix operations. Elementary matrices and reduction of general matrices by elementary operations, canonical forms, and inverses. Applications to physical problems. Coscheduled as AMS 505 or HPH 695.
 Fall, 3 credits, ABCF grading

- **AMS 506 Finite Structures**
 Problem solving in combinatorial analysis and graph theory using generating functions, recurrence relations, Polya’s enumeration formula, graph coloring, and network flows.
 3 credits, ABCF grading

- **AMS 507 Introduction to Probability**
 The topics include sample spaces, axioms of probability, conditional probability and independence, discrete and continuous random variables, jointly distributed random variables, law of large numbers and central limit theorem, Markov chains. Note: Crosslisted with HPH 606
 3 credits, ABCF grading

- **AMS 510 Analytical Methods for Applied Mathematics and Statistics**
 Review of techniques of multivariate calculus, convergence and limits, matrix analysis, vector space basics, and Lagrange multipliers.
 Prerequisite: A course in linear algebra and
AMS 511 Foundations of Quantitative Finance
Introduction to capital markets, securities pricing, and modern portfolio theory, including the organization and operation of securities market, the Efficient Market Hypothesis and its implications, the Capital Asset Pricing Model, the Arbitrage Pricing Theory, and more general factor models. Common stocks and their valuation, statistical analysis, and portfolio selection will be explored along with its solution as a quadratic program. Fixed income securities and their valuation, statistical analysis, and portfolio selection. Discussion of the development and use of financial derivatives. Introduction to risk neutral pricing, stochastic calculus, and the Black-Scholes Formula. Whenever practical, examples will use real market data. Numerical exercises and projects in a high-level programming environment will also be assigned.
Prerequisite: AMS 511
3 credits, ABCF grading

AMS 514 Computational Finance
Review of foundations: stochastic calculus, martingales, pricing, and arbitrage. Basic principles of Monte Carlo and the efficiency and effectiveness of simulation estimators. Generation of pseudo- and quasi-random numbers with sampling methods and distributions. Variance reduction techniques such as control variates, antithetic variates, stratified and Latin hypercube sampling, and importance sampling. Discretization methods including first and second order methods, trees, jumps, and barrier crossings. Applications in pricing American options, interest rate sensitive derivatives, mortgage-backed securities, and risk management. Whenever practical, examples will use real market data. Extensive numerical exercises and projects in a general programming environment will also be assigned.
Prerequisite: AMS 512 and AMS 513
3 credits, ABCF grading

AMS 515 Case Studies in Computational Finance
Actual applications of Quantitative Finance to problems of risk assessment, product design, portfolio management, and securities pricing will be covered. Particular attention will be paid to data collection and analysis, the design and implementation of software, and, most importantly, to differences that occur between "theory and practice" in model application, and to the development of practical strategies for handling cases in which "model failure" makes the naive use of quantitative techniques dangerous. Extensive numerical exercises drawn from the industry will be made.
Prerequisite: AMS 512 and AMS 513
3 credits, ABCF grading

AMS 520 Mathematical Modeling in the Analysis of Public Systems
Review of models relating to the questions of the improvement in the delivery of urban service systems (e.g., fire, police, health, sanitation, transit). Topics include optimal location and districting of public facilities, distribution networks, models of congestion and delay in municipal services, and optimal deployment of emergency vehicles.
3 credits, ABCF grading

AMS 526 Numerical Analysis I
Fall, 3 credits, ABCF grading

AMS 527 Numerical Analysis II
Numerical methods based upon functional approximation; polynomial interpolation and approximation; and numerical differentiation and integration. Solution methods for ordinary differential equations. AMS 527 may be taken whether or not the student has completed AMS 526.
Spring, 3 credits, ABCF grading

AMS 528 Numerical Analysis III
An introduction to scientific computation, this course considers the basic numerical techniques designed to solve problems of physical and engineering interest. Finite difference methods are covered for the three major classes of partial differential equations: parabolic, elliptic, and hyperbolic. Practical implementation will be discussed. The student is also introduced to the important packages of scientific software algorithms. AMS 528 may be taken whether or not the student has completed AMS 526 or AMS 527.
Spring, 3 credits, ABCF grading

AMS 530 Principles in Parallel Computing
This course is designed for both academic and industrial scientists interested in parallel computing and its applications to large-scale scientific and engineering problems. It focuses on the main issues in parallel computing: analysis of parallel hardware and software systems, design and implementation of parallel algorithms, and applications of parallel computing to selected problems in physical science and engineering. The course emphasizes hands-on practice and understanding of algorithmic concepts of parallel computing.
Prerequisite: A course in basic computer science such as operating systems or architectures or some programming experience
Spring, 3 credits, ABCF grading

AMS 532 Laboratory Rotations and Journal Club in Computational Biology
This is a two-semester course in which students spend at least eight weeks in each of three different laboratories actively participating in the research of participating Computational Biology faculty. Participants will attend and give research talks at weekly Journal Club during the rotations. An overall grade is assigned and an evaluation form is completed by the supervising faculty member and provided to the student for constructive feedback.
Fall and Spring, 0 credit, S/U grading
May be repeated

AMS 533 Numerical Methods and Algorithms in Computational Biology
An in-depth survey of many of the key techniques used in diverse aspects of computational biology. A major focus of this class is on how to successfully formulate a statement of the problem to be solved, and how that formulation can guide in selecting the most suitable computational approach. Examples will be drawn from a wide range of problems in biology, including molecular modeling, biochemical reaction networks, microscopy, and systems biology. No prior knowledge of biology is required.
3 credits, ABCF grading

AMS 535 Introduction to Computational Structural Biology and Drug Design
This course will provide an introduction to computational structural biology with application to drug design. Methods and applications that use computation to model biological systems involved in human disease will be emphasized. The course aims to foster collaborative learning and will consist of presentations by the instructor, guest lecturers, and by course participants with the goal of summarizing key methods, topics, and papers relevant to computational structural biology.
Fall, 0-3 credits, ABCF grading
May be repeated for credit

AMS 536 Molecular Modeling of Biological Molecules
This course is designed for students who wish to gain hands-on experience modeling biological molecules at the atomic level. In conjunction with the individual interests, molecular mechanics, molecular dynamics, Monte Carlo, docking (virtual screening), or quantum mechanics software packages can be used to study relevant biological systems(s). Projects will include setup, execution, and analysis. Course
participants will give literature presentations relevant to the simulations being performed and a final project report will be required. Familiarity with UNIX (Linux) is desirable. This course is offered as both CHE 536 and AMS 536.

AMS 537 Dynamical Models of Gene Regulation and Biological Pattern Formation
This is a graduate course in the fundamental theory of genetic function and biological pattern formation in animal development. The course covers dynamical (sometimes called physiological) models of these processes at a variety of mathematical levels. Biologically, the emphasis will be on E. coli and the fruit fly Drosophila, with a careful discussion of key experimental results for nonexperts. We will study the use of both deterministic and stochastic differential equations to solve fundamental scientific problems such as the phage lambda lysis/lysogeny decision, the expression of gene circuits, and the determination and regulation of the morphogenetic field in animal development, particularly the segmentation field in Drosophila.

AMS 538 Methods in Neuronal Modeling
Presentation of the mathematical modeling approach to information processing in nervous systems, from the level of individual ionic channels to large-scale neuronal networks. The course covers kinetic models of synaptic transmission, cable theory and compartment models for neurons, multiple channels and calcium dynamics, spike-train analysis, and modeling small neuron networks.

AMS 540 Linear Programming
Formulation of linear programming problems and solutions by simplex method. Duality, sensitivity analysis, dual simplex algorithm, decomposition. Applications to the transportation problem, two-person games, assignment problem, and introduction to integer and nonlinear programming. This course is offered as both MBA 540 and AMS 540.

AMS 542 Analysis of Algorithms
Techniques for designing efficient algorithms, including choice of data structures, recursion, branch and bound, divide and conquer, and dynamic programming. Complexity analysis of searching, sorting, matrix multiplication, and graph algorithms. Standard NP-complete problems and polynomial transformation techniques. This course is offered as both AMS 542 and CSE 548.

AMS 544 Discrete and Nonlinear Optimization
Theoretical and computational properties of discrete and nonlinear optimization problems: integer programming, including cutting plane and branch and bound algorithms; necessary and sufficient conditions for optimality of nonlinear programs, and performance of selected nonlinear programming algorithms. This course is offered as both MBA 544 and AMS 544.

AMS 545 Computational Geometry
Study of the fundamental algorithmic problems associated with geometric computations, including convex hulls, Voronoi diagrams, triangulation, intersection, range queries, visibility, arrangements, and motion planning for robotics. Algorithmic methods include plane sweep, incremental insertion, randomization, divide-and-conquer, etc. This course is offered as both AMS 545 and CSE 555.

AMS 547 Discrete Mathematics
This course introduces such mathematical tools as summations, number theory, binomial coefficients, generating functions, recurrence relations, discrete probability, asymptotics, combinatorics, and graph theory for use in algorithmic and combinatorial analysis. This course is offered as both MBA 547 and AMS 547.

AMS 550 Operations Research: Stochastic Models
Includes Poisson processes, renewal theory, discrete-time and continuous-time Markov processes, Brownian motion, applications to queues, statistics, and other problems of engineering and social sciences. This course is offered as both MBA 550 and AMS 550.

AMS 552 Game Theory I
Elements of cooperative and noncooperative games. Matrix games, pure and mixed strategies, and equilibria. Solution concepts such as core, stable sets, and bargaining sets. Voting games, and the Shapley and Banzhaff power indices. This course is offered as both ECO 604 and AMS 552.

AMS 553 Simulation and Modeling
A comprehensive course in formulation, implementation, and application of simulation models. Topics include data structures, simulation languages, statistical analysis, pseudorandom number generation, and design of simulation experiments. Students apply simulation modeling methods to problems of their own design. This course is offered as CSE 592, AMS 553, and MBA 553.

AMS 554 Queuing Theory
Introduction to the mathematical aspects of congestion. Birth and death processes. Queues with service priorities and bulk-service queues. Analysis of transient- and steady-state behavior. Estimation of parameters. Applications to engineering, economic, and other systems. This course is offered as both MBA 554 and AMS 554.

AMS 555 Game Theory II
Refinements of strategic equilibrium, games with incomplete information, repeated games with and without complete information, and stochastic games. The Shapley value of games with many players, and NTU-values. This course is offered as both ECO 605 and AMS 555.

AMS 556 Dynamic Programming
Stochastic and deterministic multistage optimization problems. Stochastic path problems. Principle of optimality. Recursive and functional equations. Method of successive approximations and policy iteration. Applications to finance, economics, inventory control, maintenance, transportation, and replacement problems. This course is offered as both MBA 556 and AMS 556.

AMS 557 Numerical Hydrology
Numerical solution methods for the equations of incompressible flow in porous media with special emphasis on groundwater flow. Finite difference and finite element methods for steady-state and transient flows-boundary conditions, range of validity and stability of the numerical schemes, and numerical artifacts. The approach is hands-on, with example problems being computed. This course is offered as both GEO 564 and AMS 562.

AMS 559 Wave Propagation
Theory of propagation of vector and scalar waves in bounded and unbounded regions. Development of methods of geometrical optics. Propagation in homogeneous and
anisotropic media.

AMS 566 Compressible Fluid Dynamics
Physical, mathematical, and computational description equations in compressible fluid flows. Integral and differential forms of the conservation equations, one-dimensional flow, shocks and expansion waves in two and three dimensions, quasi-one-dimensional flow, transient flow, numerical methods for steady supersonic flow, numerical methods for transient flow. Spring, 3 credits, ABCF grading

AMS 569 Probability Theory I
Prerequisite: AMS 504 or equivalent

AMS 570 Introduction to Mathematical Statistics
Probability and distributions; multivariate distributions; distributions of functions of random variables; sampling distributions; limiting distributions; point estimation; confidence intervals; sufficient statistics; Bayesian estimation; maximum likelihood estimation; statistical tests.
Prerequisite: AMS 512 or equivalent

AMS 571 Mathematical Statistics
Sampling distribution; convergence concepts; classes of statistical models; sufficient statistics; likelihood principle; point estimation; Bayes estimators; consistency; Neyman-Pearson Lemma; UMP tests; UMPU tests; Likelihood ratio tests; large sample theory. Crosslisted as HPH 497 or AMS 511.
Prerequisite: AMS 512; AMS 570 is preferred but not required

AMS 572 Data Analysis I
Introduction to basic statistical procedures. Survey of elementary statistical procedures such as the t-test and chi-square test. Procedures to verify that assumptions are satisfied. Extensions of simple procedures to more complex situations and introduction to one-way analysis of variance. Basic exploratory data analysis procedures (stem and leaf plots, straightening regression lines, and techniques to establish equal variance). Coordinated as AMS 572 or HPH 499.
Prerequisite: AMS 512 or permission of instructor
Fall, 3 credits, ABCF grading

AMS 573 Design and Analysis of Categorical Data
Measuring the strength of association between pairs of categorical variables. Methods for evaluating classification procedures and inter-rater agreement. Analysis of the associations among three or more categorical variables using log linear models. Logistic regression.
Prerequisite: AMS 572

AMS 575 Internship in Statistical Consulting
Directed quantitative research problem in conjunction with currently existing research programs outside the Department. Students specializing in a particular area work on a problem from that area; others work on problems related to their interests, if possible. Efficient and creative use of computers. Each student gives at least one informal lecture to his or her colleagues on a research problem and its statistical aspects.
Prerequisite: Permission of instructor

AMS 577 Multivariate Analysis
Prerequisites: AMS 572 and AMS 578

AMS 578 Regression Theory
Prerequisite: AMS 572 or equivalent

AMS 579 Quantitative Genetics

AMS 581 Analysis of Variance
Analysis of models with fixed effects. The Gauss-Markov theorem; construction of confidence ellipsoids and tests with Gaussian observations. Problems of multiple tests of hypotheses. One-way, two-way, and higher-way layouts. Analysis of incomplete designs such as Latin squares and incomplete blocks. Analysis of covariance problems.
Prerequisites: AMS 570 or equivalent

AMS 582 Design of Experiments
Discussion of the accuracy of experiments, partitioning sums of squares, randomized designs, factorial experiments, Latin squares, confounding and fractional replication, response surface experiments, and incomplete block designs. Coordinated as AMS 582 or HPH 699.

AMS 586 Time Series

AMS 587 Nonparametric Statistics
This course covers the applied nonparametric statistical procedures: one-sample Wilcoxon tests, two-sample Wilcoxon tests, runs test, Kruskal-Wallis test, Kendall's tau, Spearman's rho, Hodges-Lehman estimation, Friedman analysis of variance on ranks. The course gives the theoretical underpinnings to these procedures, showing how existing techniques may be extended and new techniques developed. An excursion into the new problems of multivariate nonparametric inference is made.
Prerequisites: AMS 512 and AMS 572 or equivalent

AMS 588 Biostatistics
Statistical techniques for planning and analyzing medical studies. Planning and conducting clinical trials and retrospective and prospective epidemiological studies. Analysis of survival times including singly censored and doubly censored data. Quantitative and quantal bioassays, two-stage assays, routine biosays. Quality control for medical studies.
Prerequisite: AMS 572 or permission of instructor

AMS 591 Topics for M.S. Students
Various topics of current interest in applied mathematics will be offered if sufficient interest is shown. Several topics may be taught concurrently in different sections.
Prerequisite: Permission of instructor

AMS 592 Mathematical Methods of Finance
A broad-based course in mathematical models and quantitative analysis of financial transactions and investment management issues such as debt and equity, measures of risk and returns, efficient markets and efficient set mathematics, asset pricing, one-factor and multiple-factor models, portfolio selection, futures and options.

AMS 593 Mathematical Theory of Interest and Portfolio Pricing
Calculation of simple and compound interest poses elementary arithmetic or algebraic problems. Variable interest rates (including indexing), inflation, changes in the exchange rates of foreign currency, and changes in the laws, such as income tax, create investment risks. The course is intended to develop problem-solving skills and adopts both deterministic and stochastic approaches. The perspectives of the consumer and the investor are taken into account. The material helps students prepare for the actuarial examinations. Topics are selected from the following: simple and compound interest, fixed-rate loans and mortgages, annuities and capital...
AMS 594 Mathematical Methods of Finance and Investments II

This course employs the techniques of mathematical statistics and empirical finance, e.g., estimation theory, linear and nonlinear regression, time series analysis, modeling, and simulation to examine critically various models of prediction for asset-pricing, pricing of derivative products and term-structure of interest rates assuming stochastic volatility. Statistics necessary for analysis is incorporated in the course.

Prerequisite: AMS 592
Fall, 3 credits, ABCF grading

AMS 595 Fundamentals of Computing

Introduction to UNIX operating system, C language, graphics, and parallel supercomputing.
Fall, 1 credit, ABCF grading

AMS 596 Fundamentals of Large-Scale Computing

Overview of the design and maintenance of large-scale computer projects in applied mathematics, including basic programming techniques for massively parallel supercomputers.
Prerequisite: AMS 595 or permission of instructor
Spring, 1 credit, ABCF grading

AMS 597 Statistical Computing

Introduction to statistical computing using SAS and S plus.
Fall, 1 credit, ABCF grading

AMS 599 Research

1-12 credits, SU/Grading
May be repeated for up to 12 credits

AMS 605 Probability Theory II

Prerequisite: AMS 589 or permission of instructor
3 credits, ABCF grading

AMS 607 Advanced Stochastic Processes I

Theory and application of continuous time stochastic processes, continuous time martingales, square-integrable martingales, Brownian motion, stochastic integrals and Itô’s formula, stochastic differential equations, and applications to financial mathematics.
Prerequisite: AMS 605 or AMS 589
Spring, 3 credits, ABCF grading

AMS 615 Advanced Stochastic Processes II

Prerequisite: AMS 501
3 credits, ABCF grading

AMS 620 Theory and Applications of Large-Scale Networks

A rigorous treatment of mathematical techniques used to answer many practical questions arising in the study and design of large-scale networks. Emphasis on the development of algorithms. Several lectures devoted to specific applications to computer networks to be used throughout the course.
Prerequisite: AMS 550 or equivalent
3 credits, ABCF grading

AMS 621 Finite Element Methods for Partial Differential Equations

Variational form of the problem, Ritz Galerkin, collocation, and mixed methods; triangular, rectangular (2-D), and tetrahedral (3-D) elements; accuracy, convergence, and stability; solutions of linear, nonlinear steady-state, and dynamic problems; implicit and explicit time integration; equivalence of finite-element and finite-difference methods.
Prerequisite: AMS 502 or equivalent
3 credits, ABCF grading

AMS 623 Topics in Systems and Control Theory

This course is designed for second- and third-year graduate students who wish to pursue research in the area of systems and control theory. The students are expected to have a strong research background in linear algebra and differential equations and basic knowledge in systems and control theory.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

AMS 627 Theory of Integral Equations and Their Applications

Integral equations with degenerate kernels, equations of the second kind, iterative solutions, contraction mapping principle, Fredholm theory, and spectral theory for symmetric kernels, Volterra equations of the first and second kind, equations with weakly singular kernels, simultaneous systems, and applications.
Prerequisites: AMS 504 and AMS 505
3 credits, ABCF grading

AMS 628 Applications of Functional Analysis

Introduction to such topics as unbounded operators and the closed-graph theorem, convexity, weak convergence in Hilbert space, and degree theory. Applications to monotone operators and the stability of nonlinear systems, to Schwarz distributions and passive linear systems, and to the solution of nonlinear equations.
Prerequisite: AMS 504 or equivalent
3 credits, ABCF grading

AMS 641 Special Topics in Mathematical Programming

The course is designed for second- and third-year graduate students with a strong foundation in linear algebra and analysis who wish to pursue research in applied mathematics. Varying topics from nonlinear programming and optimization to applied graph theory and applied combinatorics may be offered concurrently.
Prerequisites: AMS 550 and permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

AMS 644 Special Topics in Applied Probability

The course is designed for second- and third-year graduate students with a background in probability and stochastic modeling who wish to pursue research in applications of the probability theory. Several topics may be taught concurrently in different sections.
Prerequisites: AMS 550 and permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

AMS 651 Nonlinear Analysis and Optimization

3 credits, ABCF grading

AMS 652 Special Topics in Game Theory

The course is designed for second- and third-year graduate students who wish to specialize in the mathematical theory of games.
Prerequisites: AMS 552 and permission of instructor
3 credits, ABCF grading
May be repeated for credit

AMS 670 Special Topics in Probability and Mathematical Statistics

The course is designed for second- and third-year graduate students with a strong foundation in analysis and statistics who wish to pursue research in mathematical statistics. Several topics may be taught concurrently in different sections.
Prerequisites: AMS 569, AMS 570
3 credits, ABCF grading
May be repeated for credit

AMS 675 Special Topics in Applied Statistics

The course is designed for second- and third-year students with a strong foundation in statistical analysis who wish to pursue research in applied statistics.
Prerequisites: AMS 507, AMS 572
3 credits, ABCF grading
May be repeated for credit

AMS 676 Internship in Applied Mathematics

Directed research and/or practical experience in industry, financial and consulting firms, and research institutions. Students are required to have a Department faculty adviser who coordinates and supervises the internship. Submission of the final report is required.
6-9 credits, SU/Grading
AMS 683 Biological Physics and Biophysical Chemistry: Theoretical Perspectives
This course will survey a selected number of topics in biological physics and biophysical chemistry. The emphasis is on the understanding of physical organization principles and fundamental mechanisms involved in the biological process. The potential topics include: Protein Folding, Protein Dynamics, Biomolecular Interactions and Recognition, Electron and Proton Transfer, Motors, Membranes, Single Molecules and Single Cells, Cellular Networks, Development and Differentiation, Brains and Neural Systems, Evolution. There will be no homework or exams. The grades will be based on the performance of the term projects. Crosslisted with PHY 680 and CHE 683.
3 credits, ABCF grading

AMS 690 Special Topics in Differential Equations and Applied Analysis
The course is designed for second- and third-year graduate students with a strong foundation in analysis who wish to pursue research in applied mathematics. Several topics may be taught concurrently in different sections.
Prerequisites: AMS 501, AMS 504
3 credits, ABCF grading
May be repeated for credit

AMS 691 Topics in Applied Mathematics
Varying topics selected from the list below if sufficient interest is shown. Several topics may be taught concurrently in different sections:
- Advanced Operational Methods in Applied Mathematics
- Approximate Methods in Boundary Value Problems in Applied Mathematics
- Control Theory and Optimization
- Foundations of Passive Systems Theory
- Game Theory
- Mixed Boundary Value Problems in Elasticity
- Partial Differential Equations
- Quantitative Genetics
- Stochastic Modeling
3 credits, ABCF grading
May be repeated for credit

AMS 695 Special Topics in Numerical Analysis and Scientific Computing
The course is designed for second- and third-year graduate students with a strong foundation in applied linear algebra and numerical analysis who wish to pursue research in applied mathematics. Several topics may be taught concurrently in different sections.
Prerequisites: AMS 505, AMS 526
3 credits, ABCF grading
May be repeated for credit

AMS 698 Practicum in Teaching
3 credits, S/U Grading
May be repeated for credit

AMS 699 Dissertation Research On Campus
Prerequisite: Must be advanced to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

AMS 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off-campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, summer, 1-9 credits, S/U grading
May be repeated for credit

AMS 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, summer, 1-9 credits, S/U grading
May be repeated for credit

AMS 800 Summer Research
0 credit, S/U grading
May be repeated
The Department of Art’s master’s and doctoral programs in Art History and Criticism and the Master of Fine Arts program in Studio Art occupy unique positions among graduate programs in art studies. The Department’s programs have been built with a strong emphasis on modern art and contemporary visual culture, comprising a range of critical, theoretical, and interdisciplinary interests. Rather than being isolated at a special or autonomous art institute or school, these programs have all the advantages associated with the intellectual environment of a major research university. Students have the opportunity to explore other fields in addition to Art History and Criticism or Studio Art, and may elect to complete one or more advanced graduate certificate programs in Art and Philosophy, Cultural Studies, and Women’s Studies, among others.

Because of the Department of Art’s extensive undergraduate programs, Stony Brook is the only major university in the New York metropolitan area to offer teaching experience to first- and/or second-year graduate students in Art History and Criticism or Studio Art. Such experience is an important asset in today’s job market.

Graduate studies are facilitated by Stony Brook’s ideal location halfway between the art centers of New York City and the Hamptons, along the beautifully wooded North Shore of Long Island. Classes, lectures, and conferences are also offered at Stony Brook Manhattan; at the Pollock-Krasner House in East Hampton, administered under the auspices of the Department of Art and the Stony Brook Foundation; and at the Pollock-Krasner Study Center at Stony Brook Southampton. All curricula are designed to take advantage of the full range of museums, galleries, and libraries of the metropolitan region as well as the facilities of a major research university campus. Thanks to the well-established ties of Stony Brook faculty to the professional art world, our students are regularly placed in internship and apprenticeship programs with artists, arts agencies, galleries, museums, and other cultural institutions throughout the metropolitan area. Art History students also have the opportunity to gain valuable experience as managing and business editors for the respected semi-annual journal, Art Criticism, published by the Department under the editorship of Donald Kuspit.

Degree Programs

M.A. in Art History and Criticism

The M.A. in Art History and Criticism is a two-year, 36-credit degree program that offers an integrated curriculum of art history, criticism, and theory with a particular focus on modern and contemporary art and visual culture. It presents the graduate student a unique opportunity for innovative study in art criticism and theory and traditional study in art history. The goals of the program include the development of the critic or historian who can combine the various fields of art historical study with a critical consciousness and awareness of larger intellectual issues involved in such work. For example, seminars are offered on the history of art criticism; the development of alternative perspectives on art; the development of practicing art critics; and the interdisciplinary study of modern and contemporary art, among others. The program culminates in the preparation of a written thesis. Part-time study is allowed in this degree program. The M.A. in Art History and Criticism can be considered appropriate preparation for Ph.D. degrees in art history or other fields. Students also move on to careers in arts education, or gallery and museum work.

M.F.A. in Art History and Criticism

The M.F.A. in Studio Art is a flexible 60-credit terminal degree combining studio work, academic studies, and theory. Although the degree requirements concentrate primarily on studio practice, the program requires several liberal arts courses as well as a teaching practicum. The program culminates in a one-person thesis show accompanied by a written thesis, as well as participation in an M.F.A. group exhibition in the University Art Gallery. Normally, the M.F.A. requires three years of full-time residency. Students are not accepted into the M.F.A. program on a part-time basis. The degree is especially suitable for students who plan professional involvement in the making of art as artists, and may also be the degree of choice for those preparing for careers in arts administration, art education, or gallery and museum work.

Ph.D. in Art History and Criticism

Stony Brook’s Ph.D. program in Art History and Criticism is designed to encourage students to apply what they have learned at the master’s level toward more intense and individual research. It is organized to allow students to further their areas of study by concentrating on major and minor fields that are a function of the individual interests of the student and reflecting the strengths of the faculty. The emphasis of the program is on integrating research and analysis into a single curriculum with a particular focus on art criticism and theory and an interdisciplinary approach to modern and contemporary art and visual culture. The program culminates in the oral defense of a substantial written dissertation on an original topic. Students are not accepted into the Ph.D. program on a part-time basis. This degree is considered essential for those intending to engage in advanced academic research, teaching, and publishing in the field of art history and criticism, and may provide a significant advantage to those entering the professional art world of museums and galleries.

Advanced Graduate Certificate (AGC) in Art and Philosophy (ArtPHIL)

[Note: This is an optional opportunity for ARH or ARS students, as are the certificate programs in Women’s Studies and Cultural Studies. This advanced graduate certificate program is separate from the degree programs of the Department of Art.]
The Art and Philosophy (ArtPHIL) Advanced Graduate Certificate is a 15-credit (minimum) program designed to provide an interdisciplinary concentration in aesthetics, art history, art theory and criticism, contemporary continental philosophy, and visual arts, for students already enrolled full-time in a Stony Brook graduate degree-granting program (Ph.D., M.F.A., M.A. in Art History and Criticism, Philosophy, Studio Art, or a related discipline such as Comparative Literature, Cultural Studies, English, Hispanic Languages, Music, Theater, etc.). ArtPHIL graduate courses are regular seminars, offered primarily by the Departments of Art and Philosophy. To satisfy program requirements, courses must be approved by the ArtPHIL Program Director. All ArtPHIL students must take the joint seminar offered by two faculty members, one in Philosophy and the other in Art.

For students enrolled in an ARH or PHI graduate program, nine of the 15 credits must be earned outside the home graduate program. The six credits earned toward the graduate degree in the home department may be applied toward the ArtPHIL Graduate Certificate. Students enrolled in Stony Brook graduate programs other than ARH or PHI should consult with their home departments to determine whether credits earned for the ArtPHIL AGC can be applied to the primary graduate degree program.

For complete admission requirements, approved courses, and enrollment forms in the ArtPHIL AGC program, please visit: http://ms.cc.sunysb.edu/~hsilverman/ArtPHIL/ArtPHIL.htm. Students interested in the ArtPHIL program are advised to seek enrollment early in their primary degree program. To discuss program details and enrollment procedures, contact Prof. Hugh J. Silverman, ArtPHIL Program Director, at Hugh.Silverman@stonybrook.edu.

Facilities
Since 1976, the Department of Art has enjoyed the resources of the Staller Center for the Arts. This 226,036-square-foot building includes the Departments of Art, Music, and Theatre and is a vibrant hub of concerts, lectures, performances, and other cultural activities. The complex includes faculty and staff offices, art history classrooms, and a graduate lounge. The first floor of the Art wing features a magnificent art gallery space devoted primarily to exhibitions of contemporary art, including the annual M.F.A. show.

In addition, the Department has substantial graduate studio space available at other locations on the campus. Each M.F.A. student is provided individual studio space and there are large common spaces used regularly for discussion, temporary exhibitions or installations, and documentation of work. The Graduate Library Gallery provides exhibition space with media exhibition equipment and network connection for M.F.A. students, and there are several other on-campus locations where students have opportunities to exhibit their work. Studio facilities in the Staller Center include full foundry, metals, and wood shops; a ceramics and ceramic sculpture studio; spacious painting, drawing, and studio classrooms; printmaking studios with etching, stone lithography and photo plate-making and screen printing facilities; extensive digital facilities; and a shooting studio with gang and individual darkrooms. The Visual Resources Library offers an extensive slide and digital image collection to support the teaching and research needs of the Department, videos and print journals, as well as computer equipment for the ongoing development of a database and digital imaging capacity. Art history classrooms are equipped with slide projectors and data projectors. The main library houses extensive collections of scholarship on the arts, including recent exhibition catalogues and the most important art history and criticism journals. In addition, art history and criticism students have the opportunity to gain business and editorial experience by assisting with the production of the respected journal Art Criticism, published semiannually by the Department. Proximity to New York City makes available the numerous ateliers, galleries, libraries, museums, and publishing institutions of the greater metropolitan area.

Classes, lectures, and conferences are also now offered at Stony Brook's Manhattan facility, conveniently located at 28th Street and Park Avenue South, and easy to reach by bus, train, and subway. Finally, the Pollock-Krasner House in East Hampton and the Pollock-Krasner Study Center in Southampton, Long Island, are affiliated with the University. Once the home and studio of Jackson Pollock and Lee Krasner, the Pollock-Krasner House is now a both a landmark museum and a forum for lectures, seminars, and other academic activities. The Study Center comprises extensive reference materials and archives, including books, journals, oral histories, photographs, and available for research.

Admission
Admission to the M.A. and Ph.D. Programs in Art History and Criticism
In addition to the requirements of the Graduate School, the following information and prerequisites should be noted:

Admission for full-time study may be for either the Fall or Spring semester, though the former is advisable, both for financial awards (at the Ph.D. level) and for organizing the course of study. Part-time study is permissible for qualified M.A. candidates only. Admission into the M.A. and Ph.D. programs is at the discretion of the Departmental graduate studies committee with the final approval of the Graduate School. Admission to the program assumes a minimum of a B average in undergraduate work, meeting the standards of admission to the Graduate School. The minimum TOEFL score for admission is 550 (paper), or 213 (computer), or 90 (Internet-based test); OR an IELTS total score of 6.5. In order to teach, any graduate student whose native language is not English must score 55 or above on the TSE or SPEAK test or obtain a score of 7.0 or better in the speaking component of the IELTS test. The Web site for ETS (TOEFL and GRE) is www.ets.org.

It is recognized that M.A. and Ph.D. applicants may come from a wide variety of backgrounds that will require individual structuring of their programs to suit their needs. Applicants will ordinarily have a bachelor's degree with an Art History major or minor; however, this requirement may be waived at the discretion of the Departmental graduate studies committee. Those without a demonstrated background in art history may be advised to take undergraduate courses in the Department prior to admission to the program. All applicants are encouraged to submit a sample of written work with their application.
Admission to the M.F.A. Program in Studio Art

In addition to the requirements of the Graduate School, the following information and prerequisites should be noted:

Admission for full-time study will be granted to begin in the fall semester only. Admission into the M.F.A. program is at the discretion of the graduate faculty with final approval of the Graduate School. Admission to the program assumes a minimum of a B average in undergraduate work, meeting the standards of admission to the Graduate School, and taking the GRE (Graduate Record Examination) General Test, as required for all applicants to the Graduate School. The minimum TOEFL score for admission is 550 (paper), or 213 (computer), or 90 (Internet-based test); OR an IELTS total score of 6.5. In order to teach, which is a requirement for the M.F.A., any graduate student whose native language is not English must score 55 or above on the TSE or SPEAK test or obtain a score of 7.0 or better in the speaking component of the IELTS test. The Web site for ETS (TOEFL and GRE) is www.ets.org.

All candidates for the M.F.A. program must enter with a minimum of 40 semester hours of credit or the equivalent of undergraduate work in Studio Art in a B.A., B.S., B.F.A., or similar program. The candidate must submit with his or her graduate application 15 to 20 slides of work or other appropriate materials that may include NTSC VHS video tapes, DVDs, or CDs. Applicants should also have a minimum of 15 semester hours of credit in art history, theory, or criticism. At the discretion of the graduate faculty, those without sufficient background may be advised to complete further undergraduate coursework prior to acceptance and admission to the program. Decisions by the graduate art faculty on these matters are in addition to, and not in lieu of, the general requirements of the Graduate School.

Faculty

The faculty of the Department of Art consists of artists and scholars of national and international reputation who are actively involved in the practice of art, art criticism, or art historical research. Artists on the faculty have published numerous books and articles in major scholarly journals or presses.

Professors

- Bogart, Michele H., Ph.D., 1979, University of Chicago: American art and visual culture.
- Buonaguro, Toby, M.A., 1971, City College of New York: Ceramics; ceramic sculpture; drawing.
- Guilmain, Jacques, Emeritus, Ph.D., 1958, Columbia University: Medieval art; archaeology.
- Kuspit, Donald B., Ph.D., 1971, University of Michigan; D.Phil., 1960, University of Frankfurt, Germany: Art criticism; aesthetics; 20th-century and Northern Renaissance art.
- Pekarsky, Melvin H., M.A., 1956, Northwestern University: Drawing; painting; public art.
- Rubin, James H., Ph.D., 1972, Harvard University: 18th- and 19th-century art; art and politics.

Associate Professors

- Frank, Barbara E., Ph.D., 1988, Indiana University: African, Mesoamerican, and African Diaspora art history.
- Pekarsky, Melvin H., M.A., 1956, Northwestern University: Drawing; painting; public art.
- Rubin, James H., Ph.D., 1972, Harvard University: 18th- and 19th-century art; art and politics.

Assistant Professors

- Gerbracht, Grady, SMVisS (Master's of Science in Visual Studies), 1999, Massachusetts Institute of Technology: Visual and conceptual design; photography; digital media.
- Monteyne, Joseph, Ph.D., 2000, University of British Columbia, Canada: Early modern art history and criticism.
- Patterson, Zabet, Ph.D., 2007, University of California, Berkeley: History and theory of digital media.
- Uroskie, Andrew, Ph.D., 2005, University of California, Berkeley: History and criticism of late modernism, film and photography in the art of 1960s and 1970s.

Adjunct Faculty, Technicians, and Professional Staff

- Cassidy, James, Technical Specialist and Lecturer, M.A., 1986, Adelphi University: Photo/printmaking technician and studios manager.

- Cooper, Rhonda, Director of the University Gallery and Lecturer, M.A., 1972, University of Hawaii: Far Eastern art.
- Harrison, Helen, Lecturer and Director of the Pollock-Krasner House and Study Center, M.A., 1975, Case Western Reserve University: American art.
- Larese, Steven, Technical Specialist and Lecturer, M.F.A., 1975, University of Cincinnati: Visual resources curator; painting and drawing.

Part-Time Faculty

- Brooks, Sarah, Adjunct Lecturer, Ph.D., 2002, Institute of Fine Arts, New York University: Medieval art and architecture.
- Leslie, Richard, Adjunct Lecturer, Ph.D., 2003, Graduate Center of the City University of New York: 20th century; northern Baroque; and history of photography.
- Paradis, Jason, Adjunct Lecturer, M.F.A., 1998, Stony Brook University: Painting and drawing.
- Richolt, Dan, Adjunct Lecturer, M.F.A., 1994, Stony Brook University: Sculpture.
- Weil, Marianne, Adjunct Lecturer, M.F.A., 1986, School of Visual Arts: Sculpture and design.

Affiliated Faculty

- Kaplan, Elizabeth Ann, Distinguished Professor of English and Comparative Literary and Cultural Studies; Director, The Humanities Institute at Stony Brook, Ph.D., 1970, Rutgers University: Film and cultural studies, women's studies, psychoanalysis.
- Munich, Adrienne, Professor of English, Ph.D., 1976, City University of New York: Victorian literature and culture, feminist theory, material culture, fashion theory.
- Silverman, Hugh J., Professor of Philosophy and Comparative Literary and Cultural Studies, Program Director, Advanced Graduate Certificate in Art and Philosophy, Ph.D., 1973, Stanford University: Aesthetic, cultural, and art theory, continental philosophy, contemporary European thought and cultures.

- Number of teaching, graduate, and research assistants, Fall 2007: 25
Degree Requirements
Requirements for the M.A. Degree in Art History and Criticism

A. Course Requirements

The student will be required to complete successfully 36 credits of graduate work, as outlined in the list of courses below. A student must achieve a 3.0 overall grade point average to receive a degree from Stony Brook.

1. Required Courses (12 credits)
 - ARH 502 History of 19th-Century Art
 Criticism and Theory (three credits)
 - ARH 503 History of 20th-Century Art
 Criticism and Theory (three credits)
 - ARH 540 Methodologies of Art
 History (three credits)
 - ARH 592 Teaching Practicum
 (see below)

2. Art History and Criticism (six to nine credits)
 - ARH 501 Theory and Criticism: From
 Antiquity through the Renaissance
 (three credits)
 - ARH 591 Practicum in the Writing of
 Art Criticism (three credits)
 - ARH 541 Topics in Ancient Art
 (three credits)
 - ARH 542 Topics in Medieval Art
 (three credits)
 - ARH 543 Topics in Renaissance Art
 (three credits)
 - ARH 544 Topics in Early Modern Art
 (three credits)
 - ARH 545 Topics in 19th-Century Art
 (three credits)
 - ARH 546 Topics in 20th-Century Art
 (three credits)
 - ARH 547 Topics in Global, Colonial,
 and Diasporic Art (three credits)
 - ARH 548 Museum Studies Seminar
 (three credits)
 - ARH 549 Topics in American Visual
 Culture (three credits)
 - ARH 550 Inquiries into Art Criticism
 and Theory (three credits)
 - ARH 551 Topics in Performance
 (three credits)
 - ARH 552 Topics in Contemporary Art
 (three credits)
 - ARH 554 Topics in Visual Culture
 (three credits)
 - ARH 570 Issues in Architectural
 History and Criticism (three credits)

3. Humanities and Social Sciences
 Electives (six to nine credits)

 Two or more courses in the humanities and/or social sciences, to be chosen in consultation with a faculty advisor and with the approval of the Director of Graduate Studies. These courses may be in anthropology, dramaturgy, history, literary studies or criticism, musicology, sociology, etc., but cannot be in studio art.

4. Thesis Credits (three to six credits)
 - ARH 598 Thesis (three to six credits)

 Note: A student who takes only two art
 history and criticism courses must take
 three humanities and social science
electives, and vice versa. Total elective
 credits must be 15.

B. Comprehensive Examination

This test of basic competency is designed to assess the student’s knowledge of individual artists and works of art, and of particular periods and dates in the history of art. It will include slide identifications and definitions of terms relevant to the history of art and art criticism. The student must take this examination before the end of the third semester of study to continue in the program. An extension will be allowed to part-time students.

C. Foreign Language

A reading knowledge of French or German must be acquired before graduation. Students planning to advance to doctoral work will be encouraged to master both of these languages.

D. Teaching Requirement

All graduate students will be expected to assist in teaching a minimum of one semester. The course in which the student will assist shall ordinarily be an introductory-level undergraduate course. Competency in teaching will be judged through teacher evaluation questionnaires and classroom visits by the course’s faculty supervisor.

E. Thesis

At the beginning of the third semester, the student, together with his or her directing committee, which shall consist of the student’s advisor and one or two other faculty members, will jointly agree on a thesis topic. The student must at that time submit a prospectus outlining the nature and aims of the thesis. The thesis shall be a significant original work in the form of one or more essays relevant to the examination of art history, criticism, and theory.

Requirements for the M.F.A. in Studio Art

The Department accepts only full-time students into the M.F.A. program.

A. Course Offerings

Courses are offered in ceramics, ceramic sculpture, computer and electronic media, drawing, painting, photography, printmaking, and sculpture. In addition, studio courses offered through other departments may satisfy area-of-concentration requirements, subject to approval by the Studio Art faculty and the Director of Graduate Studies.

B. Liberal Arts Requirement

Students are required to take three or four graduate liberal arts courses (in anthropology, art history and criticism, cultural studies, dramaturgy, history, literature, musicology, and philosophy, among others).

C. Demonstrations of Studio Proficiency

All M.F.A. candidates should demonstrate proficiency through the development of a comprehensive body of work. Proficiency is determined by the faculty through periodic evaluation of the work, including midterm and final critiques each semester, and thesis exhibition review by the student’s thesis committee in the third year.

D. Final Year and One-Person Exhibition

During the final year, in addition to regular coursework, the student will prepare a one-person thesis exhibition for the Graduate Library Gallery or some other suitable venue on campus. As part of the thesis requirement, the student will submit to the Department appropriate visual documentation (color slides, digital images, photographs, videos) of the exhibition and a written commentary that conforms to the Graduate School’s requirements for master’s theses. The written thesis should complement the visual work as an articulation of the student’s thoughts and objectives within the broader context of arts and ideas. Third-year students will also participate in the University Art Gallery’s annual M.F.A. group exhibition.
E. Teaching Requirement

All graduate students are required to assist in teaching a minimum of one semester; this course offers three credits toward the M.F.A. degree under ARS 531. In addition, the Department of Art requires a preliminary semester of observing in the course to be taught under faculty supervision during the following semester. The semester of observation offers an optional three credits toward the degree. Beyond the three- or six-credit teaching practicum applied toward the degree, all other teaching by students with teaching assistantships is part of their obligation and is done without academic credit.

F. Course Requirements

The student will be required to complete successfully 60 credits of graduate work as outlined in the list of courses below. No graduate studio course may be taken for more than three credits per semester.

1. ARS 550 In Process Critique (three credits) to be taken during the first year; may be repeated and counted toward studio credits

2. At least nine graduate studio courses (27 credits)

3. Two semesters of ARS 580 Visual Arts Seminar (six credits); additional visual arts seminars are encouraged

4. Three courses in graduate liberal arts, e.g., art history, languages, literature, philosophy, etc. (nine credits)

5. ARS 531 Graduate Teaching Practicum (see item E, above) (three to six credits)

6. ARS 532 Thesis Project (up to six credits)

Requirements for the Ph.D. Degree in Art History and Criticism

A. Course Requirements

The student will be required to complete successfully 60 credits of graduate work, as outlined in the list of categories and courses below. A student must achieve a 3.0 overall grade point average to receive a degree from Stony Brook.

1. Required Courses (12 to 15 credits)

 ARH 540 Methodologies in Art History (three credits)
 ARH 502 History of 19th-Century Art Criticism and Theory (three credits)
 ARH 503 History of 20th-Century Art Criticism and Theory (three credits)
 ARH 602 Practicum in Teaching (three to six credits)
 2. Electives (24 credits)

 Students are required to take at least one course from each of the following three categories: Art Criticism and Theory, Art History, and Modern and Contemporary Visual Culture.

Art History

 ARH 541 Topics in Ancient Art (three credits)
 ARH 542 Topics in Medieval Art (three credits)
 ARH 543 Topics in Renaissance Art (three credits)
 ARH 544 Topics in Early Modern Art (three credits)
 ARH 547 Topics in Global, Colonial, and Diasporic Art (three credits)
 ARH 549 Topics in American Visual Culture (three credits)
 ARH 690 Directed Readings (three credits)

Modern and Contemporary Visual Culture

 ARH 544 Topics in Early Modern Art (three credits)
 ARH 545 Topics in 19th-Century Art (three credits)
 ARH 546 Topics in 20th-Century Art (three credits)
 ARH 547 Topics in Global, Colonial, and Diasporic Art (three credits)
 ARH 549 Topics in American Visual Culture (three credits)
 ARH 551 Topics in Performance (three credits)
 ARH 552 Topics in Contemporary Art (three credits)
 ARH 554 Topics in Visual Culture (three credits)
 ARH 690 Directed Readings (three credits)

ARS 580 Visual Arts Seminar (six credits)

B. Teaching Requirement

All Ph.D. students are expected to assist in teaching a minimum of two semesters. The first course in which the student will assist will ordinarily be an introductory-level undergraduate course. An advanced doctoral student may also be assigned to assist in an upper-level undergraduate course. Competency in teaching is judged through teacher evaluation questionnaires and classroom visits by the course's supervising faculty member.

C. Comprehensive Examination

Information about the required comprehensive examination is found above under Degree Requirements for the M.A. Degree in Art History and Criticism. All Ph.D. students who enter the program without a master's degree in art history must take this examination
before the end of the third semester of study to continue in the program. Ph.D. students who enter the program with an M.A. degree in Art History will be exempted from taking the comprehensive examination.

D. M.A. Qualifying Paper

The M.A. qualifying paper is a paper completed in a graduate-level course and emended by the student in light of the suggestions or corrections of the faculty member to whom the paper was submitted. After the paper is revised, it will be read by another faculty member chosen by the student and the first reader (the advisor). The second reader will approve or disapprove the paper. If the second reader disapproves, the Graduate Program Director will select a third reader to judge the paper, and the opinion of the two readers will determine the approval or disapproval of the paper. This requirement is waived for Ph.D. students who enter the program with an M.A. degree in Art History. Students may also opt to complete a full master's thesis and receive the M.A. degree prior to continuing on with the Ph.D. program.

E. Foreign Language Requirement

A reading knowledge of German and French is required for advancement to candidacy. In consultation with the candidate’s advisor, the student may petition the Director of Graduate Studies to replace one of these two languages with a different language more suitable for the student’s projected area of research. Mastery of a third language may also be recommended if it is deemed necessary for the student’s research.

F. Qualifying (Preliminary) Examination

The Qualifying Examination should be taken no later than the end of the third year of coursework (second year for those entering with a prior master’s degree) and prior to the beginning of dissertation fieldwork. It will be a written exam covering a major and minor, chosen from the following fields:

Major Fields
1. Contemporary Art
2. Modern Art
3. Visual and Material Culture
4. Sexuality and Gender Studies
5. Art Criticism, Theory, and Interpretation

Minor Fields
1. Ancient, Medieval, and Early Modern Art
2. Global, Colonial, and Diasporic Art
3. One of the major fields listed above

The content of the exam will vary according to the student’s interests and their choice of major and minor fields, but exam preparation should ideally begin during the student’s second year of coursework. The student will be expected to select two faculty members to serve as major and minor advisors and to seek guidance from them on appropriate focus and bibliography in preparation for the exams. The Qualifying Exam committee consists of three members of the Department faculty (including major and minor advisors) and is appointed by the Dean of the Graduate School upon the recommendation of the Graduate Studies Director. The format of the exam shall be five questions for the major, from which the student shall choose three; and three questions for the minor, from which the student shall choose two to answer. Responses are in essay form.

G. Advancement to Candidacy

To be advanced to Ph.D. candidacy, the student must have:
1. Completed at least 54 graduate credits and all other degree requirements (see A-F listed above), other than the dissertation and dissertation research credits.
2. Submitted and defended a proposal outlining the nature and aims of the dissertation. The proposal must be approved by a faculty committee (see below). When all of these requirements have been completed satisfactorily, the Director of Graduate Studies will submit a request to the Dean of the Graduate School to advance the student to candidacy.

H. Dissertation

No later than the beginning of the seventh semester (fifth semester for those entering with a prior master’s degree), but preferably by the beginning of the sixth semester, the student will prepare a written prospectus, outlining the scope, method, and aims of the dissertation. The student will submit the proposal to the dissertation advisor and two other members of the Department who will serve as readers, one of whom (but not the advisor) will serve as chair of the dissertation defense. After the student’s advisor has conferred with the other Departmental committee members and the Departmental committee has approved the proposal, the advisor will submit the proposal and names of the committee members to the Director of Graduate Studies for approval. (The student may be advanced to candidacy at this point.) At least six months before the dissertation defense, the Graduate Studies Director, in consultation with student and the student’s dissertation committee, will name a reader from outside the Department who has specialized in related areas. The Graduate Director must then request the Graduate School for approval of the committee.

At least 10 weeks before the Graduate School’s deadline for submitting the completed dissertation, the student will submit to the readers what is intended to be the final draft of the dissertation. No more than four weeks after that, if the readers have agreed that the dissertation is ready to be defended, the dissertation committee chair will schedule the defense, an oral examination open to interested faculty and graduate students. The date of the defense must be approved by the Graduate School. All four readers on the dissertation committee must recommend acceptance of the dissertation before it can be approved by the Graduate School.

I. Time Limit

All requirements for the Ph.D. degree must be completed within seven years after completing 24 hours of graduate courses in the Department. In rare instances, the Dean of the Graduate School will entertain a petition to extend this time limit, provided it bears the endorsement of the Department chair.

Art History and Criticism Courses

ARH 501 Theory and Criticism: From Antiquity through the Renaissance
An examination of theoretical treatises and other writings on art from Antiquity through the Renaissance. The influence of theory on practice, and vice versa, is explored through close examination of selected monuments. Changing concepts of the artist’s place in society are also studied as reflected in contemporary critical and expository writing. Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit
ARH 502 History of 19th-Century Art
Criticism and Theory
A study of European art criticism and theory of the 19th century stressing relationships between art and the history of ideas. Readings concentrate on primary sources, including reviews of art exhibitions (Diderot, Stendhal, Zola), artists' letters (Constable, Delacroix, the Impressionists), and treatises relating to art (Winckelmann, Proudhon, Ruskin). Special emphasis is given to Baudelaire. Comparisons are made between ways of seeing art as well as between critical and theoretical attitudes to artists' intentions.
Fall, 3 credits, ABCF grading

ARH 503 History of 20th-Century Art
Criticism and Theory
The literature of art has expanded enormously in the 20th century—far beyond attempts to organize it developmentally or conceptually. An attempt is made to define types of criticism both in relation to the critics and their relation to the support system for the arts of which they are a part.
Spring, 3 credits, ABCF grading

ARH 540 Methodologies of Art History
This graduate seminar is designed to engage students with the history and methods of the discipline of art history. Through close readings and focused discussions, the course examines issues raised by aesthetics, the problems of biography and "periodization," and the role of canon formation. Particular focus is directed toward the interpretive tools that have developed from within the discipline of art. In addition, also stressed is the interdisciplinary nature of art history through readings that discuss how lines of thought and critical inquiry emerging within other disciplines have had enormous influence on art history and criticism in the last two decades: semiotics, feminist theory, psychoanalysis, anthropology and postcolonial theory, cultural studies, theories of mass culture and the post-modern, and the current debates about visual culture.
Offered annually, 3 credits, ABCF grading

ARH 541 Topics in Ancient Art
This course deals with a variety of topics relating to ancient art and its influence on later European art and artistic theory. Areas explored include ancient art history; aesthetics, and comparative criticism; Roman uses of Greek art; pagan imagery in early Christian and medieval art; antique art and the Renaissance (use of prototypes); collecting antiquities (from the Medici to Getty); archaeological exploration and publication in the 18th and 19th centuries; French neoclassicism; and the calligraphy of Greek vases (Hamilton, Blake, Flaxman, Ingres, Picasso).
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 542 Topics in Medieval Art
A topic in medieval art or architecture, such as early medieval manuscript illumination, ornament and design, or the Gothic cathedral, is selected and explored during the semester in lectures, discussions, and student reports or papers.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 543 Topics in Renaissance Art
This course, usually a seminar, deals with one or several of the following aspects of Renaissance art: iconographic problems, style and connoisseurship (including the study of individual works at the Metropolitan Museum or the Frick), patronage and its effect on the form and content of a work, the exchange of artistic ideas between northern and southern Europe, and Renaissance sources in antiquity and the Middle Ages.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 544 Topics in Early Modern Art
This seminar examines methodological developments and historical issues related to the art and visual culture of the early modern period. Though we are concerned with objects, discourses, and practices emerging in the 17th century, we also approach these through the perspective of contemporary critical tools (for example, theories of urban space, spectacle, and representation; psychoanalysis, sexuality, and subjectivity; coloniality and the encounter with New World otherness; semiotics and the construction of absolutist power). Students are encouraged to engage with these issues through the study of traditional high art objects as well as through other forms of representation emerging in the early modern period—for example, scientific illustration, more ephemeral forms of print culture, and even urban and courtly spectacle.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 545 Topics in 19th-Century Art
Selected topics in 19th-century art with an emphasis on interdisciplinary approaches to interpretation. Possible topics include politics and art during the French Revolution; English landscape painting and the theory of the picturesque; and French realism and mid-19th-century social thought.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 546 Topics in 20th-Century Art
Twentieth-century art considered as an international movement, European and American, although national groups may be studied. Emphasis varies with topics ranging over stylistic analysis, iconographical interpretations, and theoretical studies. Students are expected to undertake original research and interpretation.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 547 Topics in Global and Diasporic Art
This course examines various issues in the appreciation, interpretation, and appropriation of non-Western art. Emphasis is on developing a critical approach to these arts and the manner in which they have been represented and misrepresented in the Western imagination. Topics vary, but may include exploration of themes in the so-called traditional arts of Africa, Oceania, Native and Latin America, the transformations of these arts during the colonial period, issues of identity and the consequences of dislocation versus sense of place in the diaspora, and contemporary expressions of non-Western artists on the global scene.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 548 Museum Studies
Through a combination of field trips, visiting lecturers, group discussion, and student projects, the course surveys the diverse aspects of the museum field, including management, curatorship, exhibitions, public relations, conservation, and other areas of administration and professional practice.
3 credits, ABCF grading

ARH 549 Topics in American Visual Culture
This course examines selected issues in the history of American art and material culture. The course focuses upon, but is not necessarily limited to, the United States. Topics include public art and public culture; approaches to the study of material culture; art and commercial and/or popular culture; art and regional locations; realism; imaging the West; cross-cultural exchanges in art of the United States. (May be used to fulfill 20th-century requirement when material deals with 20th-century art.)
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 550 Inquiries into Art Criticism and Theory
This course deals with the theoretical approaches to the study of art that cross historical boundaries. Topics vary from semester to semester. They may be an expansion of one of the areas generally covered in ARH 540, such as psychology of art or the iconography of architecture. Other investigations may focus on subjects requiring a special methodological approach, such as the theory and history of ornament and design or the role of public art.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 551 Topics in Performance
This course examines various issues in the appreciation, interpretation, and appropriation of performance. Emphasis is on developing a critical approach to these arts and the manner in which they have been represented and misrepresented in the Western imagination. Topics vary, but may include exploration of themes in the so-called traditional arts of Africa, Oceania, Native and Latin America, the transformations of these arts during the colonial period, issues of identity and the consequences of dislocation versus sense of place in the diaspora, and contemporary expressions of non-Western artists on the global scene.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 554 Topics in Early Modern Art
This seminar examines methodological developments and historical issues related to the art and visual culture of the early modern period. Though we are concerned with objects, discourses, and practices emerging in the 17th century, we also approach these through the perspective of contemporary critical tools (for example, theories of urban space, spectacle, and representation; psychoanalysis, sexuality, and subjectivity; coloniality and the encounter with New World otherness; semiotics and the construction of absolutist power). Students are encouraged to engage with these issues through the study of traditional high art objects as well as through other forms of representation emerging in the early modern period—for example, scientific illustration, more ephemeral forms of print culture, and even urban and courtly spectacle.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 555 Topics in 19th-Century Art
Selected topics in 19th-century art with an emphasis on interdisciplinary approaches to interpretation. Possible topics include politics and art during the French Revolution; English landscape painting and the theory of the picturesque; and French realism and mid-19th-century social thought.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 556 Topics in 20th-Century Art
Twentieth-century art considered as an international movement, European and American, although national groups may be studied. Emphasis varies with topics ranging over stylistic analysis, iconographical interpretations, and theoretical studies. Students are expected to undertake original research and interpretation.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 557 Topics in Global and Diasporic Art
This course examines various issues in the appreciation, interpretation, and appropriation of non-Western art. Emphasis is on developing a critical approach to these arts and the manner in which they have been represented and misrepresented in the Western imagination. Topics vary, but may include exploration of themes in the so-called traditional arts of Africa, Oceania, Native and Latin America, the transformations of these arts during the colonial period, issues of identity and the consequences of dislocation versus sense of place in the diaspora, and contemporary expressions of non-Western artists on the global scene.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 558 Museum Studies
Through a combination of field trips, visiting lecturers, group discussion, and student projects, the course surveys the diverse aspects of the museum field, including management, curatorship, exhibitions, public relations, conservation, and other areas of administration and professional practice.
3 credits, ABCF grading

ARH 559 Topics in American Visual Culture
This course examines selected issues in the history of American art and material culture. The course focuses upon, but is not necessarily limited to, the United States. Topics include public art and public culture; approaches to the study of material culture; art and commercial and/or popular culture; art and regional locations; realism; imaging the West; cross-cultural exchanges in art of the United States. (May be used to fulfill 20th-century requirement when material deals with 20th-century art.)
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 560 Inquiries into Art Criticism and Theory
This course deals with the theoretical approaches to the study of art that cross historical boundaries. Topics vary from semester to semester. They may be an expansion of one of the areas generally covered in ARH 540, such as psychology of art or the iconography of architecture. Other investigations may focus on subjects requiring a special methodological approach, such as the theory and history of ornament and design or the role of public art.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

ARH 561 Topics in Performance
This course examines various issues in the appreciation, interpretation, and appropriation of performance. Emphasis is on developing a critical approach to these arts and the manner in which they have been represented and misrepresented in the Western imagination. Topics vary, but may include exploration of themes in the so-called traditional arts of Africa, Oceania, Native and Latin America, the transformations of these arts during the colonial period, issues of identity and the consequences of dislocation versus sense of place in the diaspora, and contemporary expressions of non-Western artists on the global scene.
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit
ARH 522 Topics in Contemporary Art
The course will examine the latest developments in visual art and architecture, beginning with the Neo-Expressionism and Neo-Constructivism of the 1960s and extending to installation and video art. Postmodernist and activist art will be examined in particular detail, and contextualized in terms of the broader patterns of 20th-century art.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

ARH 553 Contemporary Art in New York
A systematic survey of contemporary art on view in museums and galleries in New York. The class would alternate between gallery/museum visits and interpretative analyses of the work in the classroom. A variety of theoretical approaches will be used and the full range of contemporary pluralism will be examined. Contemporary art will be understood as both a manifestation of contemporary society and in terms of its larger art historical context and significance. The New York art scene is the richest in the world. The class offers the student the opportunity for direct, informed contact with it.
3 credits, ABCF grading

ARH 554 Topics in Visual Culture
This course examines issues in the interdisciplinary field of visual culture. Visual culture studies look at the dynamic state of visual media in contemporary life and their historical origins, seeking to relate art and film to the mass media and digital culture.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

ARH 580 Art Criticism or Gallery Internship
An internship offering practical experience in some aspect of the field of art history and criticism, such as gallery and curatorial work in an on-campus or off-campus gallery or museum, or journalistic experience with an art or criticism publication such as the Department of Art journal Art Criticism.
Prerequisite: Good standing in the graduate Art History and Criticism program
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

ARH 581 Materials, Methods, and Techniques of Studio Art
Through reading, discussion, and demonstration, this course explores the media and techniques used in making art throughout history, concentrating on the medieval through contemporary periods. Relationships between development of media and techniques and the history of style and social context of art are also examined. Studios and shops of the Department of Art are utilized to demonstrate, for example, etching and lithography, bronze casting, and other processes. Guest lectures, field trips to conservation facilities, and gallery and museum experiences are employed, and toward the end of the course the student produces a painting stretched, sized, and primed in the traditional manner.
Prerequisite: Graduate standing in Art History and Criticism
Spring, 1-3 credits, ABCF grading

ARH 591 Practicum in the Writing of Art Criticism
This course is designed as a practicum in the writing of art criticism under the supervision of the faculty.
Fall and spring, 3 credits, S/U grading
May be repeated once for credit

ARH 592 Practicum in Teaching
Instruction in the Department under the supervision of the faculty. (This course may not be included more than once in the courses taken in fulfillment of the 36-credit-hour requirement.)
Fall and spring, 3 credits, S/U grading

ARH 595 Directed Readings in Art History, Criticism, and Theory
An independent reading course to be arranged with a particular faculty member. Normally, this course is reserved for second-year master's students who have fulfilled most of their course requirements and for whom the proposed program of study cannot be completed within other existing course structures.
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

ARH 598 Thesis
Prerequisite: Completion of all degree requirements
1-6 credits, S/U grading
May be repeated for credit up to six credits

ARH 602 Teaching Practicum, Advanced
Instruction in the Department by advanced graduate students under the supervision of faculty.
3 credits, S/U grading
May be repeated once for credit

ARH 603 Directed Readings for Doctoral Candidates
An independent reading course to be arranged with a particular faculty member. Normally, this course is reserved for advanced Ph.D. students who have fulfilled most of their course requirements and for whom the proposed program of study cannot be completed within other existing course structures.
Fall and spring, 1-9 credits, ABCF grading
May be repeated for credit

ARH 699 Dissertation Research On Campus
Prerequisite: Must be advanced to candidacy (G5); major portion of research must take place on campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ARH 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ARH 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ARH 800 Summer Research
0 credit, S/U grading

Studio Art Courses
ARS 520 Special Projects for M.F.A. Candidates
Advanced projects in areas that may not be included in the M.F.A. curriculum, utilizing the unique talents of regular and visiting faculty, the facilities of the Department of Art, or other aspects of the University environment, and possibly facilities at other locations or institutions.
Prerequisites: Faculty sponsor, permission of Graduate Studies Director
Fall, spring, and summer, 1-9 credits, ABCF grading
May be repeated for credit

ARS 525 Electronic Media
An exploration of the experimental artistic practices utilizing computer and electronic technologies: digital imaging, video and audio, Web and CD-rom production, and interactive installation. It will provide practical instruction in the use of computer media with an orientation towards relating this to the graduate student's own practice. It will also analyze the unique possibilities of this hybrid
and developing art form through theoretical readings and examination of recent works, exhibitions, festivals, and the Web. Prerequisite: Accepted candidate for M.F.A. or permission of Department Fall and spring, 3 credits, ABCF grading May be repeated for credit

ARS 530 Professional Experience Internship
Internship in the professional art world of New York City and its environs. Depending on the career objectives of the M.F.A. candidate, the student may choose to intern at a foundry, printmaking atelier, art gallery or museum, known artist's studio, or related facility or institution. Prerequisite: Accepted candidate for M.F.A. Fall, spring, and summer, 1-3 credits, S/U grading May be repeated twice for credit

ARS 531 Graduate Teaching Practicum
Supervised teaching practicum in undergraduate studio or studio theory course. Prerequisite: Accepted candidate for M.F.A. Fall and spring, 1-3 credits, S/U grading May be repeated once for credit

ARS 532 Thesis Project
Preparation of thesis under the program advisor. Prerequisites: Accepted candidate for M.F.A., review board passed Fall, spring, and summer, 1-6 credits, S/U grading May be repeated for credit

ARS 535 Projects in Studio Art
Projects in studio art, field, and media to be determined on a per-semester basis by the individual instructor. 3 credits, ABCF grading May be repeated once for credit

ARS 540 Graduate Photo Studio
Photographic studio, theory, and laboratory emphasizing individual development as a photographer. Color and black-and-white studies and darkrooms. Fine arts, reportage, illustration, commercial, and industrial. Prerequisite: Demonstration of appropriate level of proficiency, permission of instructor Fall and spring, 3 credits, ABCF grading May be repeated for credit

ARS 541 Photographing Works of Art
Graduate-level course for Art History and Criticism students, Studio Art students, and others examining in detail the techniques of photographing works of art and architecture and of photo reproduction; black-and-white and color work for portfolio, publication, teaching, and cataloging slide and photograph collections, etc. No laboratory work. Prerequisite: Graduate standing in Art History and Criticism or Studio Art or permission of Department 1-2 credits, ABCF grading

ARS 550 In Process Critique
Graduate theory and practice of art, investigating historical and contemporary concepts, concentrating on individual development as an artist. Conceptual, environmental, and wide-ranging solutions are encouraged. Required for first-year M.F.A. students, this course culminates in a body of work for the end-of-the-year First Year Exhibition. The course also provides students with vigorous critical feedback throughout this process, augmenting it with readings and discussions of related New York City exhibitions in galleries and museums to inform the development of their work. Spring, 3 credits, ABCF grading May be repeated for credit

ARS 551 Graduate Painting Studio
Studio and theory in painting and related visual forms, with instruction and facilities available in all media and techniques; emphasis on individual development as an artist. Models and space for environmental and conceptual works available. Prerequisite: Permission of instructor; accepted candidate for M.F.A. or permission of Department Fall and spring, 3 credits, ABCF grading May be repeated for credit

ARS 560 Graduate Sculpture Studio
Theory and practice of sculpture for the graduate student, with instruction and facilities available in all media and techniques; emphasis on individual development as an artist. Studio facilities include air, electric, and hydraulic power equipment; TIG, MIG, Argon, and flame welding; forging; woodworking; modeling, molding, and casting facilities for clay, wax, plaster, and plastics; and metal casting capabilities in investment, shell, sand, and centrifugal. Prerequisite: Permission of instructor; accepted candidate for M.F.A. or permission of Department Fall and spring, 3 credits, ABCF grading May be repeated for credit

ARS 561 Graduate Ceramics and/or Ceramic Sculpture Studio
Theory and practice of ceramics and ceramic sculpture for the graduate student with emphasis on individual development as an artist. Advanced studio instruction in handbuilding: coil, slab, pinch; wheelthrowing; casting, inclusive of multipiece plaster pour-molds; various firing techniques: reduction, oxidation, raku, and high- and low-fire glaze techniques. Prerequisite: Permission of instructor; accepted candidate for M.F.A. or permission of Department Fall and spring, 3 credits, ABCF grading May be repeated for credit

ARS 570 Graduate Printmaking Studio
Graduate studio in the theory and practice of printmaking. Color, black-and-white, and photographic processes in plate and stone lithography, serigraphy, relief, and intaglio, emphasizing the student's individual development as an artist. Prerequisite: Permission of instructor; accepted candidate for M.F.A. or permission of Department Fall and spring, 3 credits, ABCF grading May be repeated for credit

ARS 580 Visual Arts Seminar
Required seminar and critique throughout the M.F.A. curriculum. Guest speakers, artists, and critics; demonstrations and lectures; seminars; individual and group critiques. The M.F.A. candidate, as part of this seminar, regularly participates in critiques in which his or her work is analyzed by guest faculty and art history/criticism faculty and graduate students, as well as by his or her peers. The visual arts seminar, where applicable, includes field trips and assignments of special lectures, panels, seminars, and other events of the professional art world. Prerequisite: Enrollment in M.F.A. program or permission of instructor Fall and spring, 3 credits, ABCF grading May be repeated for credit

ARS 591 Graduate Design Studio
Graduate theory and practice of two- and three-dimensional design; projections; perspective; maquettes; various techniques, including airbrush and experimental; and conceptual development of ideas, leading to completion of a design idea or design research project. Prerequisite: Permission of instructor 3 credits, ABCF grading May be repeated for credit

ARS 800 Summer Research
0 credit, S/U grading
Biochemistry and Structural Biology (BSB)

Chair, Department of Biochemistry and Cell Biology: Robert Haltiwanger, Life Sciences Building Room 450, (631) 632-8550
Graduate Program Director: Erwin London, Life Sciences Building Room 470, (631) 632-8533
Senior Staff Assistant: Carol Juliano, Life Sciences Building Room 336, (631) 632-8533

Degree awarded: Ph.D. in Biochemistry and Structural Biology

The Biochemistry and Structural Biology Graduate Program stresses biochemical, computational, and structural approaches to solving complex biological problems. Training is offered in a broad range of research areas leading to the Ph.D. degree. Research in biochemistry and structural biology includes structure-function studies of proteins and nucleic acids, the molecular basis of gene expression, the chemical basis of enzyme action, as well as membrane and carbohydrate biochemistry. The aim of structural biology is to obtain high-resolution structures of biological macromolecules and molecular complexes through experimental techniques such as nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction to provide a view of biology at the molecular and atomic levels. High-resolution structures combined with biochemical studies represent the blueprints for understanding enzyme catalysis, cell signaling and transport, gene expression and regulation, and numerous other cellular processes. Advances in instrumentation and computational analysis have laid the groundwork for structure determination of proteins discovered through genome sequencing efforts and have opened up structural studies on membrane proteins and large complexes of proteins and nucleic acids.

The program includes faculty from the Departments of Biochemistry and Cell Biology, Chemistry, Pharmacological Sciences, and Physiology and Biophysics, as well as from Brookhaven National Laboratory.

For more information, visit the BSB Web site at www.grad.sunysb.edu/academics/brochures/biochemistry/index.html

Facilities
State-of-the-art facilities are available for biochemistry and structural biology. The Center for Structural Biology has several high-field NMR instruments and facilities for X-ray crystallography. With close ties to the Brookhaven National Laboratory, Stony Brook takes advantage of the high-energy beam lines for diffraction studies. Throughout the program there is state-of-the-art equipment for protein purification and analysis, including Raman, infrared, fluorescence, and CD spectrophotometers. The biological sciences complex also has tissue culture facilities, a transgenic mouse facility, and a centralized Drosophila facility. These facilities are supported by a wide range of instrumentation for cell and molecular biology including transmission and scanning electron microscopes, confocal microscopes, and phosphomimagers.

Admission
Graduate studies in Biochemistry and Structural Biology require the following in addition to the Graduate School admissions requirements:
A. A bachelor's degree with the following minimal preparation: mathematics through one year of calculus; chemistry, including organic and physical chemistry; general physics; and one year of biology;
B. Letters from three previous instructors;
C. Graduate Record Examination (GRE) General Test scores;
D. Acceptance by the Graduate Program in Biochemistry and Structural Biology and by the Graduate School.

In special cases, students not meeting all of the requirements listed in item A above may be admitted, but such deficiencies must be remedied.

Faculty
Distinguished Professors
Lennarz, William J., Ph.D., 1959, University of Illinois: Biosynthesis and function of glycoproteins in cell-cell interactions.
Sternstahl, Rolf, Ph.D., 1967, Harvard University: Chromatin structure and function in yeast; histone modifying enzymes.

Professors
Citovalsky, Vitaly, Ph.D., 1987, Hebrew University, Jerusalem: Nuclear targeting and intercellular communication in plants.
Dean, Neta, Ph.D., 1988, UCLA: Protein glycosylation, fungal cell wall biosynthesis; fungal pathogenesis.
Deutsch, Dale, Ph.D., 1972, Purdue University: Metabolism and uptake of the endocannabinoids (anandamide and 2-AG).
Gergen, J. Peter, Ph.D., 1982, Brandeis University: Transcriptional regulation in development; structure and function of Runt domain proteins.
Haltiwanger, Robert, Ph.D., 1986, Duke University: Glycobiology; role of protein glycosylation in signal transduction; notch signaling.
London, Erwin, Ph.D., 1979, Cornell University: Membrane protein structure/translocation/folding; structure and function of sphingolipid/cholesterol rafts in membranes.
McLaughlin, Stuart, Ph.D., 1968, British Columbia: Calcium/phospholipid second messenger system.
Miller, W. Todd, Ph.D., 1989, Rockefeller University: Tyrosine phosphorylation and signal transduction.
Raleigh, Daniel P., Ph.D., 1988, Massachusetts Institute of Technology: Experimental studies of protein folding and amyloid formation.
Reinitz, John, Ph.D., 1987, Yale University: Systems biology of development and transcription.
Sampson, Nicole, Ph.D., 1990, University of California, Berkeley: Role of sterol oxidation in tuberculosis pathogenesis. Structure and function of enzymes in sterol metabolic pathways; mammalian fertilization.
Simon, Sanford R., Ph.D., 1967, Rockefeller University: Proteases and their inhibitors in invasiveness, inflammation and tumor metastasis; inhibition of bacterial metalloproteases.
Smith, Steven O., Ph.D., 1985, University of California, Berkeley: Structure and function of membrane proteins.

89
Structural enzymology of eukaryotic DNA interactions. Folding and recognition, especially protein-DNA interactions.

Associate Professors

Holdener, Bernadette, Ph.D., 1990, University of Illinois: The role of protein folding in WNT signal transduction and development.

Neiman, Aaron, Ph.D., 1994, University of California, San Francisco: Vesicle trafficking and intracellular signaling in yeast.

Simmerling, Carlos L., Ph.D., 1991, University of Illinois: Development of tools for efficient simulation of chemical systems and using them to study the structure and dynamics of molecules involved in biological processes.

Thomsen, Gerald H., Ph.D., 1988, Rockefeller University: Regulation of early vertebrate development by growth factor signals; ubiquitin modification; T box family transcription factors.

Assistant Professors

Bowen, Mark E., Ph.D., 1998, University of Illinois, Chicago.

Carrico, Isaac, Ph.D., 2003, California Institute of Technology: Site-specific protein labeling; glycoproteins.

de los Santos, Carlos, Ph.D., 1987, Buenos Aires, Argentina: Solution structures of damaged DNA; structural basis of chemical mutagenesis, lesion recognition, and DNA repair.

Green, David, Ph.D., 2002, MIT.

Rizzo, Robert, Ph.D., 2001, Yale University: Computational biology; drug design.

Scientists

Fu, Dax, 1996, Mayo Graduate School of Medicine: X-ray crystallography of membrane protein transporters and channels.

Li, Huilin, Ph.D., 1994, University of Sciences and Technology, Beijing, China: Structural biology of macromolecular assemblies and membrane proteins by cryo-electron microscopy.

Liu, Chang-Jun, Ph.D., 1999, Shanghai Institute of Plant Physiology, the Chinese Academy of Sciences.

Degree Requirements

Requirements for the Ph.D. Degree

A. Course Requirements

1. Graduate Biochemistry I (MCB 520)

2. Membrane Biochemistry (BSB 517)

3. Computational Methods in Biochemistry and Structural Biology (BSB 515)

4. Physical Biochemistry (MCB 512)

5. Cell Biology (MCB 656) or Molecular Genetics (MCB 503)

6. Experimental Projects in Biochemistry and Structural Biology (BSB 509/510), a two-semester course in which the students spend two months in each of three different faculty laboratories actively participating in the research work of the laboratory.

B. Qualifying Examination

At the beginning of the fourth semester, all students take a written qualifying examination covering the material from the core courses. This examination tests the student’s ability to integrate basic concepts and information from the core courses.

C. Research Proposal

After passing the written qualifying examination, each student is required to prepare and defend a research proposal based on their own research. The student presents a detailed writeup of the background and logic of the proposition to test it, which then forms the basis for an oral proposition examination. The qualifying examination and the proposition examination together constitute the preliminary examination specified in the regulations of the Graduate School.

D. Advancement to Candidacy

When the above requirements have been satisfactorily completed, a recommendation for advancement to candidacy for the Ph.D. will be forwarded to the Graduate School.

E. Dissertation

During the second year, the student initiates a dissertation research project in the laboratory of a particular member of the program faculty. After the student has passed the proposition examination, a research committee is appointed to guide the dissertation research, and when the research nears completion, a dissertation examining committee is approved by the Dean of the Graduate School.

F. Dissertation Defense

The dissertation defense, which completes the requirements for the Ph.D., consists of a public seminar presentation of the dissertation work followed by an oral examination before the dissertation examining committee.

G. Teaching Experience

All students in molecular biology and
biochemistry, whether or not they are supported by teaching assistantships, are required to gain experience in teaching by assisting in laboratory sections, leading discussion sections, or helping to formulate and grade examination papers. The teaching experience may be in either undergraduate or graduate courses, and extends over a period of two semesters.

H. Residence Requirement

The University requires at least two consecutive semesters of full-time graduate study. The demands of the course of study necessitate a longer period of residence.

Courses

BSB 509 Experimental Biochemistry and Structural Biology

An introduction to modern biochemical research techniques. The student spends a half-semester in the laboratory of each of four different members of the faculty. In each laboratory, the student participates in some aspect of the research being pursued by the faculty member.

Fall and spring, 1-6 credits, ABCF grading
May be repeated for credit

BSB 510 Experimental Biochemistry and Structural Biology

An introduction to modern biochemical research techniques. The student spends a half-semester in the laboratory of each of four different members of the faculty. In each laboratory, the student participates in some aspect of the research being pursued by the faculty member.

Fall and spring, 1-6 credits, ABCF grading
May be repeated for credit

BSB 512 Introduction to Structural Biology

Theoretical principles and experimental methods used in the study of proteins and nucleic acids. Lectures and laboratory demonstrations will cover optical spectroscopy, NMR spectroscopy, and X-ray diffraction.

Spring, 2 credits, ABCF grading
May be repeated for credit

BSB 515 Computational Methods in Biochemistry and Structural Biology

Computational methods used in sequence searching and analysis, bioinformatics, graphical analysis of proteins, and nucleic acids. Prerequisite: This class is restricted to first-year BSB, HBM, and HHB Ph.D. students and second-year MCB Ph.D. students; exception requires approval from the course instructor.

Fall, 1 credit, S/U grading

BSB 517 Membrane Biochemistry

Examines the molecular architecture of membranes; the organization, function, and assembly of lipids and proteins in biological membranes.

Prerequisites: Undergraduate biochemistry, matriculation in graduate program, or permission of instructor.

Fall, 1 credit, ABCF grading
May be repeated for credit

BSB 531 Journal Club in Biochemistry and Structural Biology

Provides students with a forum for acquiring skills involved in the critical analysis and presentation of scientific data by active participation in seminars of major topics in structural biology and biochemistry, and critical discussion of selected topics with presentation of papers from the literature.

Prerequisite: Must be registered in the BSB program.

Fall and spring, 1 credit, ABCF grading
May be repeated for credit

BSB 532 Journal Club in Biochemistry and Structural Biology

Provides students with a forum for acquiring skills involved in the critical analysis and presentation of scientific data by active participation in seminars of major topics in structural biology and biochemistry, and critical discussion of selected topics with presentation of papers from the literature.

Prerequisite: Must be registered in the BSB program.

Spring, 1 credit, ABCF grading
May be repeated for credit

BSB 580 Advanced Structural Biology

Advanced topics in NMR spectroscopy and structural biology.

Prerequisites: Intro to Structural Biology (BSB 512) or Physical Biochemistry (MCB 512)

Spring, 2 credits, ABCF grading
May be repeated for credit

BSB 581 Teaching Honors

Selected students whose performance in the basic required courses for the graduate program is in the top 10 percent conduct tutorials for first-year graduate students in the program and other students taking graduate courses for credit. The tutors are supervised and graded by faculty of the graduate program. Successful completion of this course makes students eligible to receive “Honors in Teaching” on their transcripts.

Fall and spring, 1 credit, S/U grading
May be repeated for credit

BSB 599 Research

Original investigation undertaken with the supervision of a faculty member.

Fall and spring, 1-12 credits, S/U grading
May be repeated for credit

BSB 601 Colloquium in Biochemistry and Structural Biology

A weekly series of talks and discussions by visiting scientists covering current research and thinking in various aspects of structural biology and biochemistry.

Prerequisites: Must be registered in the BSB program.

Fall, 1 credit, S/U grading
May be repeated for credit

BSB 602 Colloquium in Biochemistry and Structural Biology

A weekly series of talks and discussions by visiting scientists covering current research and thinking in various aspects of structural biology and biochemistry.

Prerequisites: Must be registered in the BSB program.

Spring, 1 credit, S/U grading
May be repeated for credit

BSB 603 Student Seminars in Biochemistry and Structural Biology

Seminars given by graduate students on the progress of their own thesis research. Required of all students every semester in which they are registered in the graduate program in Biochemistry and Structural Biology. Attendance is mandatory. Visitors are welcome.

Prerequisite: Must be registered in the BSB program.

Fall and spring, 1 credit, S/U grading
May be repeated for credit

BSB 604 Student Seminars in Biochemistry and Structural Biology

Seminars given by graduate students on the progress of their own thesis research. Required of all students every semester in which they are registered in the graduate program in Biochemistry and Structural Biology. Attendance is mandatory. Visitors are welcome.

Prerequisite: Must be registered in the BSB program.

Fall and spring, 1 credit, S/U grading
May be repeated for credit

BSB 699 Dissertation Research On Campus

Original investigations undertaken as part of the Ph.D. program under supervision of a research committee.

Prerequisite: Advancement to candidacy (G5); major portion of research will take place on SB campus or at Brookhaven National Laboratory.

Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

BSB 700 Dissertation Research Off Campus–Domestic

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.

Fall, spring, summer, 1-9 credits, S/U grading
May be repeated for credit

BSB 701 Dissertation Research Off Campus–International

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in
MEDEX: international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor. Fall, spring, summer, 1-9 credits, S/U grading. May be repeated for credit.

BSB 800 SUMMER RESEARCH
0 credits, S/U grading. May be repeated.
Biomedical Engineering (BME)

Chair: Clinton T. Rubin, Psychology A, Third Floor, (631) 632-2302
Graduate Program Director: Helmut Strey, Psychology A, Third Floor, (631) 632-1957
Administrative Staff Assistant: Anne Marie Dusatko, Health Sciences Center T18-030, (631) 444-2303

Degrees awarded: M.S. in Biomedical Engineering; Ph.D. in Biomedical Engineering

Biomedical engineering is at the forefront of medicine’s technologic revolution; its many successes have raised expectations for the prevention, diagnosis, and treatment of disease. Faculty at Stony Brook University have been active contributors to the cutting edge of this technology, and our University is building on internationally acclaimed strengths in Bioelectromagnetics, Biomaterials, Biomechanics, Biotechnology, Instrumentation, Medical Imaging, and Tissue Engineering. These disciplines thrive through active interdisciplinary collaborations among the faculty in the College of Engineering and Applied Sciences, the School of Medicine, and the College of Arts and Sciences, all of which are in close proximity. This ongoing biomedical research, combined with unique facilities at the University, Brookhaven National Laboratory, and Cold Spring Harbor Laboratory have helped distinguish Stony Brook as a superb resource for education in both the engineering and health sciences. With these intellectual and physical resources, the program in Biomedical Engineering is positioned to provide a rigorous, cross-disciplinary graduate training and research environment for our students.

This is a very exciting time for Biomedical Engineering. New areas are opening each day, ranging from the engineering of tissues to making outer space habitable for mankind. It is an excellent time to begin your studies in Biomedical Engineering and we believe you will find Stony Brook a superb place to train. Our faculty is diverse, our commitment is high, and our facilities are unique. If there are any questions we can address, please contact us directly.

The Graduate Program in Biomedical Engineering at Stony Brook University trains individuals with baccalaureate degrees in engineering, applied mathematics, and the sciences and provides them with the synthesis, design, and analysis skills necessary to contribute effectively to the advancement of technology in health and medical care. The M.S. and Ph.D. degree programs are specifically designed to provide graduate students and engineering professionals with the knowledge and skills necessary to transfer recent developments in the basic sciences into commercially viable products and processes. Training of the student is accomplished by exposing the individual to the biology, engineering, and business concepts critical to succeeding in the biomedical research and development environment.

Training in Biomedical Engineering is directed by faculty from the College of Engineering and Applied Sciences, School of Medicine, College of Arts and Sciences, Health Sciences Center, as well as from Brookhaven National Laboratory and Cold Spring Harbor Laboratory. These diverse faculty provide a spectrum of research opportunities. Breadth and depth of exposure is a hallmark of the program, and one which we believe emphasizes the importance of multidisciplinary, collaborative approaches to real-world engineering problems in biology and medicine. Graduate training includes course instruction, participation in seminar courses, and extensive involvement in selected projects emphasizing synthesis and design skills. The graduate program is based in the Health Sciences Center, adjacent to University Hospital, and in close proximity to the Basic Sciences, Engineering, and Business Schools.

Admission

Students may matriculate directly into either the M.S. or Ph.D. programs. For admission to the Program in Biomedical Engineering, the following are normally required:

A. A four-year undergraduate degree in engineering or related field such as the physical sciences or mathematics;
B. An official transcript of undergraduate record and of any work completed at the graduate level;
C. Letters of recommendation from three previous or current instructors/employers;
D. Submission of a personal statement outlining your background, interests, and career goals in the field of biomedical engineering;
E. Graduate Record Examination (GRE) General Test scores;
F. Acceptance by both the Program and the Graduate School.

Stipends and tuition scholarships are available for selected students. Distribution of these awards will be based on GRE test scores, undergraduate performance, professional experience, and research/career objectives as outlined in a personal statement.

Faculty

Distinguished Professors

Chu, Benjamin, Ph.D., 1959, Cornell University: Synthesis; characterization and processing of biomaterials; molecular manipulation and self-assembly in biomimetic mineralization; DNA complexation for gene therapy.

Rafalsovich, Miriam, Ph.D., 1980, University at Stony Brook: Polymers: liquids; phase transitions; thin film wetting phenomena; biopolymers.

Rubin, Clinton, T., Chair, Ph.D., 1983, Bristol University: Tissue adaptation; biophysical treatment of musculoskeletal disorders.

Professors

Berveniste, Helene, Ph.D., 1991, University of Copenhagen, Denmark: Understanding diagnostic MR contrast parameters suitable to visualize neuro-pathology in neurodegenerative diseases.

Brink, Peter, Ph.D., 1976, University of Illinois: Biophysical properties of gap junction properties.

Chiang, Fu-Pen, Ph.D., 1966, University of Florida: Development and application of various optical techniques such as moiré, holographic, interferometry, and speckle interferometry for stress analysis; nondestructive evaluation and metrology.

Chon, Ki, Ph.D., 1993, USC Los Angeles: Signal processing; development of novel algorithms to understand dynamic processes.

Clark, Richard, M.D., 1971, University of Rochester: Tissue engineering in wound repair.

Cohen, Ira, M.D., Ph.D., 1974, New York University: Electrophysiology of the heart.

Djuric, Petar, Ph.D., 1990, University of Rhode Island: Acoustic signal processing.

Fowler, Joanna, Ph.D., 1967, University of Colorado: Radiotracer synthesis with positron emitters.

Grine, Fred, Ph.D., 1984, University of the Witwatersrand, Johannesburg, South Africa: Tooth enamel thickness and structure and the stresses experienced by tooth enamel during masticatory loading in primates.
Hannon, Gregory, Ph.D., 1992, Case Western Reserve University: Explores the mechanisms and regulation of RNA interference as well as its applications to cancer research.

Harrington, Donald, M.D., Ph.D., 1966, Marquette University: Magnetic Resonance Imaging in medicine.

Hsiao, Benjamin, Ph.D., 1987, Institute of Materials Science at University of Connecticut: Structural and morphological development of complex polymer systems during preparation and processing in real time.

Hurst, Lawrence C., M.D., 1973, University of Vermont: Etiology of carpal tunnel syndrome; etiology of Dupuytren’s contracture.

Jacobsen, Chris, Ph.D., 1988, Stony Brook University: X-ray microscopy and holography.

Jesty, Jolyon, Ph.D., 1975, Yale University: Control mechanisms of coagulation, experimental and theoretical analyses.

Kaufman, Arie E., Ph.D., 1977, Ben-Gurion University: Computer graphics; visualization; interactive systems; 3-D virtual colonoscopy; computer architecture.

Krukenkamp, Irwin B., M.D., 1982, University of Maryland: Systolic and diastolic mechanics and myocardial oxygen consumption.

Liang, Jerome, Ph.D., 1987, City University of New York: Development of medical imaging hardware for single photon detection.

Mathias, Richard, Ph.D., 1975, UCLA: Research in biophysics seeks physical insights into how cells and tissues function.

Moore, Leon, Ph.D., 1976, University of Southern California: Renal physiology.

Qin, Yi-Xian, Ph.D., 1997, Stony Brook University: Physical mechanisms involved in the control of tissue growth, healing, and homeostasis, especially bone adaptation influenced by mechanical environment.

Stein, Lincoln, Ph.D., 1989, Harvard University: Genome informatics; developing databases, data-analysis tools, and user interfaces to organize, manage, and visualize that vast body of information.

Associate Professors

Bluestein, Daniel, Ph.D., 1992, Tel Aviv University, Israel: Dynamics of fluid flow and cellular transport through vessels.

Button, Terry, Ph.D., 1989, University at Buffalo: High-resolution computer-aided tomography.

Chen, Weiliam, Ph.D., 1993, University of Michigan: Controlled release biodegradable DNA delivery vehicles for gene therapy; innovative drug delivery systems.

Dilmanian, F. Avraham, Ph.D., 1980, Massachusetts Institute of Technology: Computed tomography; radiation therapy.

Entcheva, Emilia, Ph.D., 1998, University of Memphis: Cardiac bioelectricity, electrical stimulation of cardiac tissue, mechanisms of cardiac arrhythmias, defibrillation and modulation of cell function through gene transfer.

Frame, Molly, Ph.D., 1990, University of Missouri: Microvascular flow control at the fluid dynamic and molecular levels.

Gindi, Gene, Ph.D., 1982, University of Arizona: Algorithm development for medical imaging.

Hadjiajrgyrou, Michael, Ph.D., 1992, City University of New York: Molecular mechanisms of bone development and regeneration.

Judex, Stefan, Ph.D., 1999, University of Calgary, Canada: Molecular bioengineering; mechanical, molecular, and genetic influences on the adaptation of bone and connective tissues to physiologic stimuli.

Pan, Yingtian, Ph.D., 1992, National Laser Technology Laboratories, China: Optical/NIR spectroscopy and imaging methods and applying these techniques to provide clinical diagnostic information.

Mueller, Klaus, Ph.D., 1998, Ohio State University: Computer graphics, data visualization, medical imaging.

Rastegar, Jahangir, Ph.D., 1976, Stanford University: Robotics; biomechanics.

Reinitz, John, Ph.D., 1988, Yale University: Generation of body form, specifically the determination of morphogenetic fields.

Skiena, Steven, Ph.D., 1988, University of Illinois: Computational geometry; biologic algorithms.

Solomon, Irene, Ph.D., 1994, University of California at Davis: Reflex and central neural control of cardiovascular and respiratory function.

Simmerling, Carlos, Ph.D., 1994, University of Illinois, Chicago: Simulate known properties of molecules, assist in the refinement and interpretation of experimental data.

Stein, Lincoln, M.D., Ph.D., 1989, Harvard Medical School and University: Proactive approach to the genome information explosion by developing databases, data-analysis tools, and user interfaces to organize, manage, and visualize that vast body of information.

Zhu, Wei, Ph.D., 1996, University of California, Los Angeles: Brain image analysis, design and analysis of clinical trials and other biomedical studies, and genetics modeling.

Assistant Professors

Dhundale, Anil, Ph.D., 1987, Stony Brook University: cDNA microarrays, functional genomics technologies; translational research.

Goldstein, Rita, Ph.D., 1999, University of Miami: Multidisciplinary approach to measure brain function such as functional (fMRI), (PET), (ERP) recordings, and neuropsychology.

Miura, Michiko, Ph.D., 1984, University of California, Davis: Drug delivery methods; developing new boron-carriers for BNCT.

Mujica-Parodi, Lilianne, Ph.D., 1998, Columbia University: Relationships between four simultaneously or near-simultaneously interacting systems: neural, cardiac, endocrine, and cognitive, to better understand the neurobiology of arousal, fear, and stress.

Neuwald, Andrew, Ph.D., 1987, University of Iowa: Statistical and algorithmic methods with their application to the classification and modeling of protein domains.

Rizzo, Robert, Ph.D., 2001, Yale University: Application of computational techniques to drug discovery.

Schlyer, David, Ph.D., 1976, University of California, San Diego: Cyclotron targetry development; nuclear cross-section measurement; biomedical imaging technology.

Sitharaman, Balaji, Ph.D., 2005, Rice University: Research related to the diagnosis/treatment of disease and tissue regeneration.

Strey, Helmut, Graduate Program Director, Ph.D., 1993, Technical University, Munich: Nanostructured materials for applications in bioseparation, drug delivery and biosensors.

Wagshul, Mark, Ph.D., 1992, Harvard University: Utilizing MRI techniques for better understanding, diagnosing, and treating disease.

Zhao, Wei, Ph.D., 1997, University of Toronto, Canada: Development of novel detector concept and new clinical applications for early detection of cancer.

Zhong, Zhong, Ph.D., 1996, Stony Brook University: Medical imaging and diagnosis using monochromatic X-rays, X-ray phase contrast, and X-ray optics.

Research Faculty

Gatley, John, Ph.D., 1975, University of Newcastle-upon-Tyne, England: Medical radionuclide imaging.

Goldfarb, James, Ph.D., 2000, Catholic University of Nijmegen: Application of magnetic resonance imaging (MRI) to the cardiovascular system, particularly in the areas of myocardial function and blood vessels.

Hainfeld, James, Ph.D., University of Texas-Austin: Development of organometallic cluster compounds to be used as high resolution molecular labels.

Kolsky, Kathryn, Ph.D., 1989, Carnegie Mellon University: Development and production of...
All students (except those pursuing the Medical Physics Track) must also fulfill a business/management course requirement, which can be met by taking BME 509 Fundamentals of the BioScience Industry, or any MBA class (MBA 501 to 507, 511, or 589) from the School of Business. A given track/specialization will have additional requirements, which includes a minimum of six technical elective courses (three or which have to be BME).

Thesis or Non-Thesis Options

The student has the option of earning the Master of Science Degree in BME on either a thesis or non-thesis track. If non-thesis, the student undertakes elective graduate coursework to complete the 31 credits. In the thesis option, the student must additionally complete six credits of BME 599 Thesis Research and submit and defend a written thesis. A grade point average of B or better must be attained for the core BME courses taken, and an overall grade point average of 3.0 out of 4.0 must be maintained. For the non-thesis option, most students can complete this program within three academic semesters, and most students complete the thesis option in four academic semesters. The non-thesis option is recommended for students who wish to pursue a career in industry that does not involve research and development. Students pursing the non-thesis option cannot use BME 599 to fulfill any requirements (i.e., it is not a technical elective nor core course). The thesis option is recommended for students who will be continuing on for their doctoral degree and for students who wish to pursue an industrial career with an R&D focus. All BME students must also take GRD 500.

Requirements for the Ph.D. Degree

A. **Completion of the M.S. degree in Biomedical Engineering or equivalent graduate program**

B. **Satisfactory completion of the BME qualifying exam**

C. **Plan of Study**

Students matriculating into the doctoral (Ph.D.) degree program must complete all the requirements for the M.S. degree in BME at Stony Brook or enter the program with a relevant M.S. degree. This latter option is termed admission with “Advanced Standing.” After completion of the M.S. degree or admission with Advanced Standing, there are no course requirements per se, though certain courses may be required to fill any gaps in the student’s knowledge. Following completion of a qualifying exam, an independent basic research program will be undertaken. Subsequently, the student will present and defend his or her dissertation proposal. Successful completion of this stage will enable the student to “Advance to Candidacy.” One semester of teaching practicum must be satisfactorily performed. Completion of the research program will culminate in the submission and oral defense of a doctoral dissertation. The University requires at least two consecutive semesters of full-time graduate study.

D. Teaching Requirements

The BME teaching requirement for the Ph.D. degree can be fulfilled in any of the following three manners:

1. Deliver four lectures in a BME undergraduate or graduate course and present a seminar that covers the state-of-the-art in your field of research.
2. Teach a BME course, either as the instructor of record (if you have G5 student status) or as the principal instructor (for G4 student status).
3. Petition for something else that is equivalent to the above.

E. Thesis Proposal Examination

After successful completion of the qualifying examination, the student selects a thesis advisor and writes a proposal for thesis research. After approval by the thesis advisor, the proposal is orally defended before a thesis committee.

F. Advancement to Candidacy

After successful completion of all required and elective courses, the qualifying examination, and the thesis proposal examination, the student will be recommended to the Graduate School for advancement to candidacy.

G. Dissertation

The research for the Ph.D. dissertation is conducted under the supervision of the thesis committee. The dissertation must represent a significant contribution to the scientific and/or engineering literature. Upon approval of the completed dissertation by the thesis committee, a formal public oral defense of the dissertation is scheduled at which the student presents his or her findings and is questioned by
members of the examining committee and by other members of the audience. On acceptance of the dissertation by the thesis committee, all requirements for the degree will have been satisfied.

H. Time Limit/Residency Requirements
All requirements for the Ph.D. degree must be completed within seven years after completing 24 credits of graduate study. The University requires at least two consecutive semesters of full-time graduate study.

Courses
The goal of the Program in Biomedical Engineering is to promote actively the development of a versatile engineering graduate. This requires that the engineering student understand biological concepts as well as engineering concepts outside of his or her defined major. The core set of biomedical engineering courses will expose the biomedical engineering student to the principles of cell, tissue, and organ biology, as well as ensure that the students attain a credible level of sophistication in the engineering and basic science concepts that lie outside of their major, and which traverse multiple areas of biomedical engineering.

BME 501 Engineering Principles in Cell, Tissue, and Organ Systems
Course content is directed toward describing the microscopic physical interactions between cells and their environment as electro-mechano-chemical processes occurring at surfaces. This is provided in the context of basic molecular biology and cell physiology concepts. Emphasis is placed on developing the critical role of non-linear dynamics, physical chemistry of adsorption and desorption processes, self-assembly in cellular automata, and how complexity arises within simple physical systems.

BEM 502 Advanced Numerical and Computation Analysis Applied to Biological Systems
Numerical analyses of biological data. A unified mathematical/time series framework for modeling and mining biological data. Applications range from cardio-respiratory, renal blood pressure/flow and sequence (DNA, RNA, proteins) to gene expression data. Tools of data analysis include linear algebra, interpolation and extrapolation, parametric and nonparametric spectral estimation with the FFT and singular value decomposition, statistical description of data and integration of ordinary differential equations. Special focus will be placed on the use of linear and nonlinear numerical methods for the identification of physiological system dynamics and the development of computer simulation techniques to study dynamic response of physiological systems.

BME 503 Cell and Molecular Imaging
This course will cover basics of optics, microscopy, spectroscopy, and fluorescence in the context of imaging at the cellular and molecular level. Recently developed advanced imaging techniques for probing protein interactions and live cell functions are also discussed. The course is organized into three modules: optics and spectroscopy (e.g., properties of light, polarization, diffraction, spectra); fundamentals of fluorescence and applications to molecular and cellular measurements (e.g., Jablonsky diagram, Stokes’ shift, emission, excitation spectra, fluorescence anisotropy); and signal processing, image analysis techniques, and scientific visualization (e.g., temporal and spatial filters, 1D and 2D Fast Fourier transform, spectral analysis, cross-correlation). Theory will be complemented by extensive use of Matlab and its Image Processing Toolbox.

BME 504 Biomaterials Science and Analysis
Course content is directed toward providing an introductory treatment of the engineering issues implicit in understanding living tissue interactions with processed materials. Emphasis is placed on understanding surface contamination, corrosion, and optimizing material surface properties and compatibility.

BME 505 Principles and Practice of Biomedical Engineering
Introduces first-year students to the basic and clinical research at the cutting edge of biomedical engineering. The course has two key components. The first is a seminar series presented by internationally renowned bioengineers. An interactive discussion of topic-specific scientific literature precedes the formal presentation. The second component of the course is teaming up with a physician in rounds, the operating theater, clinics, etc., to get exposure to the real-life problems that face the medical community. It is hoped that the mix of science and clinician will move students toward determining how they can make contributions to health and society.

BME 506 Principles and Practice of BME
The goal of this course is to expose students to the cutting edge of biomedical engineering, including the challenges that arise in this discipline. The course has two key components. The first is a seminar series presented by internationally renowned bioengineers, including Stony Brook faculty, which cover areas such as biomechanics, medical imaging, biomaterials, tissue engineering, drug/medical device development, bioinformatics, and functional genomics. Topics related to the impact of technology on medicine are also addressed, including ethics. An interactive discussion of topic-specific scientific literature precedes the formal presentation. The second component of the course is teaming up with a physician in rounds, the operating theatre, clinics, etc., to get exposure to the real-life problems which face the medical community. It is hoped that the mix of science and clinician will move students toward determining how they can make contributions to health and society. Required course for BME M.S. and Ph.D. students.

BME 507 Fundamentals of Biomedical Engineering Management
This course exposes the engineering student to the responsibilities that focus on the management issues in biomedical engineering. Management functions are explored and the students learn how to integrate these functions with engineering responsibilities.

BME 508 Molecular and Cellular Biomechanics
Course content revolves around the effects and interactions of mechanical forces at the cellular and molecular level. The topics will range from describing the molecular and cellular basis of the adaptation of tissues to physical signals to prescribing specific mechanical environments for improved tissue engineering, to delineating relevant molecular, cellular, and biomechanical techniques, all the way to issues involved in the development and approval of diagnostics and therapeutics in molecular engineering. For a deeper understanding of the course material as well as to allow students to apply their newly gained knowledge, this course will contain a module on the design and analysis of experiments (i.e., applied biostatistics) and incorporate practical exercises in both laboratory (e.g., a real-time PCR experiment) or simulated computer settings (e.g., modeling of cell behavior).

BME 509 Fundamentals of the Bioscience Industry
A four-module course set up to provide students with a comprehensive introduction to the complexities of the bioscience business environment.

BME 510 Biomechanics
This course emphasizes the application of continuum mechanics to living tissues and organs to describe the material properties and their behavior under loading and stress. The interrelationship between biomechanics and physiology is examined in normal function and in disease processes. This course focuses on the physiology of tissue and organ systems in the context of mechanics, stress, strain, viscoelasticity, and material behavior, and the constitutive equations and the field equations governing fluids and fluid flow, with an emphasis on the cardiovascular and musculoskeletal systems. Emphasis is placed on the utilization of engineering principles to analyze processes at the tissue and organ
levels, covering soft and hard tissues and organs (blood, cardiovascular system, bone, cartilage, etc.), and to understand how these principles could be applied towards the design and development of prosthetic devices.

Fall, 3 credits, ABCF grading

BME 517 Radiation Physics
This graduate offering provides an initial physical background required for the study of medical physics. Sources of ionizing radiation, including radioactivity (natural and manmade) and X-ray producing devices are studied as well as sources of nonionizing radiation such as radiofrequency and ultrasound. The physical aspects of these radiations are characterized by their interaction with matter and methods for their detection. Each student will select and present a proposal for solving a clinical medical physics problem.

Prerequisites: Modern physics or equivalent
Fall, 3 credits, ABCF grading

BME 518 Radiobiology
The biological consequences of irradiation (ionizing, ultrasound, laser, RF, etc.) will be examined. Interaction mechanisms will first be examined followed by examination of the radiation impact at the molecular and cellular level. The use of radiation for therapeutic gain will be considered. As well, models will be developed for risk estimates. Topics to be covered will include target theory, biological response, NSD, and risk estimates.

Spring, 3 credits, ABCF grading

BME 519 Medical Health Physics
This course discusses the health physics and safety issues, associated with radiological devices, facilities, and procedures.

Prerequisite: BME 517
Spring, 3 credits, ABCF grading

BME 520 Lab Rotation I
1-3 credits, S/U grading

BME 521 Lab Rotation II
1-3 credits, S/U grading

BME 525 Tissue Engineering
Course deals with basics of biomaterial formulation that are relevant to tissue engineering, leading to the principles and practice of designing an engineered tissue, which will be facilitated by a design project.

Spring, 3 credits, ABCF grading

BME 526 Biological Systems Engineering
This course is a hands-on study of systems engineering in biology, using computer modeling to conceptualize and simulate a wide variety of applications. Computer wizardry not required; all skills taught in class. Appropriate and applicable to all BME tracks.

Fall, 3 credits, ABCF grading

BME 530 Medical Image Formation
This course covers the physical aspects of medical image formation. Image receptor design/optimization, reconstruction techniques, device hardware, and performance characteristics are considered.

Fall, 3 credits, ABCF grading

BME 531 Biosensing and Bioimaging
Basic concepts of biosensing and bioimaging, which include the elements of biological systems and biomimetics, traditional electrode and novel optical transducers, and advanced biomedical optical imaging systems.

Fall, 3 credits, ABCF grading

BME 532 Time Series Modeling of Biological Systems
A unified mathematical/time series framework for modeling and mining biological data. Applications range from cardio-respiratory, renal blood pressure/flow and sequence (DNA, RNA, proteins) to gene expression data. Tools of data analysis include neural networks, time-invariant and time-varying spectral methods, fractal and nonlinear dynamics techniques, hidden markov model, clustering analysis, and various system identification techniques.

Spring, 3 credits, ABCF grading

BME 534 Functional Genomics
Course provides foundation in concepts of functional genomics and proteomics. Topics include organization and complexity of the mammalian genome and mechanisms of expression of genes, gene expression analysis technologies with a strong focus on construction and utilization of DNA microarrays, and tools for determining gene function by perturbation of gene expression.

Spring, 3 credits, ABCF grading

BME 540 Radiation Oncology Physics
This course provides a background in therapeutic instrumentation, dosimetry, and treatment planning.

Fall, 3 credits, ABCF grading

BME 546 Statistical Analysis of Physiological Data
Statistical methods useful in analyzing common types of physiological data. Topics include probability, data distributions, hypothesis testing, with parametric and non-parametric methods, ANOVA, regression and correlation, and power analysis. Emphasis is on experimental design and appropriate and efficient use of statistical software.

Prerequisite: Permission is required
1 credit, ABCF grading

BME 547 Model-Based Analysis of Physiological Data
The analysis of common biochemical and physiological data by non-linear regression of data models and biophysical models of physio-
logical and biochemical processes. Examples include binding kinetics, compartmental mass transfer, and spectral analysis.

Prerequisite: Permission is required
1 credit, ABCF grading

BME 548 Measurement and Analysis in Physiological Research
The acquisition and analysis of data arising from common biochemical and physiological measurements. Topics include computer-based data acquisition and processing, densitometry, microscopy, and image analysis and processing. Emphasis is on experimental design and strategies for optimizing signal to noise ratio of measurements.

1 credit, ABCF grading

BME 549 Experimental Techniques in Systems Physiology
A series of lectures and laboratory exercises designed to introduce students to in vitro experimental techniques used in systems physiology. Emphasis will be placed on the ethical use of rodents in biomedical research and the measurement of physiological variables. Data acquisition and analysis procedures used in cardiovascular, respiratory, and neural and renal physiology will also be covered.

Prerequisite: permission is required
3 credits, ABCF grading

BME 550 Mathematical Models of Physiologic and Biophysical Systems
An introduction to mathematical modeling of cell and tissue function. Topics include the derivation and numerical solution of models of cell homeostasis, membrane transport and excitability, and cell signaling and metabolism. Grading is based on problems, student presentation, and completion of a modeling project.

Prerequisite: Permission is required
1 credit, ABCF grading

BME 571 Microfluids in Biological Systems
This course will outline theory and applications of special fluid handling conditions associated with living systems.

Fall, 3 credits, ABCF grading

BME 572 Biomolecular Analysis
This interdisciplinary course is intended for graduate students and advanced undergraduates in departments such as Biomedical Engineering, Chemistry, Physics, Biology, and Chemical Engineering. The course will give an introduction to single molecule experiments using fluorescence, optical traps, AFM cantilevers, microneedles, and magnetic microbeads as well as micro and nanofluidic devices.

Prerequisite: BME 501 and 502, or instructor approval
Fall, 3 credits, ABCF grading

BME 599 Biomedical Engineering Research
Research to be supported by a faculty member of the Department of Biomedical Engineering. Students must have permission of instructor and enroll in appropriate section. Faculty to be identified by the student.

Fall and spring, 1-9 credits, S/U grading

May be repeated for credit

BME 601 Cardiovascular Fluid Mechanics
The course will cover the application of fluid mechanics principles to the analysis of blood flow in the cardiovascular system under normal and pathological conditions. It will follow an historical time line by beginning with the most basic models of arterial blood flow, and proceed to the most advanced theories
related to physiology and pathophysiology, including an examination of the most up-to-date research in the area and the development of devices and implants.

Spring, alternate years, 3 credits, ABCF grading

BME 602 Topics in Biomedical Applications of Neural Networks
This is a project-based course that includes weekly seminars discussing advanced topics in funcy of devices and neural networks and their applications in biomedical devices. Applications include drug delivery, diagnostics, and management information handling. Students utilize simulation software to develop algorithms to solve successfully with training data sets of their own choosing.

Fall, alternate years, 3 credits, ABCF grading

BME 604 Finite Element Modeling in Biology and Medicine
Both finite difference and FEM are applied to solve the equations of incompressible and compressible fluid flow in porous media with emphasis on flows in skeletal tissues, i.e., bone and cartilage. Steady-state, transient flow, permeability, and surface boundary conditions are discussed. Practical and recent studies in the field are also discussed. Programming using FORTRAN or C languages will be required. The student is also introduced to commercially available software packages.

Spring, alternate years, 3 credits, ABCF grading

BME 605 Biomechanics of Tactile Sensory Systems
This study of the biomechanics of tactile neurophysiology for engineers entering the field of haptics and robotics manipulations. Anatomy and electrophysiology of transducer cells and neurons starting at the fingertips and extending to the somatosensory cortex. Characteristics of the external stimulus and its peripheral transformation. Relations of these topics to perceptual and/or behavioral responses.

Spring, alternate years, 3 credits, ABCF grading

BME 606 Drug Gene Delivery
Applications of biodegradable and biocompatible polymers in the design of drug and gene delivery systems for site-specific applications. A broad overview on the origin and development of controlled release therapeutic devices will be provided. Existing and proven commercial products will be examined. The second half of the course will be devoted to the use of DNA as a therapeutic entity and issues relevant to DNA delivery will be explored. An assessment of the most up-to-date DNA delivery technologies will be presented. Students are required to write a term paper on a drug or gene delivery topics of their choice. Students are also expected to give presentations on drug delivery and gene therapy related topics during the course.

Fall, alternate years, 3 credits, ABCF grading
May be repeated for credit

BME 610 Magnetic Resonance
This course provides a comprehensive study of magnetic resonance and its applications in medical imaging. An introduction of NMR is followed with development of the hardware and processing aspects required for MR image formation. An overview of basic and advanced MR imaging techniques is provided. Each student will select a topic in MR imaging for presentation at the conclusion of the course.

Fall, 3 credits, ABCF grading
May be repeated for credit

BME 612 Biomedical Engineering Aspects for the Use of Radiation in Medicine
This course provides a comprehensive study of the use of radiation in medicine. Physical aspects of the interaction of radiation with matter and for the radiation production are initially considered. The underlying principles of current radiation-based medical imaging is considered next. Topics include radiography, fluoroscopy, radiomimetic imaging, and computed tomography. The use of radiation for the treatment of malignancy is considered with the focus on required technology. Finally, advanced applications of radiation are considered with focus on imaging and treatment. Each student will select a topic examining the engineering or technical application of radiation in medicine for presentation at the conclusion of the course.

Spring, 3 credits, ABCF grading

BME 615 Clinical Nuclear Imaging
This course is designed to prepare the Medical Physics graduate student in the area of clinical medical imaging. In this clinical rotation, medical physics methods for planar film, CR, CR, mammography, fluoroscopy, CT, ultrasound, and MRI performance evaluations will be introduced. In addition, basic medical ethics, radiographic anatomy, and radiation safety will be covered. A total of 200 clinical hours will be completed in this program.

Prerequisites: BME 517; BME 518; BME 519; BME 530 or BME 550
Fall, every year, 4 credits, SU grading
May be repeated once for credit

BME 616 Clinical Nuclear Medicine Imaging
This course is designed to prepare the Medical Physics graduate student in the area of clinical nuclear medicine imaging. In this clinical rotation, the student will be exposed to radionuclide processes, radiopharmaceuticals including radioactive gases and aerosols-preparto, characteristics radiation dosimetry, in vitro and in vivo radiation detection systems, and imaging systems and their performance evaluations. In addition, basic medical ethics, clinical interpretations, and radiation safety will be covered. A total of 150 clinical hours will be completed in this program.

Fall, every year, 4 credits, SU grading
May be repeated once for credit

BME 617 Clinical Radiation Oncology Physics
This course is designed to prepare the Medical Physics graduate student in the area of clinical radiation oncology physics. In this clinical rotation, the student will learn by observation and participation some of a selection of the following medical physics procedures: LINAC Beam Dosimetry (ion chamber measurement techniques), film dosimetry (radiographic and radioluminescence, diode dosimetry, TLD dosimetry, water phantom scanning, implementation of photon and electron beam calibration protocols (AAPM TG51), LINAC beam data measurement and tabulation, commissioning a TPS system, LINAC, acceptance testing, LINAC, QA, HDR QA and planning, and IMRT inverse planning and IMRT clinical QA. A total of 120 clinical hours will be completed in this program.

Prerequisites: BME 517 and BME 550 with a B+ or better
Spring, every year; 4 credits, SU grading

BME 620 Space Radiation Biology
An extensive series of lectures, training sessions, and laboratory activities sponsored by NASA's Radiation Health Program in collaboration with BNL. The material is oriented to cover basic and state-of-the-art concepts in space radiation environment, physics, and radiobiology. Content includes basic concepts in physics, dosimetry, radiobiology, space radiation problems, and accelerator operations. Concurrent sessions are provided to complete specific BNL training and plan and prepare experiments for low- and high-LET radiation exposures. Students are trained in NSRL operations and are able to run control experiments using gamma rays in preparation for NSRL runs, and subsequently, experiments at the NSRL using heavy ions. Data obtained from different endpoints are discussed and analyzed with the instructors. Homework is used to test the student's level of comprehension of the lectures and laboratory activities. The write-up of a full BNL beam time request proposal is required of each student.

5 credits, ABCF grading

BME 690 Biomedical Engineering Research
Biomedical engineering research for doctoral students who have already received their M.S. degree, but have not yet advanced to candidacy.

Fall and spring; 1-9 credits, ABCF grading
May be repeated for credit

BME 699 Practicum in Teaching
Undergraduate teaching to be supervised by a faculty member of the program in Biomedical Engineering. Course to be identified by the student and graduate studies director.

Fall and spring; 1-3 credits, SU grading
May be repeated for credit

BME 699 Dissertation Research On Campus
Prerequisite: Students must be advanced to candidacy (G5); permission of instructor and enrollment in appropriate section; major portion of research must take place on SB campus, at Cold Spring Harbor; or at Brookhaven National Lab

Fall, spring, and summer; 1-9 credits, ABCF grading
May be repeated for credit

BME 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students
must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, summer, 1-9 credits, S/U grading
May be repeated for credit

BME 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, summer, 1-9 credits, S/U grading
May be repeated for credit

BME 800 BME Research
O credit, S/U grading
May be repeated
In today's world of constant change and extraordinary opportunity, the need for business education has never been greater. Stony Brook is now able to offer something new in a university that already has achieved a great record of success as a premier research institution. The M.B.A. degree program is taught by senior Stony Brook faculty with decades of experience. They are complemented by key executives recruited as visiting professors from throughout the tri-state region—industry leaders who have built stellar careers in today's global business world.

Students participate in a vibrant learning environment where they gain the knowledge, skills, and insights necessary to manage complex organizations. Dedicated faculty have both academic and business experience, and teach not only the broad principles of management, finance, and marketing but also the more intangible aspects of leadership, communications, and business strategy.

The College of Business offers flexible full- and part-time programs with day, evening, and Saturday courses at the main campus in Stony Brook, Long Island, located 60 miles east of New York City. Some courses for the M.B.A. program are also offered at the Manhattan location, situated at the crossroads of the business world at Park Avenue South and East 28th Street. Beyond these two locations, programs extend to the far corners of the globe as a result of relationships with business schools overseas.

Full-time students are encouraged to spend a summer session or a semester in the study abroad program to learn about business in Africa, China, Europe, India, Korea, or the Middle East. These experiences provide students with a competitive edge in the job market as businesses increasingly look for employees with overseas experience. Today most businesses are global in nature, whether they are multinational corporations or small local businesses with overseas suppliers, customers, or a diverse international workforce.

M.B.A. Program

By focusing on analytical, managerial, strategic, and technical processes and outcomes critical to success in a broad spectrum of industries, Stony Brook University's M.B.A. program helps students recognize ways in which they can add value to their firms and advance their careers.

Program Description

Stony Brook offers a flexible M.B.A. program:

Full-time M.B.A.

This 60-credit program is completed over a two-year period. Opportunities for internships and study abroad take place at one of our partner business schools in Africa, China, Europe, India, and the Middle East.

Part-time M.B.A.

Offering a flexible evening and Saturday course schedule to accommodate work schedules, this program can be completed between two and five years. We also offer convenient summer courses, weekday evenings, and Saturdays.

Fast Track M.B.A.

A 60-credit honors program for undergraduate students, this program permits students to take 30 graduate credits during their last year and a half at Stony Brook. In their fifth year, students go directly into the second year of the M.B.A. program for the final 30 credits of the M.B.A. Students have opportunities for a summer study abroad and an internship.

Accelerated M.B.A.

A 48-credit program for students with five or more years of post-bachelor's business experience or advanced degrees beyond the bachelor's.

Core Courses

Core courses cover a broad range of topics in the first year, including accounting, communications, decision-making, economics, ethics, finance, innovation, law, leadership, marketing, operations research, organizational behavior, and team building. In the second year, students focus on an area of concentration such as finance, general management, health systems management, human resources, information management, or marketing. Students also engage in an industry project in the second year to get hands-on experience in applying the knowledge from the classroom to the business world. Finally, students take a capstone course in business strategy.

Concentrations

Students begin to take elective courses in the spring semester of the first year and take the majority of their courses as electives in the second year. Students may choose to concentrate in finance, general management, health systems management, human resources, information systems management, or marketing.

Superior Teaching in a Nurturing Learning Environment

The Stony Brook program prides itself on its superior teaching and its dedication to working with each student to develop his or her business and managerial skills. We seek to bridge the gap between theory and practice by selecting faculty members who can clearly communicate the practical benefits of managerial knowledge.

M.B.A. Curriculum

The M.B.A. curriculum for the 60-credit program is comprised of 18 three-credit courses plus a six-credit group project. The 18 courses include 11 required core courses plus seven electives. Four of the seven elective courses must be taken in a student's field of concentration, such as finance, general management, health systems management, human resources, information systems management, or marketing. Full-time students typically complete an internship or foreign study during the summer between the first two years.

Students within the M.B.A. program may also earn a New York State Advanced Graduate Certificate in
Finance, Health Care Management, Human Resources, or Information Systems Management.

Two-Year Program

First Year
- Fall Semester
 - MBA 501 Managerial Economics
 - MBA 503 Data Analysis and Decision Making
 - MBA 504 Financial Accounting
 - MBA 505 Marketing
 - MBA 502 Finance
- Spring Semester
 - MBA 506 Leadership/Team Effectiveness/Communication
 - MBA 511 Technological Innovations
 - MBA 589 Operations Management
 - MBA 507 Ethics and Law
- Second Year
 - Fall Semester
 - MBA 592 Organizational Behavior
 - MBA 521/522 Industry Project (six credits)
 - Elective
 - Spring Semester
 - MBA 512 Business Planning and Strategic Management (capstone course)
 - Elective
 - Summer
 - Study abroad/internship (usually completed in the summer)

Typical Accelerated Curriculum (48 credits)
- MBA 501 Managerial Economics
- MBA 503 Data Analysis and Decision Making
- MBA 504 Financial Accounting
- MBA 505 Marketing
- MBA 502 Finance
- MBA 506 Leadership/Team Effectiveness/Communication
- MBA 512 Business Planning and Strategic Management
- MBA 511 Technological Innovations
- MBA 589 Operations Management
- MBA 507 Ethics and Law
- MBA 521 Industry Project
- MBA 592 Organizational Behavior

Admission to the M.B.A. Programs

The College of Business is designed for ambitious and able students who are capable of applying what they learn toward the solutions of organizational problems. Each student is asked to forward with the application a statement of career objectives and the way in which he or she expects to realize these objectives through the program.

Students must satisfy the following admissions requirements in addition to the minimum requirements of the Graduate School:

A. A bachelor's degree with a minimum grade point average of 3.0. In exceptional cases, students not meeting this requirement may be admitted on a conditional basis.

B. Aptitude for quantitative analysis, demonstrated through previous coursework, standardized tests, or practical experience. All applicants must have successfully completed an introductory calculus course (MAT 123 or equivalent) with a grade of C or higher.

C. Submission of Graduate Management Admission Test (GMAT) scores (preferred), or Graduate Record Examination (GRE) General Test scores.

D. Three letters of recommendation, one of which, if possible, should be from a professional working in a private company or public agency who is capable of evaluating the applicant’s motivation and potential. The three letters of recommendation should also include at least one from a college faculty member, counselor, or administrator.

E. Acceptance by both the College of Business and the Graduate School.

F. $60 application fee.

Although not required, examples of an applicant’s creative work will be considered. These might include project reports or published articles.

Admission is available for both the fall and spring semesters. Applications for the fall semester should be submitted by April 15 and for the spring semester by October 1. Earlier submissions are encouraged. Applications are reviewed on a rolling basis, and if seats are available, applicants will be considered after the application deadlines. Late applications are accepted if there are places available. Applications are completed online. Go to the College of Business MBA Web site: http://cobsb.info/ or by writing to:

Office of Student Services
Harriman Hall, Room 102
College of Business
Stony Brook University
Stony Brook, New York
11794-3775
(631) 632-7171
E-mail: oss@notes.cc.sunysb.edu

Certificate Programs

The Advanced Graduate Certificate programs described below are open to M.B.A. students or other graduate students at Stony Brook. Students who meet the M.B.A. degree admissions requirements of the College of Business may also apply the certificate credits toward the M.B.A. degree. Students must declare their decision to matriculate into a master's program after the completion of no more than 12 credits. In addition, these programs are open to non-matriculated students who wish to earn an Advanced Graduate Certificate without completing an M.B.A. degree. Note that, although it is a valuable academic credential, an Advanced Graduate Certificate is not a degree.

Certificate Program in Human Resource Management

The Advanced Graduate Certificate in Human Resource Management is a program for employee training professionals, human resource/personnel managers, labor relations specialists, and union representatives, and private- and public-sector managers. The program, leading to the New York State Advanced Certificate in Human Resource Management, requires a bachelor's degree from an accredited college. This program is administered by the School of Professional Development. For more information and to apply, please refer to the following Web site: http://ws.cc.sunysb.edu/spd/graduate/hrm.html

Certificate Program in Information Systems Management

The Advanced Graduate Certificate Program in Information Systems Management (ISM) is a graduate professional development program that provides an educational opportunity to combine management education with technical training in specific areas related to information systems management. Directed toward career enhancement of new professionals, as well as toward advancement of experienced professionals, the program offers both a
full-time and a part-time option. Certificate program students must complete the program within a three-year period. For more information and to apply, please refer to the following Web site: http://ws.cc.sunysb.edu/spd/graduate/ism.html

Certificate Program in Health Care Management
The Advanced Graduate Certificate Program in Health Care Management is a professional development program intended for health practitioners who require management training and for managers who require specific training in the health-care field. It offers participants a comprehensive understanding of health care and management and helps them to develop the analytical capabilities to be effective managers. The Advanced Certificate Program in Health Care Management is a joint program of the School of Health Technology and Management and the College of Business.

The program is designed to meet the needs of working professionals who are part-time students and full-time graduate students at the University. Many courses are offered in the late afternoon or early evening. Certificate program students are required to complete the program within a three-year period. Graduate students who pursue either the Master of Science in Health Sciences in the School of Health Technology and Management or the M.B.A. in the College of Business may obtain the certificate as they earn credits toward their degree.

Certificate Program in Finance
The Graduate Certificate Program in Finance is a professional development program that emphasizes the managerial and technical issues in finance that are most important to professionals. The coursework will explore current financial thinking on banking, capital markets, corporate fiscal management, and firm and investor risk.

The curriculum consists of 18 credits (six three-credit courses). There are two required courses, Finance and Financial Accounting, which reveal the foundations of finance and accounting needed to understand how corporate financial objectives are developed, measured, and reported. These courses are followed by a selection of any four finance elective courses, depending upon the student’s specific areas of interest.

Elective courses explore the broad frontier of modern finance. Financial Management and Capital Markets deal with banking and financial intermediation, corporate governance, financial risks, and regulation. Investment Analysis presents techniques for evaluating investment alternatives to create optimal portfolios. Computational Finance exposes students to the computational rigors associated with modern finance theory. Managerial Accounting and Decision-making presents the accounting system as a source of information for decision-making, planning control, and evaluation. Cases in Finance explores challenging financial scenarios in a distinctive formal framework within which those problems can be discussed and addressed.

Research
Faculty members in the College of Business are strongly committed to teaching and fostering working relationships with students inside and outside the classroom, while maintaining their involvement in research.

In their research, Business professors examine complex issues and problems confronting today’s managers and decision makers. They analyze businesses and other institutions as well as the economic, regulatory, and technological forces underlying decision-making processes and ongoing changes within these organizations. They keep close contact not only with other researchers in the United States and abroad, but also with regional, national, and international businesses by conducting applied research projects and working as consultants.

Students at the College of Business benefit from this high-caliber research in several ways. Faculty members often revise and develop new course materials to incorporate current research into their teaching and instruction. Exposing students to the latest knowledge and management skills best prepares them for future challenges and, at the same time, makes the classroom experience dynamic and stimulating. Business students work closely with professors, and all students are invited to participate in seminars conducted by the school’s researchers.

The school houses centers for Human Resource Management, Health Services Research Management, Information Systems Management, and Small Business Development. Quality research conducted by the centers contributes significantly to the College’s academic programs. In addition, the centers’ applied and interdisciplinary research promotes valuable interactions with industry, government, and nonprofit organizations and provides hands-on experience to students.

Computing Services
The College of Business computing facility contains 20 networked personal computers that have high-speed connections to the outside world and a high-speed laser printer. Each computer has full Internet access to e-mail, Internet utilities, and Web servers and is equipped with the Microsoft Office suite of programs, plus software for expert systems, management science, statistical analysis, and other management applications. Via the network, students can access the campus IBM and VAX systems as well as the online library catalog. Students may access their own administrative records online, check course schedules for upcoming semesters, and view calendars for campus events.

Faculty
Dean
McDonnell, Joseph W., Associate Dean of the College of Business, Ph.D., 1978, University of Southern California: Management; corporate communications; crisis management; entrepreneurship.

Associate Dean
London, Manuel, also Director of the Center for Human Resource Management, Ph.D., 1974, Ohio State University: Performance management programs; training and development; team learning.

Professors

Sexton, Thomas R., Co-director of Health Services Research and Management Unit, Ph.D., 1979, Stony Brook University: Health-care delivery systems; efficiency analysis; statistics.

Skorin-Kapov, Jadranka, Ph.D., 1987, University of British Columbia, Canada: Management information systems; operations research; artificial intelligence.
Wolf, Gerrit, Ph.D., 1967, Cornell University: Entrepreneurship; organizational behavior; human resource management; international management.

Associate Professors
Casey, Jeff T., Ph.D., 1986, University of Wisconsin-Madison: Psychology/organizational behavior; negotiation and conflict resolution; human resource management; business strategy.

Assistant Professors
Holod, Dmytro, Ph.D., 2005, University of Kentucky: Economics; banking and financial intermediation; financial markets and institutions; monetary policy; economic growth.

Lecturers
Allocco, Carl, Director of Undergraduate Studies. M.S.T., C.P.A., Long Island University: Public and private accounting; auditing; taxation; internal control; systems development.
Clark, Robert, M.S., Stony Brook University: Operations management; management science; entrepreneurship.
Ettl, Robert., M.B.A., Iona College; M.C.A., New York Institute of Technology: M.B.A., Penn State: Marketing; strategic planning; government relations; public relations.
Lekacos, Aristotle T., M.S., Polytechnic Institute of New York: Information systems; business strategy; entrepreneurship; innovation; simulations.
Lewis, Herbert F., Ph.D., Stony Brook University: Applied mathematics and statistics; operations research; management science; information systems; productivity and efficiency analysis.
Nugent, Michael, M.B.A., Dowling College: Financial engineering; derivatives; international finance; capital markets and institutions; foreign exchange markets; investment analysis; corporate finance; business strategy.
Palermo, Mark R., J.D., Hofstra University School of Law; M.B.A., Adelphi University: Finance; strategy; economics; law; general business.

Adjunct Faculty
Aguayo, Rafael, M.B.A., Finance and International Business.
Brown, Tom, M.B.A., Accounting.
Carroll, T. Owen, Ph.D., Emeritus Associate Professor, Finance and Information Systems.
Cerbone, Frank, M.A., Information Systems Management.
de Onis, Luis, M.S., Management and Policy and Certificate in Labor Management.
Diamonte, Thomas, Ph.D., Psychology.
Gatteau, Richard, Ph.D., Administration and Supervision.

Gomes, Carol, M.S., Management and Policy.
Heaton, William, M.B.A., Entrepreneurship.
Infantino, Anthony, M.B.A., Management.
Jefferson, Glenn, M.B.A.
Kerr, Brian, M.P.S., Industrial and Labor Relations.
Levanti, Gary, M.B.A., Marketing.
McFadden, Edward, M.A.
McKiernan, Kevin, M.B.A., Banking and Finance.
Mentor, Arthur, M.M.E., Marketing.
Persia, Viola, M.S., C.P.A., Accounting.
Rizzi, Timothy A., M.S., Information Systems Management.
Rossi, Paul, M.B.A., Accounting, Corporate Finance.
Rucco, Anthony, Ed.D., Educational Administration.
Saidens, Mark, Ph.D., Educational Administration.
Schmittz, Martin, M.S., Taxation.
Sheehan, Donald, M.A., Liberal Studies.
Weiner, Harry, S.M., Emeritus Associate Professor, Business-government relations.

Degree Requirements
The M.B.A. curriculum prepares students for careers in management in business, government, and nonprofit organizations. The M.B.A. may be pursued either full- or part-time. Full-time students require two years of coursework with an internship in the summer between the two years. Part-time students may follow the same curriculum over a longer period, not to exceed five years. Admission is available in the fall and spring. Students in the five-year Stony Brook Fast Track program complete the first year of the M.B.A. after their junior year and prior to their fifth year at Stony Brook.

Internship Requirement
The College of Business internship program provides full-time students with important practical training in business management. The internship is a paid eight-to-twelve-week full-time summer position in a business, government, or nonprofit organization. Students must write a faculty-approved internship report in the semester following the internship. All students must enroll in MBA 599, Internship Practicum, for one credit in the term during which they are doing their internships.

Placement and Career Services
The Career Center provides a variety of career and life-planning services to M.B.A. students desiring assistance with their career development and job search. These services include career resource library materials, placement services including on-campus interviews, online résumé referrals, job fairs, workshops on résumé preparation and interviewing skills, and credential files.

Many companies visit the campus to conduct one-on-one interviews with M.B.A. students. It is suggested that graduate students contact the Career Center at the beginning of their first semester for more details.

Job/Internship Fairs are held regularly in which employers visit the campus to discuss their organizations and share available job openings. These fairs provide graduate students with unique opportunities to meet, have brief interviews, and leave résumés with a significant number and variety of employers. Continual expansion of the program is planned.

Online services, where résumés are forwarded by the Career Center to interested employers and where vacancies are posted, are provided by JOBTRAK (a link on the center’s home page). In addition, vacancy copies are posted on bulletin boards and kept in binders in the center’s library.

Career Resource Library
The Career Resource Library contains a wealth of information on a variety of topics related to the career planning process. Materials include information on employment interviewing, job hunting, labor market trends, occupations, résumé writing, salary levels, and many other areas. Those M.B.A. students interested in pursuing doctoral study can look through directories,
a CD-ROM collection of college and university bulletins, and information on entrance tests required. Detailed information on potential employers, including annual reports and related documents, is included in the “Organizational Literature” files. This library also has videotapes on specific companies and on various topics related to job search processes. You can visit the center’s Web page at www.sunysb.edu/career/.

Credential Service

Students and alumni wishing to collect letters of recommendation from faculty, past employers, and others, in one central location, may wish to establish a credentials file at the Career Center. These recommendations are available to be photocopied and sent directly to appropriate organizations, including prospective employers and admissions offices of graduate and professional schools.

Workshops

For those who are about to begin the process of interviewing, writing a résumé, and/or searching for a job, group workshops are offered that provide information on these topics. Each workshop is two hours long and includes practical exercises as well as general theory. The “Résumé Preparation” and “Interviewing Skills” workshops are offered on a weekly basis during the fall and spring semesters. Other workshops are scheduled less frequently and are noted on the Web pages and on the Career Center’s student calendar publication.

Individual Counseling

Professional career counselors are available to assist with questions pertaining to any facet of the career decision-making process, from deciding on a specific business path to finding out how to effectively search for a job. Topics that are frequently discussed include selecting a specialization, researching companies, obtaining experience through volunteer and internship positions, job search strategy, marketing the value of a graduate degree, and establishing a credential file. Those interested in discussing these and other issues are encouraged to set up an appointment by calling or visiting the Career Center.

Courses

MBA 501 Management Economics

The techniques and approaches of microeconomic reasoning are applied to issues of management and policy. The theory of the market and the price system are closely examined to identify areas where neoclassical economics is helpful to the analyst and manager. Decisions regarding firm boundaries, competition, pricing, and entry are examined. Extensive use is made of case studies.

Fall, 3 credits, ABCF grading

MBA 502 Finance

How firms meet and manage their final objectives. Today’s financial environment, the fundamental trade-off between risk and return, the time value of money, and valuing future cash flows are discussed. Financial tools and techniques, which can be used to help firms maximize value by improving decisions related to capital, are explained. Bond and stock valuations are introduced.

Fall, 3 credits, ABCF grading

MBA 503 Data Analysis and Decision Making

An introduction to statistical techniques useful in the analysis of management problems. We motivate each topic by managerial applications, and we analyze actual data sets using modern statistical software. Topics include probability estimation, hypothesis testing, and regression analysis.

3 credits, ABCF grading

MBA 504 Financial Accounting

Introduction and exploration of basic financial accounting terminology, principles, concepts, and their relevant business applications. This course will include the recording, summarization, and adjustment of financial transactions and the preparation and presentation of the basic financial statements. Other topics will include valuation methods for cash, accounts receivable, inventory and property, plant and equipment. This course is also offered as EMP 502.

3 credits, ABCF grading

MBA 505 Marketing

A survey course covering the foundations of the marketing discipline. The course is designed to give students conceptual frameworks and tools to help firms meet demands of the marketplace in a profitable way. A wide range of marketing strategy topics (e.g., segmentation, positioning) and marketing tactics (the Four P’s of Marketing: Product, Price, Place, and Promotions) will be covered, as well as development of the discipline’s foundations (definition, philosophy, and the history of marketing).

3 credits, ABCF grading

MBA 506 Leadership, Team Effectiveness, and Communication

This course focuses on business leadership, teamwork, and communications. It seeks to answer the following three questions: What do leaders really do? What makes teams effective? How do you create persuasive communications? The course addresses such topics as leading organizational change, managing corporate crises, building motivated teams, and developing strategic communications. It examines these topics with a goal of not only imparting knowledge about these managerial practices but also assisting students to acquire the skills necessary to become business leaders, team builders and articulate communicators. We will seek to bridge theory and managerial practice by using case studies and inviting business executives to the class.

Spring, every year, 3 credits, ABCF grading

MBA 507 Ethics and Law

This course will link the main ethical problems facing the modern manager with the statutes and regulations that have been enacted to deal with these problems. Emphasis is placed on the moral and ethical responsibilities that relate to investors, employees, customers, and the community. Students will learn the basic vocabularies of business law and of ethics.

Spring, every year, 3 credits, ABCF grading

MBA 509 Continuous Quality Improvement

This course provides students with understanding of concepts of TQM and quality improvement methods to attain world-class performance in business operations. Topics include policy deployment, process improvement methodology, daily work management, quality story methodology, six sigma, poka-yoke, LSQ, and Deming and Baldrige Awards criteria.

3 credits, ABCF grading

MBA 510 In Addition to Wages: Employee Benefits

This course addresses an area of major social change: new developments in fringe benefit programs available to American workers. Topics include pensions, social security, savings and profit sharing plans, and other benefits in the working and retirement years. It also compares fringe benefits available to the individuals in the private, public, and not-for-profit sectors. Future fringe benefit programs and policies will also be explored. This course is offered as both CES 510 and MBA 510.

Prerequisite: CES 515/MBA 532

3 credits, ABCF grading

MBA 511 Technological Innovations

Innovation drives the modern firm by the interaction of technical invention and managerial entrepreneurship. This course explores the variety of sources of new products, processes, and services, such as inventors, universities, research and development departments in industry, and government labs. In addition, the course explores the variety of ways of bringing new products, processes, and services to market, including startup firms, acquisitions, mergers, and entrepreneurship within the firm. Case studies showing the interaction of invention and entrepreneurship are analyzed. A term project is required in which the student either analyzes the history of invention and entrepreneurship in a major firm or writes a business plan for high technology startup firm.

Spring, every year, 3 credits, ABCF grading

MBA 512 Business Planning and Strategic Management

The principles and techniques of strategic management by which an organization sets and implements its long-range direction. This
includes the processes of environment scanning, self-assessment of organizational purpose and comparative advantage, and synthesis of organizational mission, plans, and strategic initiatives. Extensive use is made of case studies and in-class exercises.

Spring, every year, 3 credits, ABCF grading

MBA 513 Human Relations in the Workplace
This course focuses on improving the quality of work life for employees, as a value in itself and as an incentive to greater productivity and reduced turnover. Students will explore the importance of communication-orientation of new employees, formal and informal consultation, quality circles, billboards, news bulletins, etc., and exit interviews; providing opportunities for job enrichment and career development-career planning assistance, practitioner training, cross training, job rotation, job sharing and flextime, enriching each job as the employee progresses; employee assistance programs-financial planning, drug and alcohol counseling, retirement planning, educational assistance, summer jobs for kids, etc.; recreational programs-athletic teams, holiday and seasonal celebrations, community service participation, and contests. All of these activities contribute to developing the joint participation of employees and management that is the hallmark of the well-managed corporation. This course is offered as both CES 511 and MBA 513.

3 credits, ABCF grading

MBA 514 Collective Bargaining and Arbitration in the Public Sector
This course presents an overview of the history, procedures, and problems of public sector labor relations, and comparisons with the private sector. The role of public opinion and politics in public sector bargaining will be explored. Students will role play the negotiation of a public sector contract; preparation of bargaining package, negotiation, mediation, fact-finding, arbitration. They will also prepare, present, and critique a public sector grievance case from its shop origins to its final disposition by arbitration. This course is offered as both CES 514 and MBA 514.

Prerequisite: CES 516 or MBA 533
3 credits, ABCF grading

MBA 515 Comparative and International Management
Because both the similarities and differences of organizations and management across national boundaries must be a part of the knowledge base of tomorrow’s manager, this course examines proprietorships, partnerships, corporations, governmental regulatory agencies, public authorities, voluntary social services, multinational corporations, and strategic alliances, as well as combinations of these organizations, across sectoral and national boundaries.

Spring, 3 credits, ABCF grading

MBA 516 Strategic Brand Management
Highly interactive course. Hands-on, practical exploration of product, service, and enterprise-wide brand building and management. Course is structured along daily responsibilities and challenges faced by working brand/marketing managers and will provide experience with proven strategies for building successful brands in the competitive marketplace, the decisions and options faced by brand managers, and the tools to effectively manage brands.

3 credits, ABCF grading

MBA 517 Information Systems for Management
Information systems and its role in strategic planning and managerial operations in business. The systems approach to the analysis, design, and implementation of information systems. Recent developments in information technology and its impact on existing and future information systems.

Full, every year, 3 credits, ABCF grading

MBA 518 Principles of Sales Management
This course prepares students to manage a sales force. Through lectures, discussions, assignments, and case analysis, students will understand principles and best procedures of sales force management as they apply to both small and large organizations.

3 credits, ABCF grading

MBA 519 Grievance Handling and Arbitration
Grievance and arbitration procedures in a variety of private- and public-sector labor agreements are examined in terms of contract clauses, practical procedures, and problems characteristic of different employment sectors. Dispute settlement between parties themselves is explored, and the final recourse to arbitration is examined in terms of arbitrator selection, case preparation, presentations at hearings, and analysis of awards. This course is offered as both CES 519 and MBA 519.

Prerequisite: CES 516 or MBA 533
3 credits, ABCF grading

MBA 520 History of Labor Relations
The course proceeds from the beginnings of labor organization in the guilds and crafts of the early 19th century to the accelerating pace of change today. The peaking of union strength during World War II and its subsequent decline after Taft-Hartley are discussed, as well as the economic and social reasons for the gradual weakening of organized labor. A discussion of the future of organized labor concludes the course.

3 credits, ABCF grading

MBA 521 Industry Project
Under faculty supervision, groups of students work for clients on management issues in a variety of areas such as health care, MIS, marketing, data analysis, business plans and the like. The course provides students with the opportunity to apply the analytic skills they have learned in the classroom to actual management problems. Students also gain practical experience in business writing, giving formal presentations, and working in teams. The format for this course is a combination of work in the classroom and "lab" work. The lab work consists of visits with a client, developing a formal proposal, generating a final report and various other elements of a professional consulting arrangement.

3 credits, ABCF grading

MBA 522 Industry Project
Under faculty supervision, groups of students work for clients on management issues in a variety of areas such as health care, MIS, marketing, data analysis, business plans and the like. The course provides students with the opportunity to apply the analytic skills they have learned in the classroom to actual management problems. Students also gain practical experience in business writing, giving formal presentations, and working in teams. The format for this course is a combination of work in the classroom and "lab" work. The lab work consists of visits with a client, developing a formal proposal, generating a final report and various other elements of a professional consulting arrangement.

3 credits, ABCF grading

MBA 523 Human Resource Management Workshop
This course is designed for human resource practitioners who wish to prepare themselves for higher-level executive positions; planning for the personnel function relative to organizational purpose and size of workforce; developing recruiting plans, job classifications, and wage schedules; establishing benefit systems; and training supervisors, systematizing employee supervision, and evaluation methods. Finally, the class will develop such motivational incentives as career development, job enrichment, and employee assistance programs and learn how to devise model affirmative action and employee safety procedures. This course is offered as both CES 523 and MGT 523.

3 credits, ABCF grading

MBA 524 Labor Negotiations Workshop
This is an advanced class in the negotiation of labor agreements in the private and public sectors. Through case studies and presentations, students acquire an understanding of the attitudes and strategies of both negotiating parties, evaluation of the economic and political environments, gathering of essential information, determination of bargaining style and strategy, and role playing of negotiations using sample contracts. Guest lecturers critique class performance, offering suggestions for improving negotiation skills. This course is offered as both MBA 524 and CES 524.

Prerequisite: MBA 533 or CES 516
3 credits, ABCF grading

MBA 525 Employment Law
This course is designed to give business and HR professionals insight into and practical knowledge of the various legal issues that inform today's employer-employee relationships. Topics will include hiring practices, formation of the employment contract, laws governing the work relationship, investigation protocols, and risk-reduction techniques, viewed against a backdrop of emerging employment trends. This course is offered as both CES 525 and MBA 525.

Prerequisite: MBA 533 or CES 516
3 credits, ABCF grading

MBA 526 Job Evaluation and Compensation Systems
An advanced course providing students with both theory and specific knowledge of job
evaluation and compensation systems, including union issues, comparable worth and legal requirements; preparation of job analysis, descriptions, specifications and evaluations; theory of compensation systems as they relate to job satisfaction and employee morale; development of wage and salary surveys, internal and external equity pay scales, performance-based pay systems, and salary administration procedures. An analysis of incentives-bonuses, stock options, salary deferrals, and special benefits will complete the course. This course is offered as both CES 526 and MBA 526.

Prerequisite: CES 515 or MBA 532

3 credits, ABCF grading

MBA 527 Women, Work, and Dollars
This course addresses the economic and social struggle of women to achieve workplace equality. It includes an examination of their labor force participation; the remuneration of women; segregated employment patterns; special problems of women in professional, technical, and scientific disciplines; analysis of the corporate environment; and the role of affirmative action in removing formal and informal barriers to progress. It investigates the campaign for comparable worth; alternative definitions of success; women's contribution to the world of work; the glass ceiling and the mommy track; work-family issues; child care; sexual harassment; and women as managers. The course will feature case analysis and guest speakers from different organizations. This course is offered as both CES 517 and MBA 527.

3 credits, ABCF grading

MBA 528 Risk Management
The course focuses on the wide range of risks faced by law firms, partners, and managers. Each session will examine various risk categories, teaching participants how to define and quantify risk.

3 credits, ABCF grading

MBA 529 Managerial Accounting and Decision Making
This course covers cost accounting concepts and theories and the implementation of an accounting system as a source of information for decision making, planning, control, and the evaluation of organizational performance by management. Other topics include cost-volume-profit analysis, overhead rates, budgeting, and statement of cash flows.

Prerequisite: MBA 504

3 credits, ABCF grading

MBA 530 Negotiation and Conflict Resolution
The methods and procedures for reaching negotiated agreements. Topics include reducing conflict and confrontation between contending parties, analysis of the techniques of win-lose and win-win negotiation, and mediation. Students are expected to participate in a series of workshop activities and simulated cases to reveal how negotiation and mediation are applied to resolving difficulties in business management, labor relations, international and domestic affairs, public and nonprofit sector relations, and other areas where negotiation and mediation play a significant role in modern life. This course is also offered as CEX 547.

3 credits, ABCF grading

May be repeated for credit

MBA 531 New Developments in Human Resource Administration
This is an advanced course, designed to examine new developments and professional concerns in human resource administration. The course focuses on such topics as productivity in the American workplace; developing union-management cooperation for productivity; methods of training in the workplace; impact of the computer revolution on the personnel field; and specialized personnel needs of the new workforce in a high-tech and service economy.

3 credits, ABCF grading

MBA 532 A Survey of Human Resource Administration
This is the mandated course in the human resource sector of the Human Resource Management curriculum. The course explores the basic elements of personnel administration: an overview of human resource functions; recruitment, selection, and placement; job classification and wage and benefit systems; employee supervision, counseling, discipline, and grievance; the legal framework of human resource administration; and approaches specific to union and nonunion environments. This course is offered as both CES 515 and MBA 532.

3 credits, ABCF grading

MBA 533 Survey of Labor and Employee Relations
This is the foundation course in the labor relations sector of the Human Resource Management curriculum. It addresses the historical development of labor unions in the United States, the evolution of the legal framework governing labor relations today, and the major elements of collective bargaining and dispute resolution techniques used in the private and public sectors. This course is offered as both CES 516 and MBA 533.

3 credits, ABCF grading

MBA 534 Contemporary Issues in Employee Relations
This course covers collective bargaining in America: areas of union growth, stability, and decline. Examination of current labor-management agreements in the key areas of wages, productivity, retirement and health plans, employee security, and career advancement will be explored. The chief problems emerging in current negotiations in both the private and public sectors will be examined. This course is offered as both CES 518 and MBA 534.

Prerequisite: MBA 533

3 credits, ABCF grading

MBA 535 New Product Marketing
New products are a very important part of most all modern companies, particularly those having to compete on a global level. This course looks at the specific challenges in both coming up with new products (conceptualization, design, and development) and how to market them to different marketplace segments. Target marketing techniques and quantitative and qualitative approaches to assessing markets and product/market fits will be examined in depth. This course will incorporate a combination of formats, including lectures, computer labs, and team projects. It is recommended that Marketing Research be taken before this course.

3 credits, ABCF grading

MBA 536 Financial Management
How managers should interface with accounting and finance departments and how firms meet their financial objectives. Financial tools and techniques, which can be used to help firms maximize value by improving decisions relating to capital budgeting, capital structure, and working capital management are explained. Related topics include multinational financial management, risk management, and mergers and acquisitions.

Prerequisite: MBA 502

Fall, 3 credits, ABCF grading

MBA 537 Employee Training and Career Development
This course provides an overview of employee training methods, training design, development programs, and evaluation procedures, including cost/benefit analysis. Emphasis is placed on how to perform a needs analysis, how to select the latest training technologies, and how to apply these technologies to maximize adult learning. In addition, development strategies are reviewed, for instance, when to train generalist managers and specialists, how to foster an atmosphere conducive to continuous learning, and how to reward supervisors for supporting their subordinates’ development. Students apply these concepts to a specific organization for hands-on learning. In addition, a focus on career planning and development gives students a chance to take interest inventories and self-assessments of abilities and learning style. Students formulate their own career plans and develop action strategies. This course is offered as both MBA 537 and CEX 537.

3 credits, ABCF grading

MBA 538 Organizational Change and Development: Opportunities for Human Resource Innovations
The aim of this course is to acquaint students with types of organizational change and the roles of human resource managers as change agents. Cases, group exercises, and class discussions are used to examine change methods, employees’ reactions to change, facilitation techniques, and evaluation methods. Roles of leaders, managers, employees, and human resource professionals are considered. Targets of change include job designs, interpersonal relationships, and organizational structures. Quality improvement, employee involvement, and professional development are studied as examples of change strategies. Students learn how to help themselves and their co-workers to cope. This course is offered as both CEX 538 and MBA 538.

Prerequisite: MBA 532 or CES 515

3 credits, ABCF grading
MBA 539 Investment Analysis
Modern investment and traditional approaches to investment valuation, selection, and management. Modern investment theory, including asset pricing models and efficient market hypotheses are explained. Traditional approaches to stock and bond selection, including fundamental analysis and technical analysis, will be explained in detail. Investment management strategies for both individual and institutional investors will be developed and discussed.
Prerequisite: MBA 502
3 credits, ABCF grading

MBA 540 Linear Programming
Formulation of linear programming problems and solutions by simplex method. Duality, sensitivity analysis, dual simplex algorithm, decomposition. Applications to the transportation problem, two-person games, assignment problem, and introduction to integer and nonlinear programming. This course is offered as both MBA 540 and AMS 540.
Prerequisite: A linear algebra course
3 credits, ABCF grading

MBA 543 Management Science
An introduction to mathematical models useful in the analysis of management problems. We motivate each topic by managerial applications, and we analyze problems using modern software. Topics include forecasting models, linear and integer optimization models, and decision models.
3 credits, ABCF grading

MBA 545 Capital Markets and Financial Institutions
Financial institutions and capital markets form the basis of the financial system in our global economy. Capital markets are the conduits in which capital flows through financial institutions to a network of organized and over-the-counter markets. Students will learn how many of these markets work in tandem to propel our economy forward. Topics include money markets, foreign exchange markets, derivative markets, the banking industry, and the business of banking. The role of money in the capital markets and a variety of financial products offered by financial institutions will be explained.
Prerequisite: MBA 502
Fall, 3 credits, ABCF grading

MBA 546 Network Flows
Theory of flows in capacity-constrained networks. Topics include maximum flow, feasibility criteria, scheduling problems, matching and covering problems, minimum-length paths, minimum-cost flows, and associated combinatorial problems. This course is offered as both MBA 546 and AMS 546.
Prerequisite: AMS 540 or permission of instructor
Spring, 3 credits, ABCF grading

MBA 547 Fundamentals of Fixed Income Analysis
A concrete understanding of the fundamentals of fixed income security analysis. Study of the basics of bond analysis, such as the relationship between the price and yield of a bond, the sensitivity of a bond’s price to changes in yield, and measuring the total return on a bond. We will analyze the determinants of interest rates and how different market participants interact. Trading strategies, evaluating their risk, and performing ex-post analyses will be discussed.
3 credits, ABCF grading

MBA 548 Fundamentals of the Bioscience Industry
A four-module course set up to provide students with a comprehensive introduction to the complexities of the bioscience business environment.
Prerequisite: Must be either a BME or MBA graduate student (West Campus)
All other students must obtain permission from the instructor.
Spring, every year, 3 credits, ABCF grading

MBA 549 Risk Management
This course introduces students to risk management primarily from the perspective of non-financial corporations. Focus will be placed on why firms should or should not manage risk, while demonstrating how financial risk management can reduce the probability that a firm will encounter financial distress or earnings volatility, and whether such activities can enhance shareholder value. The course offers an integrated approach to risk management by combining concepts, tools, and techniques that derive from the financial risk management and insurance disciplines. The course text focuses mostly on pure risk, or the use of insurance products to reduce risk and financial losses for businesses. The course lectures and additional readings will also incorporate a focus on financial risk management, including commodity price, exchange rate, interest rate, and credit risk management. Financial derivative products will be used extensively; however, the focus will be more on the appreciation of derivative products to hedge risk, rather than the valuation of derivatives.
3 credits, ABCF grading

MBA 550 Operations Research: Stochastic Models
Includes Poisson processes, renewal theory, discrete-time and continuous-time Markov processes, Brownian motion, applications to queues, statistics, and other problems of engineering and social sciences. This course is offered as both MBA 550 and AMS 550.
Prerequisite: AMS 507 or equivalent
3 credits, ABCF grading

MBA 551 Cases in Finance
Application of finance concepts to cases involving financial decisions in a corporate or institutional setting. Students will be asked to perform the work of a manager or analyst in a professional capacity, direct their attention to specific questions raised and report back with analyses and recommendations from the perspectives of the CFO, the Lending Officer, and other managerial positions.
Prerequisite: MBA 502 and MBA 504
3 credits, ABCF grading

MBA 552 Mergers and Acquisitions
The focus of this course is on buying controlling stakes in firms. The main topics to be covered are: growth through acquisitions, critical steps in the M&A process, financial valuation of mergers and friendly acquisitions, hostile takeovers, and buyouts. The course should be of interest to students interested in pursuing careers as private equity investors, advisors in investment banking, and corporate managers.
Prerequisite: MBA 502, MBA 504
Fall, 3 credits, ABCF grading

MBA 553 Simulation and Modeling
A comprehensive course in formulation, implementation, and application of simulation models. Topics include data structures, simulation languages, statistical analysis, pseudo-random number generation, and design of simulation experiments. Students apply simulation modeling methods to problems of their own design. This course is offered as CSE 529, AMS 553, and MBA 553.
Prerequisite: CSE 211 or equivalent; AMS 510 or 507 or equivalent; or permission of instructor
3 credits, ABCF grading

MBA 555 Consumer Behavior
Consumer behavior examines the psychological, social, cultural, and demographic factors that impact purchasing decisions. The course also examines consumer needs and marketing opportunities emphasizing their implications for marketing strategies. Topics include the consumer decision-making process, motivation and its effect on behavior, images, attitudes, social and cultural influences, models of consumer behavior, segmentation strategies, and promotional applications. The course is delivered by lectures, case studies, a simulation, and the student’s development of a personal purchasing diary with its subsequent analysis.
3 credits, ABCF grading

MBA 559 Computational Finance
3 credits, ABCF grading

MBA 560 Design and Analysis of Management Information Systems
An overview of information systems and the system development life cycle. Emphasis is on tools and techniques that the programmer or analyst can use to document information systems. Classical and structured tools for describing data flow, data structure, process flow, file design, input and output design, and program specifications will be presented. Object-oriented techniques will be introduced. The course will survey other important skills for the systems analyst such as fact-finding, communications, project management, and cost-benefit analysis.
Prerequisite: MBA 517
3 credits, ABCF grading

MBA 561 Expert Systems for Management
An introductory course that provides a basic understanding of the concepts and techniques needed to analyze, design, and manage the knowledge of human experts in organizations.
In addition, students will learn the role of the knowledge architect in different industries and the management issues related to the growing integration of computers in the support of decision making.

3 credits, ABCF grading

MBA 562 Accounting Information Systems
A managerial approach to the concepts, issues, and techniques used to successfully manage and maintain an “Accounting Information System.” Topics will include business processes such as the revenue and expenditure cycles; business transactions including replenishment procedures and customer loyalty programs; general ledger output and compliance requirements as well as interfaces to OLAP environments.

3 credits, ABCF grading

MBA 564 The Role of Information Systems in Marketing Management
This course will explore the theory and practice of developing, implementing, managing, and maintaining a Marketing Information System (Mktg-IS) for a variety of industries. Our discussions will include the collection, storage, analysis, and subsequent delivery of actionable knowledge to the marketing decision makers in business entities such as retailers, wholesalers, service companies, etc. The course will also review the spectrum of business transactions that occur within organizations that automate the sale of products and services while simultaneously collecting the information needed to manage the associated marketing mix. Standard marketing functions such as development, implementation, and control of a marketing plan will be reviewed and aligned to appropriate key performance and control indicators. We will examine various systems that are in use today and future trends including the concept of ubiquitous networking and the pressure that environment will place on marketers. Discussions of concepts such as customer loyalty programs, disbursement of Market Development Funds, data (information) collection and storage requirements, content management, vendor and expense management, electronic exchange of information, interfacing with decision support and data mining systems, handling of multinationals marketing programs, etc., will expand the scope of the course beyond the traditional MKTG-IS concepts.

Prerequisite: MBA 505
Fall, 3 credits, ABCF grading

MBA 565 Marketing Research
Introduces marketing research tools that aid managers in marketing decision-making; includes the marketing research process and explains how it can be used to collect and analyze data and information necessary to solve marketing problems. A strong applied orientation exposes students to marketing research in traditional areas such as market segmentation, product positioning, product design, brand perception, sales forecasting as well as emerging areas such as customer satisfaction, customer relationship management (CRM), and online marketing.

Summer, every year, 3 credits, ABCF grading

MBA 566 Business Law
A survey of the U.S. legal system within which business operates. Topics include sources of law, concepts, tort and criminal law affecting business, property rights, agency, business organizations, and selected topics in technology-related areas.

Spring, every year, 3 credits, ABCF grading

MBA 567 Marketing Strategy
The course seeks to familiarize students with the decision process and the purpose and elements of sound strategy, and managerial tools and processes for generating, communicating, and implementing marketing strategies that deliver a sustainable competitive advantage to a company, product, or brand. This course is designed with an emphasis on student activities, supplemented by lectures and case discussions. The major (i.e., broader) topics emphasized in this course are competitive marketing strategy, marketing analysis, and market planning.

Prerequisite: MBA 505
Fall, Full, 3 credits, ABCF grading
May be repeated for credit

MBA 570 Entrepreneurship
This course helps the student develop a business plan for his or her own business idea or a plan for an entrepreneur. With the support of visiting practitioners, students take a business idea through all the planning steps. A business plan suitable for presentation to potential investors will be written and presented orally at the end of the class.

3 credits, ABCF grading

MBA 572 Business Plan Project I
Students will team with a group from engineering to develop a business plan for the engineers’ senior design project. Business students will create and monitor a project plan and perform market research for the engineering project, provide input to the design phase to maximize market satisfaction and develop a marketing plan. Students will interface with resources outside the University involved in market research.

Prerequisite: G2 standing with GPA of 3.0 or higher, and permission of the instructor
Fall, 3 credits, ABCF grading

MBA 573 Business Plan Project II
Building on the marketing plan developed in MBA 572, students will prepare a detailed operations and finance plan. The project plan developed in the fall will be used to monitor progress of the team, including both Engineering and Business students’ activities. Final project will consist of a full written and oral presentation of the business plan. Students will interact with resources outside the University including interface with outside sources of production material.

Prerequisite: G2 standing with GPA of 3.0 or higher, and permission of instructor
Spring, 3 credits, ABCF grading

MBA 574 Project Management
This course will explore the theory and practice of managing a project. We will examine the various tools that are available to monitor and measure managerial tasks and to define common business processes. Every aspect of business entails the execution of a series of defined tasks and the associated allocation of corporate resources. From developing new products to implementing customer loyalty programs, managers must understand business processes including their associated tasks, interrelationships, and transformations. Project management involves three primary activities: defining manageable tasks, mapping their logical flow, and creating an implementation process. In the course, we will explore ways to manage these functions successfully to increase the probability of achieving desired results. We will use the latest software tools including: MS Project, MS Visio, @Risk Project Simulation, Business Plan Pro 2007, WIP Information System-online and C-Commerce tools such as Instantstream. We will use Blackboard extensively to interact (c-commerce), post grades, assignments, information, and notices. Access Blackboard using blackboard.stonybrook.edu
3 credits, ABCF grading

MBA 575 Business Marketing
Marketing to businesses is a bigger, but less visible, part of the total marketing efforts of companies in the modern world. This course will present the business buying process and how marketing efforts can more effectively (and efficiently) reach out to the very large market made up of various businesses. We will look at how marketing should vary for different types of businesses and/or organizations.

3 credits, ABCF grading

MBA 576 Wireless E-Commerce
Analyzes the growth of and interaction among wireless markets. These markets include devices and services for wide area broadband networks and 802.11b wireless local area networks. Growth factors include business strategies executed by major firms and startups, and roles played by government regulations and community groups in development and delivery of network technology. Student projects for clients or one’s own startup investigate wireless strategies in consumer, home, commercial, educational or health-care markets.

Prerequisites: MBA 517, MGT 571, MGT 580
Spring, 3 credits, ABCF grading

MBA 578 Decision Support Systems
An advanced course focusing on the interrelationships among management information systems, statistics and management science. Both model-driven and date-driven decision support systems will be considered. Students will identify an appropriate business application, select suitable management science and statistical methodologies, build the required information system, and demonstrate how their decision support system addresses the stated management problem.

Prerequisites: MBA 503, MBA 517, MBA 513
3 credits, ABCF grading

MBA 588 Database Management
Database processing is the foundation upon which all current applications rely and represents the repositories of business intelligence that play a crucial role in the strategic success or failure of a corporation. Even though
they vary in size, complexity and organizational scope, there is an underlying common database engine that can be used to manipulate and analyze the stored information. The purpose of this course is to introduce the business professional to the fundamental concepts of database creation, design, application integration, maintenance, management, and subsequent analysis.

3 credits, ABCF grading

MBA 589 Operations Management

A managerial approach to the concepts, issues, and techniques used to convert an organization’s resources into products and services. Topics include strategic decisions for planning products, processes, and technologies, operating decisions for planning production to meet demand, and controlling decisions for planning and controlling operations through teamwork and Total Quality Management (TQM). Operational problems in producing goods and services are reviewed. This course is offered as both MBA 589 and EMP 506.

Spring, 3 credits, ABCF grading

MBA 592 Organizational Behavior

An approach to understanding the behavior of individuals in organizations is developed, with emphasis on implications for effective management. This approach is used to analyze decision problems encountered in managing human resources. Topics include individual and group decision-making skills, recruitment and selection, employee ability, motivation and incentive systems, job satisfaction, performance assessment and management, retention, training, and employee development.

Fall, every year, 3 credits, ABCF grading

MBA 593 Special Topics in Human Resource Management

An experimental elective course offered on a one-time basis. Topics offered under this course focus on specialized topics in human resource management. Consult department for current topic(s).

3 credits, ABCF grading

May be repeated up to five times for credit

MBA 595 Individual Directed Research in Business

Designed to accommodate independent research projects on an individual basis with faculty guidance.

Fall and spring, 1-6 credits, ABCF grading

May be repeated for credit

MBA 599 Internship Practicum

Designed to accommodate College of Business MBA graduate students working on their internship project requirement while under supervision of an advisor.

Fall, spring, and summer, 0-1 credits, S/U grading

MBA 800 Summer Research

0 credit, S/U grading

May be repeated
The Department of Chemistry, within the College of Arts and Sciences, offers courses of study leading to the degrees of Master of Arts in Teaching Chemistry, Master of Science, and Doctor of Philosophy. Students in the M.A.T. program must register through the School of Professional Development. A student in the Ph.D. program may choose dissertation research in any one of the diverse areas of chemistry represented by the interests of the program faculty, or may choose an interdisciplinary topic under the guidance of a faculty member in another program. Coordinated activities exist with several programs, and include optional concentrations in chemical physics and chemical biology.

Facilities
The Chemistry Building is a modern, seven-story (170,000-sq.-ft.) structure designed for research and upper-division instructional activities. The equipment available to faculty, postdoctorals, and students is outstanding. While much of it has been commercially obtained, a substantial portion of the instrumentation of the Department has been designed and constructed at Stony Brook and represents the state of the art in various fields. Strong ties exist to programs at Brookhaven National Laboratory, with unique facilities in PET and magnetic resonance imaging, the Relativistic Heavy Ion Collider, the National Synchrotron Light Source, the Center for Functional Nanomaterials, and world-class programs in dynamics, materials science, and spectroscopy.

The construction and maintenance of this instrumentation is effected by the faculty in conjunction with a staff of nonteaching professionals in the electronic, glass, and machine shops. Our nuclear magnetic resonance (NMR) and computer facilities are staffed by an NMR coordinator and a computer coordinator, respectively.

Areas of Current Research

Synthetic Chemistry
The synthesis of new molecular compounds distinguishes chemistry from other scientific disciplines. Although many disciplines study the properties of materials and natural phenomena, only chemistry concerns itself with the preparation of new molecular arrangements. The success of past synthetic efforts can readily be appreciated by observing the vast array of new materials that have improved the quality of our lives.

The Department of Chemistry at Stony Brook is very fortunate to have many strong synthetic programs in both organic and inorganic chemistry. Among the studies underway are the search for inventive synthetic reactions to produce new molecules, the synthesis of new molecular structures to evaluate our theories of chemical bonding, and the synthesis of new compounds with unusual physical properties (molecular engineering). However, most of the synthetic interest in the program lies in the areas of bio-organic and bio-inorganic chemistry. Synthetic chemistry is being applied to the understanding of receptor-substrate interactions as well as of enzyme function, the preparation of artificial enzymes, the mechanism of mutagenesis and carcinogenesis, and the preparation of new compounds for the treatment of patients.

Organometallic Chemistry
Organometallic chemistry is an interdisciplinary field bringing together many aspects of inorganic and organic chemistry. A wide range of organometallic systems are under study using a variety of synthetic, structural, mechanistic, and theoretical techniques. Synthetic and structural research is focused on such problems as the chemistry of unsaturated metal-carbon bonds in metal carbene and carbyne complexes, the stabilization of highly reactive organic moieties through metal complexes, the chemistry of transition metal carbonyl cluster compounds, and the development of useful synthetic reagents. Homogeneous catalysis studies include investigations of the carbonylations of fluoroolefins, small-ring heterocycles, alkenylamides, and similar molecules, and catalytic applications of compounds with unsaturated metal-carbon bonds. Theoretical work includes ab initio and qualitative molecular orbital studies of organometallic compounds and of the chemisorption of organic molecules onto metal surfaces and molecular mechanics minimizations of ligand geometries.

Structural and Mechanistic Organic Chemistry
The structures of a wide range of organic molecules are examined at Stony Brook using many techniques, including automated high-field FT-NMR spectroscopy (1H, 13C, 19F, etc.) and X-ray crystallography. Molecular modeling programs, such as Macromodel, are operated on color graphics workstations in order to rationalize and predict the conformations and reactivities of molecules under study. Variable-temperature 1H and 13C NMR spectroscopy is used to investigate conformational changes in macrocycles and other synthetic hosts for guest metal ions and organic molecules. VT-NMR is also used to investigate proton transfer in polyamines and intermolecular exchange of guest ions between polynedtate ligands. Stereochemical probes are used to examine mechanisms of organic reactions such as pericyclic and biomimetic processes, and have provided proof of the existence of sigma-participation in reactions of unstrained ketones and carbonium ions. Reaction mechanisms are also studied by determining activation volumes using reactors in the high-pressure laboratory that can attain pressures higher than 200,000 psi.

Institute of Chemical Biology and Drug Discovery (ICB&D&D)
The primary objective of ICB&D&D, directed by Distinguished Professor Iwao Ojima, is to establish a world-class “Center of Excellence” in chemical biology and drug discovery at Stony Brook. The rapid and impressive advancement of
chemical biology in the last decade clearly demonstrated that solutions for a vast majority of medical problems rely on the understanding of the molecular basis of diseases, therapeutic targets, drug actions, and drug resistance. ICB&DD promotes highly productive interdisciplinary and collaborative research among chemists, biologists, medicinal chemists, pharmacologists, and physicians to attack major and significant biomedical problems to find solutions including the discovery of novel therapeutic drugs.

Biological Chemistry
A significant number of the faculty are using their chemical expertise to explore the chemical and physical details of biological phenomena. Research programs span biological chemistry, biophysics, enzyme mechanisms, membrane structure and function, protein folding, and structural biology. Techniques such as high-resolution NMR, stop-flow kinetics, fluorescence and Raman spectroscopy are used to probe protein structure, function, and folding. Novel biosynthetic and chemical strategies are being used to generate small molecules for use in probing enzyme mechanisms and exploring ligand-receptor interactions.

Inorganic Chemistry
Inorganic chemistry, being concerned with the synthesis, structure, and dynamics of the compounds formed by the more than 100 natural and synthetic elements, covers an extremely vast area of chemistry. New compounds and new synthetic methods are among the goals of inorganic chemistry. Such compounds range from materials important in technology to catalysts for industrial chemical processes, small molecules present in outer space, and metal complexes that serve as models for biological materials. The methodologies utilized in inorganic chemistry include a wide variety of spectroscopic techniques, kinetic methods, procedures for the elucidation of geometric and electronic structures, and theory. The breadth and depth of inorganic chemistry are well represented at Stony Brook, as seen by the following examples of current research: thermally and photochemically activated dynamic processes, in particular, electron transfer reactions; synthetic and structural studies of active site analogs of metalloenzymes such as the zinc proteins that regulate gene transcription and the high-potential iron-sulfur proteins; activation of small molecules by transition metal complexes and homogeneous catalysis; chemistry of unsaturated carbon-metal bonds in mononuclear compounds and in extended molecular assemblies; molecular orbital calculations and molecular mechanics methods applied to transition metal cluster compounds and related organometallic substances; NMR studies of zeolites and supported catalysts.

Magnetic Resonance
Magnetic resonance in the Department of Chemistry ranges from studies in physiology to studies in chemical physics. Topics under investigation include the use of liquid and solid state NMR spectroscopy and micro-imaging techniques with stable spin 1/2 and quadrupolar nuclides to study inorganic, organic, biological, and living systems. Projects in progress employ a range of single and N-dimensional NMR spectroscopic techniques and novel imaging techniques to elucidate chemical processes and determine the structures of biological and organic molecules in solution.

Novel NMR methods are being developed for the determination of the structures of micro- and macromolecules as they exist in disordered solids and to study the structure and dynamics of molecules in the liquid crystalline state and those absorbed on solid surfaces. Pulsed electron paramagnetic resonance (EPR) techniques are being developed to study metalloenzymes, organic conductors, and other molecules.

The NMR facility in the Department of Chemistry includes seven NMR spectrometers, a multinuclear, research grade, 600 MHz (14.1 T) spectrometer with 3-axis field gradient capability and a standard 51 mm bore magnet for liquids and solids CP/MAS spectroscopy, a multinuclear, research grade, 500 MHz (11.75 T) spectrometer with z-axis field gradient capability and a standard 51 mm bore magnet for liquids spectroscopy, a multinuclear research grade spectrometer at 400 MHz (9.4 T) with an 89 mm wide bore magnet that is available for imaging and solids spectroscopy, a 300 MHz (7.0 T) spectrometer with a z-axis gradient for routine liquid NMR spectroscopy, a multinuclear 250 MHz (5.88 T) standard bore magnet spectrometer that is also available for routine NMR spectroscopy, and two wide bore spectrometers dedicated to solids.

Macromolecules
With development of state-of-the-art X-ray diffraction and small-angle X-ray scattering (SAXS) at the State University of New York’s X3 Beamline at the National Synchrotron Light Source at Brookhaven National Laboratory, the polymer and biomacromolecular physics group, being members of the participating research team (PRT), possesses one of the most powerful X-ray scattering facilities in the country. The experiments at Stony Brook make use of a wide variety of complementary techniques such as SAXS, laser light scattering, photon correlation spectroscopy, fluorescence photobleaching recovery, holographic relaxation spectroscopy, transient electric birefringence, and various forms of NMR spectroscopy. Stony Brook scientists can perform measurements to determine the structure and dynamical behavior of advanced polymeric materials, supramolecular systems, and biomacromolecules. Time-dependent processes can be studied using stop-flow, steady-flow, pressure-jump, and temperature-jump experiments together with time-resolved capabilities using intense radiation sources such as pulsed lasers and the synchrotron radiation. Unparalleled opportunities exist for interdisciplinary research using unique and novel instrumentation in polymer materials, polymer physics, colloid science, and biophysical chemistry.

Photon-Molecule Interactions
Recent developments in the use of lasers for the investigation of molecular structure and dynamics have led to a revolution in the fields of molecular spectroscopy and dynamics. Intimate details about the structure and interactions of atoms and molecules can now be studied to an extent never before possible. In this program the systems being studied by laser spectroscopy range from atoms and diatomic molecules to molecular crystals and polymers. In these systems various properties are being investigated, including nonlinear interactions with the radiation field, excited state electronic structure, radiationless transitions, ionization mechanisms, crystal field interactions, and photochemical reactions, as well as electron and energy transfer processes. Luminescence spectroscopy, luminescence excitation, multiphoton ionization, multiphoton photoelectron spectroscopy,
Raman spectroscopy, and vacuum ultraviolet spectroscopy are among the techniques being used and developed for the ever greater understanding of atomic and molecular systems.

Soft X-Ray Spectroscopy

The National Synchrotron Light Source at Brookhaven National Laboratory, located only 15 miles from Stony Brook, provides unique opportunities for frontier research in chemistry. The synchrotron and associated devices are unequalled sources of high-intensity X-ray and vacuum ultraviolet radiation. One area of current research uses soft X-rays, photons with energies of 100 to 1000 eV, to investigate the excitation and relaxation of core electrons in molecules. Because core electrons, e.g., the ls electrons of carbon, are tightly bound to individual atoms, the excitation energy is essentially localized on a particular atom in the molecule. This localization has the potential for producing photochemistry with far greater atomic site specificity than can be achieved by excitation of valence electrons with visible and ultraviolet light.

Surface Chemistry

Catalysis, corrosion, and friction are a few examples of familiar processes that occur on solid surfaces. The field of surface chemistry tries to unravel and understand the basic chemical principles that underlie such phenomena. At Stony Brook we are actively researching how the electronic and geometric structure of a surface affects its chemical selectivity and reactivity during surface-mediated processes such as catalysis and the chemical vapor deposition of metals from organometallic precursors. In addition, we are interested in understanding the interactions between energetic ions and surfaces in both atmospheric and metal-etching reactions. An arsenal of sophisticated techniques is available to prove both the geometric and electronic structures of a reacting surface on an atomic level. Techniques such as Auger electron spectroscopy (AES) and high-resolution, electron energy loss spectroscopy (HREELS) are used to determine the composition of a surface, while ultraviolet and X-ray photons are commonly used to eject photoelectrons from a surface (that are energy analyzed) yielding electronic structure information. Another technique, low-energy electron diffraction (LEED), exploits the wave nature of electrons and is used to help determine the geometric structure of a surface. These techniques, routinely used at Stony Brook, are complemented by the powerful extended- and near-edge X-ray absorption fine-structure techniques (EXAFS and NEXAFS), available at the National Synchrotron Light Source at nearby Brookhaven National Laboratory.

Theoretical Chemistry

Theoretical investigations of a wide variety of chemical phenomena are underway at Stony Brook. Research programs in electronic structure theory are concerned with the development of formalism and computational techniques. Applications include determination of the geometry, spectral shifts, and reaction pathways of molecules chemisorbed onto metal surfaces; calculation of the structure of molecules in highly excited Rydberg states; and evaluation of probability amplitudes for multiphoton excitation and calculation of Born corrections, Born couplings, and orbital stresses in small molecules. In the field of statistical mechanics, analysis and numerical simulation are combined to obtain properties of liquids and ionic solutions from the properties of their constituent molecules and their interactions. Much of this work is focused on the calculation of pair correlation functions, transport properties and dielectric phase diagrams, solvent effects, and rates of electron transfer reactions. Other current work includes theory of photon-molecule interactions, quantum ensembles, Jahn-Teller dynamics, and lifetimes of quasistationary molecular states. In addition, students often do theoretical work closely related to active experimental programs under the joint guidance of a theorist and an experimentalist.

Nuclear and Isotope Chemistry

Nuclear chemistry research at Stony Brook has focused on reactions induced by heavy ion beams. Beams are obtained from accelerators located at Stony Brook, Berkeley, Chicago, Michigan, and France. The reactions produce very hot and rapidly rotating atomic nuclei that are studied by observation of particles and fragments that are emitted. Their energies and angles of emission allow for a reconstruction of the properties of the hot emitting nuclei and the mechanism of their production.

Isotope chemistry deals with the small differences in physical and chemical properties of matter that have their origin in the mass difference of isotopes of an element. Although the effects are small, they can be measured with high precision. In general, the effects are quantum effects, and measurement of isotope effects has proven to be a unique method for the study of molecular and intermolecular forces. Isotope effect studies have found application in chemical physics, organic chemistry and biochemistry, geochimistry, and anthropology. Practical applications are found in isotope separation processes. Our present efforts are concentrated on the systematization of isotope chemistry.

Admission

The following, in addition to the minimum Graduate School requirements, are required for admission to graduate study in chemistry:

A. A bachelor's degree in chemistry earned in a curriculum approved by the American Chemical Society, or an equivalent course of study;

B. A minimum grade point average of 3.00 (B) in all undergraduate work and 3.00 (B) in all courses in the sciences and mathematics;

C. Results of the Graduate Record Examination (GRE) General Test;

D. Acceptance by the Department of Chemistry and by the Graduate School.

In exceptional cases, a student not meeting requirements A and B may be admitted on a provisional basis.

Faculty

Distinguished Professors

Bigeleisen, Jacob, Distinguished Professor Emeritus, Ph.D., 1943, University of California at Berkeley: Statistical mechanical theory of isotope chemistry.

Chu, Benjamin, Ph.D., 1959, Cornell University: Laser light scattering; synchrotron X-rays; rheometry; laser induced fluorescence; nanostructures and supramolecular formation in polymer colloids; complexation in photoelectrolytes and surfactants; capillary electrophoresis; supercritical fluids; molecular composites; blends and fibers.
Ojima, Iwao, Ph.D., 1973, University of Tokyo, Japan: Development of new and effective methodologies for the syntheses of bioactive compounds of medicinal interest based on organic and organometallic chemistry; medicinal chemistry and chemical biology of anticancer agents, MDR reversal agents, and enzyme inhibitors.

Stell, George R., Distinguished Research Professor, Ph.D., 1961, New York University: Statistical thermodynamics; molecular theory of fluids; theories of gelation and polymerization.

Professors

Alexander, John M., Ph.D., 1956, Emeritus, Massachusetts Institute of Technology: Reactions between complex nuclei; use of detected ejectiles to characterize superheated emission sources.

Drucechhammer, Dale G., Ph.D., 1987, Texas A&M University: Bioorganic chemistry; computer-guided design in molecular recognition, design and synthesis of receptors and sensors for biological molecules; chemistry and enzymology of coenzyme A.

Fowler, Frank W., Ph.D., 1967, University of Colorado: The development of methods for the preparation of supramolecular assemblies and their application to problems in material science.

Grey, Clare P., D.Phil., 1991, Oxford University, England: Materials chemistry; solid-state NMR spectroscopy; characterizing and studies of anionic conduction in fuel cell membranes and structure of battery materials; environmental chemistry; modifying reactive sites in catalysts.

Haim, Albert, Emeritus, Ph.D., 1960, University of Southern California: Kinetics and mechanisms of inorganic reactions.

Hanson, David M., Ph.D., 1968, California Institute of Technology: Design and development of classroom learning systems; text-based and Web-based learning systems; and course assessment systems.

Hsiao, Benjamin S., Ph.D., 1987, University of Connecticut: Polymer physics; polymer crystallization; structure and property relationships in nanostructured polymers; nanocomposites and biodegradable polymer; polymers for biomedical applications; synchrotron X-ray scattering and diffraction.

Ishida, Takenobu, Emeritus, Ph.D., 1964, Massachusetts Institute of Technology: Isotope effects, stable isotope separation, electrochemistry of nitrogen oxides and carbon oxides in biological fluids.

Johnson, Philip M., Ph.D., 1967, Cornell University: Optical molecular spectroscopy and the electronic structure of molecules; development of spectroscopic techniques using high powered lasers.

Kerber, Robert C., Distinguished Teaching Professor, Ph.D., 1965, Purdue University: Chemical education; esp. effects of terminology on learning; history of chemistry.

Koch, Stephen, Ph.D., 1975, Massachusetts Institute of Technology: Synthesis and structure in transition metal coordination chemistry; metal ions in biological systems; early transition metal catalysts.

Lacey, Roy A., Ph.D., 1987, University at Stony Brook: Nuclear chemistry; intermediate and relativistic energy heavy ion reaction studies.

Lauher, Joseph W., Ph.D., 1974, Northwestern University: Structural chemistry; design and synthesis of new inorganic and organic materials; hydrogen bonding; molecular graphics; X-ray crystallography.

Le Noble, William J., Emeritus, Ph.D., 1957, University of Chicago: Stereoelectronics with applications such as nucleophilic and electrophilic addition, oxidation and reduction, metal complexation, pericyclic reactions and the reverse processes; reactions in compressed solutions.

Parese, John B., Ph.D., 1981, University of North Queensland, Australia: Synthetic solid-state chemistry; structural chemistry; crystallography; materials research.

Parker, Kathryn A., Ph.D., 1971, Stanford University: Organic synthesis; synthetic methods; natural products, non-natural nucleosides, designed enzyme inhibitors; molecular tools for biochemistry.

Raleigh, Daniel P., Ph.D., 1988, Massachusetts Institute of Technology: Biological chemistry; experimental studies of protein folding and protein stability; studies of amyloid formation; NMR studies of protein dynamics.

Sampson, Nicole S., Ph.D., 1990, University of California, Berkeley: Enzyme mechanisms and protein-protein interactions; the use of organic synthesis, kinetics and mutagenesis to probe the structure and function of enzymes and cell-surface recognition proteins.

Tonge, Peter J., Ph.D., 1986, University of Birmingham, England: Biological chemistry and enzyme mechanisms; quantitating substrate strain in enzyme-substrate complexes using vibrational spectroscopy; rational drug design.

White, Michael, Ph.D., 1979, University of California, Berkeley: Surface chemical dynamics; catalysis; photo-induced reactions; molecular spectroscopy; molecular beam scattering.

Associate Professors

Goroff, Nancy, Ph.D., 1994, University of California, Los Angeles: Design and synthesis of carbon-rich organic molecules and materials; halocumulenes and alkyynes; three-dimensional chromophores for biological fluorescence studies; cyclophaneacenes ("buckybelts") and other unusual conjugated systems.

Milar, Michelle M., Ph.D., 1975, Massachusetts Institute of Technology: Reactivity, electronic, and structural properties of transition metal complexes; organometallic chemistry; bio-inorganic chemistry.

Schneider, Robert F., Ph.D., 1959, Columbia University: Chemical education; Web-based instruction; laboratory instruction.

Simmerling, Carlos, Ph.D., 1994, University of Illinois, Chicago: Computational chemistry and structural biology; molecular dynamics of biological macromolecules.

Wong, Stanislaus, Ph.D., 1999, Harvard University: Nanoscience; physical chemistry; biophysical chemistry; materials science; scanning probe microscopy imaging of nanomaterials; synthesis and characterization of nanostructures such as nanocrystals and nanotubes; physical, chemical, and biological applications of nanotechnology.

Wishnia, Arnold, Ph.D., 1957, New York University: Physical chemistry of biological macromolecules; structure and function of ribosomes; membrane model systems; applications of nuclear magnetic resonance.

Assistant Professors

Carriço, Isaac, Ph.D., 2003, California Institute of Technology: Chemical biology and bio-organic chemistry; introduction of unnatural amino acids and sugars into cell and virus systems for diagnostic and therapeutic purposes; development of new reactions designed to take place inside living systems.

Jia, Jiangyong, Ph.D., 2003, Stony Brook University: Ultra-relativistic heavy ion reaction studies.

Khalil, Peter, Ph.D., 2001, Princeton University: Solid state chemistry; electronic and magnetic materials; renewable energy; X-ray diffraction; crystal growth.
Wang, Jin, Ph.D., 1991, University of Illinois: Physics and chemistry of biomolecules; single molecule reaction dynamics.

Adjunct Professors
Fowler, Joanna, Ph.D. 1968, University of Colorado: Organic synthesis with short-lived positron-emitting isotopes; neuroscience; drug mechanisms; brain imaging.
Marecek, James F., Ph.D., 1971, Case Western Reserve University: Chemical synthesis.
Rodriguez, Jose A., Ph.D., 1988, Indiana University: Surface chemistry and catalysis.
Sears, Trevor John, Ph.D., 1979, Southampton University, England: Gas phase laser spectroscopy; frequency modulation; free radical spectroscopy; molecular structure and dynamics; small metallic clusters.

Adjunct Assistant Professors
Green, David, Ph.D., 2002, Massachusetts Institute of Technology: Computational biology of protein interactions.
Raineri, Fernando O., Ph.D., 1987, University of Buenos Aires: Theoretical chemistry; solvent effects on electron transfer reactions; equilibrium and nonequilibrium solvent; thermodynamics, structure and dynamics of liquids and solutions.

Number of teaching, graduate, and research assistants, Fall 2007: 165
1) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1995
2) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1981
3) Joint appointment, Department of Pharmacology
4) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1986; Recipient of the President's Award for Excellence in Teaching, 1986
5) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1998; Recipient of the President's Award for Excellence in Teaching, 1998
6) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1990; Recipient of the President's Award for Excellence in Teaching, 1990
7) Joint appointment, Department of Biochemistry
8) Joint appointment, Department of Geosciences
9) Recipient of the State University Chancellor's Award for Excellence in Teaching, 2001; Recipient of the President's Award for Excellence in Teaching, 2001

Degree Requirements

Requirements for the M.S. Degree in Chemistry

A. Successful completion of an approved course of study comprising at least 30 credits of graduate coursework. A student must achieve a 3.0 overall grade point average in all courses taken at Stony Brook to receive a degree.

B. Successful completion of the CHE 532 seminar and six courses made up from any of the following groups: CHE 501 through 530, 541, 542, 557 through 589, 601 through 604, 623 through 683, and approved courses offered through other programs or through the School of Professional Development (SPD).

C. Successful completion of the CHE 590 term paper or research, thesis, and defense degree.

Requirements for the M.A. Degree in Teaching Chemistry

The curriculum for a Master of Arts in Teaching Chemistry consists of 36 credits distributed among graduate-level course offerings in chemistry, other sciences and mathematics, teaching methods in both science and general education, and practice teaching in secondary schools. Individual programs are tailored to the background and interests of the student in consultation with an advisor.

Requirements for the Ph.D. Degree in Chemistry

A. Courses
Successful completion of an approved course of study comprising at least six formal graduate courses of which four are selected from CHE 501 through 550, in addition to CHE 531, 532, and two semesters of Teaching Practicum (CHE 610, 611) or the equivalent is required. The following courses are recommended for inclusion among the six formal courses, distributed from among at least two of the following four groups: Group I—one of CHE 521, 522, 523, 528; Group II—one of CHE 511, 514, 515; Group III—one of CHE 501, 502, 503, 504; Group IV—one of CHE 530, 541, 542.

Continuation in the Ph.D. program is based, in part, on achievement in four 500-level Chemistry courses to be taken during the student’s first year. In consultation with faculty advisors each student selects a course of study to acquire a good background for research in the area of Chemistry chosen.

B. Advancement-to-Candidacy (Preliminary) Examination
A student is advanced to candidacy for the Ph.D. degree when all degree requirements except the dissertation have been completed. A special committee is designated for each student to aid in progressing toward this step. The committee is charged with advising the student and administering the advancement-to-candidacy (preliminary) examination. This examination, normally completed within two years following qualification to the Ph.D. degree, consists of a written proposition and oral defense, a discussion of the student’s research, and discussion or evaluation of the recent literature.

C. Presentation of a Departmental Seminar

D. Research, Dissertation, Dissertation Defense, and Departmental Colloquium

Each student selects a faculty research advisor at some time after the middle of the first semester and usually before the middle of the second semester. The research advisor also serves on the advancement-to-candidacy committee.

Specific inquiries from prospective graduate students regarding research opportunities are welcomed and should be addressed to the chair. The Graduate Programs in Chemistry brochure states in some detail the varied research interests of the Chemistry faculty and is available from the Department.

E. Residence
A one-year residence is required.

F. Teaching
Three semesters of teaching experience are required. In some cases, research activity may be substituted in lieu of one semester of teaching.

Requirements for the Ph.D. Degree, Concentration in Chemical Physics

A field of concentration in Chemical Physics is provided for students whose interests lie in both chemistry and physics. A graduate student who is admitted to either the Department of Chemistry or the Department of Physics may elect this course of study with the consent of the Department chair. A Chemistry student elects this course of study with the consent of the Department chair. A Chemistry student elects this course of study to obtain more extensive training in physics than is normally required by chemistry programs. A Physics student elects this concentration to obtain more extensive exposure to chemical systems than is normally obtained in physics programs. A student in the Chemical Physics concentration may select a research advisor from either program subject to the approval of the chair.

For a Chemistry student the requirements are the same as for the Ph.D., with the following exceptions.
A. Courses
CHE 531, 532, two semesters of CHE 610 or 611, and six graduate courses are required, including the following:
1. CHE 523 Chemical Thermodynamics
2. Either CHE 521 or 527 Thermochemistry
3. One course from among CHE 501, 502, 504, 511, 514, 515, 541, 542
(Chem/Inorganic/Biological Chemistry)
4. Three courses from among CHE 522, 524, 525, 526, 527, 528, 529, and 530 and PHY 501, 503, 505, 540, 551, 555, and 565. Other graduate courses can be substituted only with prior permission of the graduate advisement committee. A prerequisite for the Chemistry Physics Program is undergraduate training in classical mechanics and electromagnetic theory at or above the level of PHY 301 Electromagnetic Theory and PHY 303 Mechanics. Students in Chemical Physics must take these courses unless they receive waivers from the graduate advisement committee.

B. Advancement-to-Candidacy (Preliminary) Examination
In some cases a hybrid of the Chemistry and Physics requirements may be used.

Requirements for the Ph.D. Degree, Concentration in Biological Chemistry

The field of concentration in biological chemistry is a course option for students whose interests lie in both chemistry and biology. A graduate student who is admitted to the Department of Chemistry or another appropriate program may elect this field of concentration with the consent of the graduate coordinator. The course of study can provide more extensive training in biology than is normally required for a Chemistry graduate degree and more extensive exposure to fundamental chemical studies for students in other programs. In addition, a student may select a research advisor in any appropriate program, subject to the approval of the Chairs involved.

A. Courses
CHE 531, two semesters of CHE 610 or 611, and six graduate courses are required, including the following:
1. Two courses from among CHE 501-530.
2. A minimum of two graduate biology/biochemistry-oriented courses
3. Three courses from among CHE 541, CHE 542, and CHE 543, as approved by the graduate advisement committee.

CHE 541 and 542, as approved by the graduate advisement committee. Students will normally take CHE 541 and 542. A prerequisite for the Biological Chemistry Program is undergraduate training in biology or biochemistry at or above the level of BIO 361 Biochemistry I. Students in the Biological Chemistry program must take this course unless they receive a waiver from the graduate advisement committee.

CHE 541, CHE 542 as approved by the graduate advisement committee. May be repeated for credit.

Courses
CHE 501 Instrumental Methods in Chemistry
Practical and theoretical aspects of instrumentation in chemistry. The primary emphasis is on contemporary methods of molecular structure determination such as X-ray crystallography, NMR, IR, and MS. Other topics may also be presented.

CHE 502 Mechanistic Organic Chemistry
Important reaction mechanisms and the methods by which they are studied. Substantive and medium effects on reactions proceeding through concerted mechanisms and unstable intermediates are discussed.

CHE 503 Synthetic Organic Chemistry
A survey of the most important organic reactions from the viewpoint of synthetic utility, including many recent innovations in this field. Throughout the discussion of these methods, emphasis is placed upon their use in the synthesis of complex organic structures.

CHE 504 Structure and Reactivity in Organic Chemistry
Electronic and stereochemical theories relating to organic structure and reactions. Topics such as bonding, strain, aromaticity, MO theory, molecular rearrangements, pericyclic reactions, and photochemistry are covered. This course is intended to provide a foundation of knowledge at the beginning graduate level as preparation for advanced subjects in CHE 502 and CHE 505, and is complementary to CHE 501.

CHE 511 Structural Inorganic Chemistry
Properties and reactions of inorganic compounds are considered from the viewpoint of molecular and electronic structure. The modern bonding theories used in inorganic chemistry including molecular orbital, valence bond, and ligand field theories are developed using symmetry and group theory. Selected main group, transition metal, and organometallic compounds are discussed. An introduction to crystallography and solid-state structure is included.

CHE 512 Molecular Spectroscopy
A detailed description of the theory and practice of molecular spectroscopy. Topics include the interaction of molecules with electromagnetic radiation and the time evolution of molecular energy states. Prerequisite: CHE 521

CHE 514 Transition Metal Chemistry
A survey course with an emphasis on the transition metals. Reaction mechanisms, synthesis, and structure are covered. Specific areas of concern include coordination chemistry, organometallic chemistry, bioinorganic chemistry, and selected topics from solid-state and non-transition metal chemistry.

CHE 515 Advanced Inorganic Chemistry
A topical course with an emphasis on the current literature. Subject matter varies and is announced in advance. Possible subjects include reaction mechanisms, organometallic chemistry, bioinorganic chemistry, and physical inorganic chemistry.

CHE 521 Quantum Chemistry I
Quantum theoretical concepts are discussed. Schrodinger wave mechanics and related mathematical techniques are illustrated by treatment of systems of chemical interest. Designed to form the theoretical basis for the study of chemical bonding, molecular structure, spectroscopy, and molecular collision phenomena.

CHE 522 Molecular Spectroscopy
A detailed description of the theory and practice of molecular spectroscopy. Topics include the interaction of molecules with electromagnetic radiation and the time evolution of molecular energy states. Prerequisite: CHE 521

CHE 523 Chemical Thermodynamics
A rigorous development of the fundamentals of thermodynamics and its application to a number of systems of interest to chemists, such as electrochemical cells, gases, and homogeneous and heterogeneous equilibrium. An introduction to statistical mechanics will also be included.

CHE 524 Magnetic Resonance
This course provides an introduction to the fundamental quantum mechanics of the magnetism of spin-1/2 (and higher) particles. It includes a study of the Bloch equations (the responses of the magnetism to continuous-wave and pulsed irradiation) and a discussion of the experimental hardware and techniques commonly employed. Topics covered include the basics of the spin Hamiltonian (chemical shifts, J, dipolar, and quadrupolar couplings), dynamics and relaxation, 1-D spectroscopy (spin and chemical exchange, lineshapes, spin echoes, etc.), 2-D spectroscopy (homonuclear and heteronuclear correlation), techniques for studies of solids and liquid crystals (magic angle spinning, cross polarization, quadrupolar echo), and the principles of magnetic resonance imaging. Applications to the biological and material sciences, as well as chemical
CHE 525 Theoretical Chemistry
This course stresses the physical theory underlying chemical phenomena. Special emphasis is given to advanced topics in electronic structure theory, molecular dynamics, condensed matter and surfaces, many-body and quantum ensemble theory, and the interaction of light and molecules. Prerequisite: CHE 521
3 credits, ABCF grading

CHE 528 Statistical Mechanics
Statistical theory of equilibrium systems and rate processes. Ensemble theory, spatial and time correlation functions. Model systems and methods of estimating their properties. Designed to enable the student to use the current literature dealing with application of statistical mechanics to problems in chemistry. Spring, 3 credits, ABCF grading

CHE 530 Physical Chemistry of Macromolecules
An investigation of the gross and fine structures of macromolecules and molecular aggregates in solution as revealed by hydrodynamic behavior (e.g., ultracentrifugation, viscosity), light scattering, spectroscopic properties (e.g., ultraviolet, hypochromism, circular dichromism, Raman, fluorescence, magnetic resonance spectra), and the thermodynamics and kinetics of interaction with small molecules and ions. Theory of conformation changes and phase transitions. 3 credits, ABCF grading

CHE 531 Departmental Research Seminar
Meetings in which first-year graduate students learn about the research activities of the Departmental faculty. Fall, 0 credit, S/U grading

CHE 532 Literature Seminar
Students select and discuss topics from the current literature. Spring, 0 credit, ABCF grading

CHE 535 Introduction to Computational Structural Biology and Drug Design
This course will provide an introduction to computational structural biology with application to drug design. Methods and applications that use computation to model biological systems involved in human disease will be emphasized. The course aims to foster collaborative learning and will consist of presentations by the instructor, guest lecturers, and by course participants with the goal of summarizing key methods, topics, and papers relevant to computational structural biology. Crosslisted with AMS 535.
Fall, 0-3 credits, ABCF grading

CHE 536 Molecular Modeling of Biological Molecules
This course is designed for students who wish to gain hands-on experience modeling biological molecules at the atomic level. In conjunction with the individual interests, molecular mechanics, molecular dynamics, Monte Carlo, docking (virtual screening), or quantum mechanics software packages can be used to study relevant biological system(s). Projects will include setup, execution, and analysis. Course participants will give literature presentations relevant to the simulations being performed and a final project report will be required. Familiarity with UNIX (Linux) is desirable. Crosslisted with AMS 536. Prerequisite: CHE 535 or permission of instructor
Spring, 0-3 credits, ABCF grading

CHE 541 Biomolecular Structure and Analysis
The structures of biological macromolecules and the relationship of their structure to biological function are described. Methodology employed to study macromolecules is also discussed. Topics include chemical and physical properties of cell and tissue constituents, including carbohydrates, lipids, nucleic acids, proteins, and peptides. Prerequisite: Strong foundation in physical and organic chemistry Fall, 3 credits, ABCF grading

CHE 542 Chemical Biology
The reactivity and physiological function of biological macromolecules and their cofactors are described at the chemical biochemical level. The emphasis of this course reflects recent advances in chemical biology. Possible topics include catalysts, reaction mechanisms, correlation between three-dimensional structure and reactivity, receptor-ligand interactions in extracellular and intracellular signaling, protein folding in vitro and in vivo. Spring, 3 credits, ABCF grading

CHE 589 Directed Study
Subject matter varies according to needs of student. Fall and spring, 0-12 credits, ABCF grading May be repeated for credit

CHE 590 M.S. Term Paper
Independent study leading to a term paper on a selected topic in chemistry, chemical applications, or chemical pedagogy. Fall and spring, 3 credits, ABCF grading

CHE 591 Chemistry in Society
Includes current trends in chemical research and the influence of chemistry in areas such as the environment and technology. Topics of local interest and the conflicting demands placed on technology will be integrated into the course. Fall, 3 credits, ABCF grading

CHE 593 Chemical Demonstrations
The design and implementation of demonstrations to illustrate modern concepts of chemistry. 3 credits, ABCF grading

CHE 599 Research
Fall and spring, 1-12 credits, S/U grading

CHE 602 Special Topics in Physical Organic Chemistry
The subject matter varies depending on interests of students and staff. It may cover such areas as photochemistry, theoretical organic chemistry, and the chemistry of unstable intermediates; the emphasis is on fundamental considerations and recent developments. 1-12 credits, ABCF grading May be repeated for credit

CHE 603 Special Topics in Bioorganic Chemistry
The subject matter varies depending on interests of students and faculty. Possible topics include asymmetric synthesis and natural product synthesis. Fall, 1-3 credits, ABCF grading May be repeated for credit

CHE 606 Special Topics in Synthetic Chemistry
1-3 credits, ABCF grading May be repeated for credit

CHE 610 Practicum in Teaching
Practice instruction in chemistry at the undergraduate level, carried out under faculty orientation and supervision. A minimum of two semesters of CHE 610 or 611 is required of all candidates for graduate research degrees in chemistry, unless explicitly waived by the Chair. Fall and spring, 1-3 credits, ABCF grading May be repeated

CHE 611 Practicum in Teaching
Practice instruction in chemistry at the undergraduate level, carried out under faculty orientation and supervision. A minimum of two semesters of CHE 610 or 611 is required of all candidates for graduate research degrees in chemistry, unless explicitly waived by the Chair. Fall and spring, 0 credit, ABCF grading May be repeated

CHE 619 Critical Readings of Current Topics in Chemistry
Recent research papers from the literature will be analyzed in depth. These papers may originate from the inorganic, organic, physical, and/or biochemical literature. The exact topic of the course is announced in advance. Fall and spring, 0-3 credits, ABCF grading May be repeated

CHE 625 Molecular Structure and Crystallography
Experimental methods in the determination of molecular structure. The emphasis is on the determination of structure in the solid state, particularly by X-ray crystallography. Students complete a single-crystal molecular structure determination using modern diffractometer techniques. 3 credits, ABCF grading

CHE 641 Organometallic Chemistry
A systematic presentation of the chemistry of organometallic compounds, particularly those of the transition metals. Topics include structure, bonding, reaction mechanisms, synthesis, and applications in catalysis and organic synthesis. 3 credits, ABCF grading

CHE 682 Special Topics in Inorganic Chemistry
Subject matter varies, depending on interests
of students and staff, but covers recent developments in inorganic chemistry.
0-3 credits, ABCF grading
May be repeated for credit

CHE 683 Special Topics in Physical Chemistry
Subject matter varies, depending on interests of students and staff, but covers recent developments and advanced topics in physical chemistry.
3 credits, ABCF grading
May be repeated for credit

CHE 690 Internship in Dissertation-Related Research
Supervised curricular training in dissertation-related research.
Prerequisite: For full-time: Summer session or advancement to candidacy; permission of graduate program director
Fall and spring, 1-3 credits, S/U grading

CHE 693 Physical Chemistry Seminar
Fall and spring, 0-12 credits, S/U grading
May be repeated for credit

CHE 694 Biological Chemistry Seminar
Fall and spring, 0-12 credits, S/U grading
May be repeated for credit

CHE 695 Inorganic Chemistry Seminar
Fall and spring, 0-12 credits, S/U grading
May be repeated for credit

CHE 696 Organic Chemistry Seminar
Fall and spring, 0-12 credits, S/U grading
May be repeated for credit

CHE 698 Colloquium
Fall and spring, 0-12 credits, S/U grading
May be repeated for credit

CHE 699 Dissertation Research on Campus
Prerequisite: Must be advanced to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

CHE 700 Dissertation Research off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

CHE 701 Dissertation Research off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will be removed only if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

CHE 800 Summer Research
0 credit, S/U grading
May be repeated for credit
Comparative Literary and Cultural Studies (CLCS)

Chair: Robert Harvey, Humanities Building Room 2048, (631) 632-7460
Graduate Program Director: Kcin Gabbard, Humanities Building Room 2124, (631) 632-9475
Graduate Secretary: Mary Moran-Luba, Humanities Building Room 2049, (631) 632-7456

Degrees awarded: M.A. and Ph.D. in Comparative Literature, Ph.D. in Cultural Studies

The Department of Comparative Literary and Cultural Studies, which is part of the College of Arts and Sciences, offers the M.A. and Ph.D. degrees in Comparative Literature and the Ph.D. degree in Cultural Studies.

The Department of Comparative Literary and Cultural Studies's strengths lie primarily in comparatist and cross-cultural studies, critical theory, and cinema and media studies, as reflected in the Department's popular undergraduate major in Cinema and Cultural Studies. Competence in one or more foreign languages has also long been considered essential to the Department's mission. A network of affiliated faculty represents a wide range of areas in disciplines including Africana Studies, Art History, English, European and Hispanic Languages, History, Music, Philosophy, and Women's Studies. Prospective students are encouraged to examine the list of faculty to see whether their own interests may be served by the current faculty cohort.

Admission

To be considered for admission to graduate studies in Comparative Literary and Cultural Studies, all applicants must hold a baccalaureate degree from an accredited college or university with a suitable overall grade point average and with a high average in a major field appropriate to study in Comparative Literature. Applicants should also have a good command of at least one, and preferably two, foreign languages. In addition, they must submit the following by January 15:

1. A B.A. or M.A. degree from a recognized institution in a suitable area of study;
2. An official graduate application including a statement of purpose and three letters of recommendation can be completed online at the following Web site: www.grad.sunysb.edu/prospective/applying/index.shtml;
3. Two official copies of all previous college transcripts. (Transcripts of both undergraduate and graduate work must be submitted. If a student attended a junior college whose credits and grades are not listed on the senior college transcript, a separate junior college transcript is required.) International students must submit certified English translations of transcripts;
4. For international students, proficiency in English as demonstrated by a minimum TOEFL score of 550 (paper) or 213 (computer) or an IELTS total score of 6.5. In order to teach, any graduate student whose native language is not English must score 55 or above on the TSE or SPEAK test or obtain a score of 7.0 or better in the speaking component of the IELTS test. The Web site for ETS (TOEFL and GRE) is www.ets.org;
5. An appropriate score on the Graduate Record Examination General Test (GRE), Institution Code 2548, Department Code 2902;
6. Two term papers or other writing samples in literature or a related field;
7. For international students, a foreign student financial affidavit, required upon admission;
8. For international students, a standard cassette, CD, or DVD demonstrating ability to speak English;
9. An application fee of $60.

Admission to the M.A. Program in Comparative Literature

Applicants to the graduate program in Comparative Literature are required to fulfill the minimum admission requirements of the Graduate School. In addition, applicants are ordinarily required to hold a bachelor's degree in an appropriate field from a recognized institution. Furthermore, applicants to the graduate program in Comparative Literature are expected to demonstrate competence in one foreign language as well as in English. Adequate reading knowledge of a second foreign language is highly desirable.

Any deficiencies in these requirements shall not automatically bar admission, but it is understood that inadequacies in undergraduate preparation will normally require the student to take additional work, the amount to be determined by the graduate program committee and not to be used to fulfill any specific M.A. degree requirements.

In all cases, admission is by action of the graduate program committee of the Department under guidelines established by the Graduate School. Applicants are admitted on the basis of their total records, and no predetermined quantitative criteria by themselves ensure a positive or a negative decision.

Admission to the Ph.D. Program in Comparative Literature

Stony Brook’s doctoral program in Comparative Literature emphasizes developments in contemporary interpretive theory that have transformed disciplinary identities. It understands its “comparative” mission not only to encourage a global perspective on literature beyond narrow linguistic and cultural boundaries, but also to seek alternatives to established approaches to literary study. The program’s faculty and students work closely with members of other programs in the humanities, arts, and social sciences in a collaborative effort to examine the role of literary expression as related to other forms of human activity. Students supplement their core study in Comparative Literature by designing individual programs with strong links to related fields. While providing students with the techniques required for advanced literary analysis, the program seeks to provide full appreciation of how those techniques interact with different modes of scholarly inquiry.

As an institution, Stony Brook is committed to increasing the opportunities for interdisciplinary activity crucial to the doctoral program in Comparative Literature. The University’s Humanities Institute is the most visible expression of a broad University commitment to bring-
ing diverse scholars together for a common intellectual enterprise.

Applicants holding the M.A. degree in Comparative Literature from the graduate program in Comparative Literary and Cultural Studies from Stony Brook may, upon the advice of the graduate program committee, be directly admitted to the Ph.D. program. Other applicants will be admitted to the program after review of their qualifications.

Admission to the Ph.D. Program in Cultural Studies

The Ph.D. Program in Cultural Studies is an interdisciplinary and interdepartmental program based in the Department of Comparative Literary and Cultural Studies. The program treats culture as inseparable from its economic, historical, political, social, and technological dimensions and, as such, works to reorient traditional humanities disciplines.

The Cultural Studies Program at Stony Brook is designed for students of modern and contemporary cultures whose interests cut across traditional modes of study in the Humanities and Social Sciences. Areas of emphasis include cross-cultural and transnational formations, minority and diasporic cultures, popular and mass culture, subcultures, as well as the study of elite, dominant, and national cultures. Course requirements are designed to build competence in interdisciplinary Cultural Studies theory and practice, maximize collegial interaction among students, and allow students to develop disciplinary fluency in a particular subfield.

Faculty

Professors

Lou Charnon-Deutsch,* Ph.D., 1978, University of Chicago: 18th- and 19th-century Peninsular literature; feminist theory.

Krin Gabbard, Ph.D., 1979, Indiana University-Bloomington: Film theory and history, jazz, interrelations of literature, art, music, and film, comparative literature methodology, psychoanalytic approaches to the arts, ancient Greek literature, drama, and literary theory.

Robert Harvey, Ph.D., 1988, University of California, Berkeley: 20th-century and contemporary literature in French and English; critical theory; film, relations between philosophy and literature.

Peter Manning,* Ph.D., 1968, Yale University: British Romanticism; psychoanalytic criticism; material histories of the book.

Don Idhe,* Ph.D., 1964, Boston University: Phenomenology and hermeneutics; philosophy of science; philosophy of technology; science studies.

E. Ann Kaplan, Ph.D., 1970, Rutgers University: Contemporary theory, regarding film, literature, and popular culture; psychoanalysis and postmodernism; gender and cultural studies.

Clyde Lee Miller,* Ph.D., 1974, Yale University: Ancient and medieval philosophy; Nicholas of Cusa, ethics.

Adrienne Munich,* Ph.D., 1976, City University of New York: Victorian cultural studies, feminist theory, popular culture.

Sandy Petrey, Ph.D., 1966, Yale University: 19th-century fiction, theories of the novel; contemporary criticism.

Nicholas Rzhewsky,* Ph.D., 1972, Princeton University: 19th- and 20th-century Russian literature, Russian literature and ideology, Russian literature and theater; ideology, critical theory, history of the novel.

Hugh J. Silverman,* Ph.D., 1973, Stanford University: Contemporary literary/art/film/cultural theory; continental philosophy and criticism; interdisciplinary studies in philosophy, literature and culture; history of literary and aesthetic theory; the philosophical essay.

Kathleen Wilson,* Ph.D., 1985, Yale University: 18th- and 19th-century British cultural history.

Associate Professors

Helen Cooper,* Ph.D., 1982, Rutgers University: 19th-century British colonial studies; post-colonial theory and literature.

Lisa Diedrich,* Ph.D., 2001 Emory University: Feminist cultural studies of health and illness, disability studies, global feminisms; feminist theories and methodologies.

Christa Erickson,* M.F.A., University of California, San Diego: Electronic installation; digital media; video art.

Young-Sun Hong, Ph.D., 1989, University of Michigan: Social and cultural history of modern Germany and Europe; transnational and postcolonial studies; race and gender; medicine and the body; citizenship, state formation, and civil society.

Iona Man-Cheong,* Ph.D., 1991, Yale University: Chinese history, culture, and society, particularly Qing dynasty; women, gender, and sexuality in China.

Kathleen M. Vernon,* Ph.D., 1982, University of Chicago: Contemporary Spanish and Latin American cinema and cultural studies; gender and popular culture; contemporary Hispanic literature.

Sachiko Murata,* Ph.D., 1971, Tehran University: Islamic law; Persian literature; feminine spirituality; Islamic thought; Japanese religions; Confucianism and Taoism.

Mary C. Rawlinson,* Ph.D., 1978, Northwestern University: Aesthetics, literature, and philosophy; Proust, mystery, and detective fiction; 19th-century philosophy (esp. Hegel); philosophy of medicine.

Jacqueline Reich,* Ph.D., 1994, University of California, Berkeley: Italian cinema; film theory; gender studies.

Susan Scheckel,* Ph.D., 1992, University of California, Berkeley: American literature.

Assistant Professors

Themis Chronopoulos,* Ph.D., 2004, Brown University: U.S. urban history; race and ethnicity; popular culture; public policy; world cities.

Celia Marshik,* Ph.D., 1999, Northwestern University: 20th-century British literature; Modernism; feminist studies.

Patrice Nguyen, Ph.D., 1998, Johann Wolfgang Goethe-University, Frankfurt/Main Germany: European philosophy; critical theory; African literature; cinema and colonialism; theories of violence; media theory; creative writing.

E.K. Tan, Ph.D., 2007, University of Illinois at Urbana-Champaign: Modern and contemporary Chinese literature; Sinophone literature; Chinese language cinema; film theory; Diaspora theory; globalization theory; psychoanalytical theory; translation theory.

Milind Wankani,* Ph.D., 2002, Columbia University: Derrida and Spivak on ethics; South Asian interpretive traditions in the Indo-Islamic millennium; Levains on language; the political thought of Partha Chatterjee; Weimer cultural critique.
Tracey Walters,* Ph.D., 1999, Howard University: African American literature; Black British literature and culture.

Visiting Assistant Professor
Adrián Pérez-Meligos, Ph.D., 1995, University of Rochester: Cinema and the novel in the Americas; cultural studies.

Adjunct Professor

Lecturer
*Victoria Hesford, Ph.D., 2001 Emory University: Feminist cultural studies; American feminist histories and theory; queer histories and theory; media studies; post-1945 English and American literatures.

Number of teaching, graduate, and research assistants, Fall 2005: 16
* A member of another department who is affiliated faculty in the Graduate Program in Comparative Literature or the Graduate Program in Cultural Studies or both. (Consult the Graduate Director or the Graduate Coordinator for further details).

Degree Requirements
Requirements for the M.A. Degree in Comparative Literature
In addition to the minimum requirements of the Graduate School, the following are required:

A. Course Requirements
The minimum course requirement for the M.A. degree is 30 graduate credit hours. An M.A. candidate is expected to take:
1. CLT 501 Comparative Literature Methodology
2. CLT 510 History of Literary Theory—Part I
3. Three CLT courses numbered 600 and higher

The remaining courses may be distributed among graduate offerings in comparative literature, English, foreign languages, philosophy, history, art criticism, theatre, music, and other appropriate fields. A student must achieve a 3.5 overall grade point average for all graduate courses taken at Stony Brook to receive a degree.

B. First-Year Evaluation
In the middle of the student’s second semester of graduate work, the graduate program director prepares a file for the student’s first-year evaluation. It consists of (1) the student’s grades, (2) letters from the professor in all of the student’s classes, and, if the student is a teaching assistant, (3) a letter of evaluation from appropriate faculty, and (4) student evaluations. Students may submit any other relevant material such as a seminar paper or original essay. The graduate program committee will evaluate the dossier and decide whether the student should be encouraged to continue in the program.

C. Satisfactory Progress Toward the M.A.
Because so many factors depend on satisfactory progress toward the degree, it is important for students to be aware of and monitor their own progress. The following define the minimum limits for satisfactory progress for full-time students:
1. Maintain a 3.5 average, with no course below B- in any semester of graduate study, as well as complete all incomplete grades by the first deadline. Students who fail to fulfill these requirements in any semester will be automatically placed on probation during the following semester and will be subject to possible dismissal.
2. Receive an accepted first-year evaluation in the spring semester of the first year of study.

D. Foreign Language Requirements
Entering students are expected to have a good command of one and preferably two foreign languages. Students must ultimately be competent in one major and one minor language (non-native speakers of English may offer English as one of the two languages). All students must have passed the language requirements before they are allowed to take the M.A. examination. To demonstrate competence in the major language, students must take for credit, and earn a grade of B or better in, at least one graduate or advanced undergraduate literature course conducted in the language (final papers may be written in English). Competence in the minor language can be demonstrated by (1) earning a grade of B or better in a graduate translation course or (2) passing a CLT examination to be taken with a dictionary. (For details, see the department handbook.)

E. M.A. Examination
The student will take a written master’s examination in the second year of graduate study or submit a master’s thesis. The exam measures the student’s knowledge and mastery of literary theory and its history, familiarity with the major texts of world literature, and ability to compose a competent stylistic analysis of literary texts. The master’s examination committee consists of three members of the faculty, at least two of whom are members of the comparative literature graduate faculty. The student’s advisor normally chairs the committee, and the other two members are chosen by the director of graduate studies in consultation with the student and his/her advisor.

Reading List for the Examination:
The student, in consultation with the examination committee, prepares a list of works in each of the following three areas: (1) history of literary theory from the Greeks to the present; (2) a literary genre; and (3) a literary period. The list for (1) is set. Each of the other reading lists will consist of 15 to 20 primary texts. The number of required titles for the genre will be increased if the student chooses short works; whatever the genre, the reading required should approximate that imposed by 15 to 20 novels. The list, signed by the student and all members of the examination committee, must be submitted to the director of graduate studies for approval by the graduate studies committee at least four weeks prior to the examination date.

The master’s examination will consist of a one and a half hour oral exam at which at least two of the three members of the examination committee must be present.

Thesis Substitute for Master’s Examination: Instead of taking the M.A. examination, students may substitute a thesis for the exam. The thesis must be on a substantive topic in comparative literature requiring original research. The student will form a committee of three faculty, at least two of whom must be from the comparative literature graduate faculty, who will supervise the project and give final approval. The student’s committee and project proposal must be approved by the graduate studies committee prior to embarking on the thesis.

Requirements for the Ph.D. Degree in Comparative Literature
In addition to the minimum requirements of the Graduate School, the following are required:

A. Course Requirements
1. CLT 501 Comparative Literature Methodology
2. CLT 510 History of Literary Theory—Part I
3. Three CLT courses numbered 600 and higher
4. CLT 698 The Teaching Practicum
 A minimum of 48 credits of graduate work is required for the Ph.D. Students who hold an M.A. in comparative literature or a related discipline can request that their transcripts be evaluated by the graduate program committee and may receive a maximum of 30 credits toward their Ph.D. All students seeking the Ph.D. must take the required courses listed above, unless the graduate program committee accepts comparable courses taken previously. All Ph.D. students must acquire a minimum of one semester of formal teaching experience (even if they are unsupported or are on a fellowship requiring no teaching duties) and must concurrently take the formal teaching practicum, CLT 698.

B. First-Year Evaluation
 In the middle of the student's second semester of graduate work, the graduate program director prepares a file for the student’s first-year evaluation. It consists of: (1) the student’s grades, (2) letters from the professor in all of the student’s classes, and, if the student is a teaching assistant, (3) a letter of evaluation from appropriate faculty, and (4) student evaluations. Students may submit any other relevant material such as a seminar paper or original essay. The graduate program committee will evaluate the dossier and decide whether the student should be encouraged to continue in the program.

C. Satisfactory Progress Toward the Ph.D.
 In addition to requirements A through D, Ph.D. students must fulfill the following requirements:
 1. Maintain at least a 3.5 average, with no course below B-, in each semester of graduate study. There is a one-year maximum limit on incompletes. A student may accumulate no more than two incomplete grades in any one semester or he/she will no longer be considered a Student in Good Standing, a prerequisite to continue in the program. As a result, the student will lose his or her T.A. line as well as face likely dismissal from the program;
 2. Receive a satisfactory first-year evaluation in the spring semester of the first year of study;
 3. Satisfy at least one language requirement in each year of residence until all language requirements are met. All language requirements must be completed at least three months before the comprehensive examination;
 4. Complete all core courses in the first two years of full-time study and all 48 credits for the Ph.D. in three years;
 5. Take the comprehensive examination no later than one year after completion of coursework;
 6. Submit a dissertation proposal in the semester following satisfactory completion of the comprehensive examination. By rules of the Graduate School, students must satisfy all requirements for the Ph.D. within seven years after completing 24 credits of graduate work in the Stony Brook department in which they are registered. In rare instances, the Graduate School will entertain a petition to extend this time limit, provided it bears the endorsement of the department. The program may require evidence that the student is still properly prepared for completion of the degree. In particular, the student may be required to pass the comprehensive examination again in order to be permitted to continue work.

D. Foreign Language Requirements
 Ph.D. students may choose to demonstrate competence in either two major foreign languages or one major and two minor languages. To demonstrate competence in the major language, students must take for credit and earn a grade of B or better in at least one graduate or advanced undergraduate literature course conducted in the language (final papers may be written in English). Competence in the minor languages can be demonstrated by:
 1) earning a grade of B or better in a graduate translation course or
 2) passing a CLT examination to be taken with a dictionary. (For details, see the Department handbook.)

E. Comprehensive Examination
 Full-time students who are candidates for the Ph.D. take an oral comprehensive examination no more than one year after completing their coursework. All language requirements must be completed at least three months before the comprehensive examination. Each student will have a committee of four faculty members who can examine the candidate in one or more areas of the comprehensive examination, and who will assist the candidate in preparing a reading list for the examination. The examination consists of four parts:
 1. Reading list for the examination. The student’s formal defense of the dissertation is open to all members of the University community.

F. Dissertation
 The dissertation represents the culmination of the student’s degree program and should be a serious contribution to scholarship. Candidates choose their dissertation director and the dissertation committee in consultation with the chair and the graduate program director. A Ph.D. dissertation proposal should be presented to the dissertation director within three months after completion of the comprehensive examination. Early involvement of all members of the committee in the ongoing research and writing is strongly recommended. The student’s formal defense of the dissertation is open to all members of the University community.

G. Teaching Assistantships
 All students are asked to acquire some experience in teaching. Guidelines permit a graduate student to be supported as a teaching assistant (TA) for a maximum of four years. Graduate students in comparative literature have the opportunity to teach a wide variety of courses: traditionally, they have taught foreign language courses, English composition, interdisciplinary courses offered in the undergraduate humanities program, and entry-level comparative literature courses. During their first year, Ph.D. students will normally be placed as teaching assistants in CLT lecture courses. During their second and third years, students will most commonly teach as instructors in the Writing Program, and during their fourth year, as independent instructors of CLT courses. Admitted students who would prefer a Writing Program placement during their first year should notify the Department immediately upon admission into the Ph.D. program. While placements will vary according to
student and program needs and constraints, every effort will be made to provide each student with the available range of teaching experiences.

H. Additional Information

A Handbook for Graduate Studies in Comparative Literature includes more extensive information on comparative literature at Stony Brook. A copy is available at the Comparative Literature Office. The handbook also can be requested by mail and can be accessed at www.stonybrook.edu/complit/new/index.html

Requirements for the Ph.D. Degree in Cultural Studies

In addition to the minimum requirements of the Graduate School, the following are required:

A. Course Requirements

1. CLT 501 Comparative Literature Methodology
2. CST 609: Introduction to Cultural Studies
3. CST 680: Cultural Studies Research Seminar
4. CST 688: The Teaching Practicum
5. Twelve additional courses numbered 600 or higher, including at least three 600 or higher.

To ensure disciplinary fluency in a more traditional sense, students are strongly urged to take at least three of these courses in a single discipline (outside the core Cultural Studies sequence), and to include at least one faculty member from that field on the Ph.D. oral exam and dissertation committees.

A minimum of 48 credits of graduate work to be completed before the comprehensive exam is required for the Ph.D. Students who hold an M.A. in a related discipline can request that their transcripts be evaluated by the director of graduate studies to receive a maximum of 18 credits toward their Ph.D. Students seeking up to 30 credits from an M.A. must appeal to the graduate studies committee. All students seeking the Ph.D. must take the required courses listed above, unless the graduate program committee accepts comparable courses taken previously. All Ph.D. students must acquire a minimum of one semester of formal teaching experience (even if they are unsupervised or are on a fellowship requiring no teaching duties) and must concurrently take the formal teaching practicum, CST 698.

Students must take the required courses when they are offered, and cannot replace them by Independent Study courses, except in the most unusual circumstances and by petition to the Director before the beginning of the term the course is offered. The petition has to be signed by the person directing the Independent Study and must be approved by the Cultural Studies Steering Committee.

B. First-Year Evaluation

In the middle of the student’s second semester of graduate work, the graduate program director prepares a file for the student’s first-year evaluation. It consists of: 1) the student’s grades, 2) letters from the professor in all of the student’s classes, and, if the student is a teaching assistant, 3) a letter of evaluation from appropriate faculty, and 4) student evaluations. Students may submit any other relevant material such as a seminar paper or original essay. The graduate program committee will evaluate the dossier and decide whether the student should be encouraged to continue in the program.

C. Satisfactory Progress Toward the Ph.D.

In addition to requirements A through D, Ph.D. students must fulfill the following requirements:

1. Maintain at least a 3.5 average, with no course below B-, in each semester of graduate study. There is a one-year maximum limit on incompletes. A student may accumulate no more than two incomplete grades in any one semester or he/she will no longer be considered a Student in Good Standing, a prerequisite to continue in the program. As a result, the student will lose his or her T.A. line as well as face likely dismissal from the program;
2. Receive a satisfactory first-year evaluation in the spring semester of the first year of study;
3. Satisfy the foreign language requirement at least three months before the exam;
4. Complete all core courses in the first two years of full-time study and all 48 credits for the Ph.D. in three years;
5. Take the comprehensive examination no later than one year after completion of coursework;
6. Submit a dissertation proposal in the semester following satisfactory completion of the comprehensive examination. By rules of the Graduate School, students must satisfy all requirements for the Ph.D. within seven years after completing 24 credits of graduate work in the Stony Brook department in which they are registered. In rare instances, the Graduate School will entertain a petition to extend this time limit, provided it bears the endorsement of the Department. The program may require evidence that the student is still properly prepared for completion of the degree. In particular, the student may be required to pass the comprehensive examination again in order to be permitted to continue work.

D. Language Requirements

Ph.D. students may choose to demonstrate competence in either one principal foreign language (that is, any language that is of principal importance to the student’s course of study) or two secondary languages. To demonstrate competence in the single (principal) foreign language, students must take for credit and earn a grade of B or better in at least one graduate or advanced undergraduate literature course conducted in the language (final papers may be written in English). Competence in the two secondary languages can be demonstrated by: 1) earning a grade of B or better in a graduate translation course or 2) passing a translation examination to be taken with a dictionary. Because of the vital importance of cross-cultural studies, students are strongly encouraged in any case to build substantial competence in two foreign languages, and such additional competence will be expected in cases where the student’s interests or prospective project require it, as determined by the student and advisor.

E. Comprehensive Examination

Full-time students who are candidates for the Ph.D. take an oral comprehensive examination no more than one year after completing their coursework. All language requirements must be completed at least three months before the comprehensive examination. Each student will have a committee of four faculty members who can examine the candidate in one or more areas of the comprehensive examination, and who will assist the candidate in preparing a reading list for the examination. The examination consists of four parts: cultural theory since 1950, an in-depth study of a cultural phenomenon,
a historical period, and a special area of
a comparative nature.

F. Dissertation
The dissertation represents the
culmination of the student's degree
program and should be a serious con-
tribution to scholarship. Candidates
choose their dissertation director and
dissertation committee in consultation
with the program director. The disserta-
tion committee should include four
members, including an outside member
(that is, someone not affiliated with the
Cultural Studies Program at Stony
Brook). The draft of a Ph.D. disserta-
tion proposal should be presented to
the dissertation director within three
months after completion of the com-
prehensive examination, and the can-
didate should meet with the entire
dissertation committee (ideally as a
group, or if necessary, individually) in
the process of producing a final pro-
posal, to be approved by the committee
and submitted for the candidate's file.
Early involvement of all members of
the committee in the ongoing research
and writing is strongly recommended.
The student's formal defense of the
dissertation is open to all members of
the University community.

G. Teaching Assistantships
All students are asked to acquire
some experience in teaching. Guidelines
permit a graduate student to be sup-
ported as a teaching assistant (TA) for
a maximum of four years. Graduate
students in comparative literature have
the opportunity to teach a wide variety
of courses: traditionally, they have
taught foreign language courses,
English composition, interdisciplinary
courses offered in the undergraduate
humanities program, and entry-level
comparative literature courses.

During their first year, Ph.D. students
will normally be placed as teaching
assistants in CLT lecture courses.
During their second and third years,
students will most commonly teach as
instructors in the Writing Program,
and during their fourth year, as
independent instructors of CLT
courses. Admitted students who would
prefer a Writing Program placement
during their first year should notify the
Department immediately upon admis-
sion into the Ph.D. program. While
placements will vary according to
student and program needs and
constraints, every effort will be made
to provide each student with the
available range of teaching experiences.

H. Additional Information
A Handbook for Graduate Studies in
Comparative Literature includes more
extensive information on comparative
literature at Stony Brook. A copy is
available at the Comparative Literature
Office. The handbook also can be
requested by mail and can be accessed at
http://www.stonybrook.edu/complit/new/
index.html.

Courses

CLT 501 Comparative Literature Methodology
An introduction to the discipline of
Comparative Literature, its history, methods,
and problems. Stress is given to the interrela-
tions of literature with other disciplines, as
well as to questions involving subjects such as
canon formation, genre, and periodization.

CLT 510 History of Literary Theory–Part I
A history of Literary Theory from classical
Greece to the Enlightenment.

CLT 511 History of Literary Theory–Part II
A history of Literary Theory from the
Enlightenment to the present.

CLT 597 Directed Readings for M.A. Students
1-3 credits, S/U grading
May be repeated for credit

CLT 599 Independent Study
1-3 credits, S/U grading
May be repeated for credit

CLT 600 Seminar in Stylistics
Changing topics in the study of stylistic and
structural elements of the literary text.

CLT 601 Seminar in Literary and Cultural
Theory
Changing topics in the specialized examina-
tions of recent or historical trends such as
semiotics, Marxism, reader-response, psy-
choanalysis, hermeneutics, deconstruction.

CLT 602 Interdisciplinary Seminar
Specific problems in the relationship between
literature and other disciplines.

CLT 603 Comparative Studies in
Literary History
Changing topics in the study of literary peri-
ods and styles.

CLT 604 Comparative Studies in Genre
Changing topics in the study of the history
and theory of literary genres.

CLT 607 Major Authors in Comparative
Context
Critical and comparative examination of
two or more major figures from different
literary traditions.

CLT 608 Cross-Cultural Perspectives
Key topics in genre, literary criticism, and
methodology from a cross-cultural perspective.
Emphasis will be placed on an examination of
differences as well as similarities. Presuppos-
tions of specific literary traditions will be ques-
tioned within the broader perspectives of
philosophical and religious valences.

CLT 609 Seminar in Cultural Studies
Changing topics in the study of film, video,
music, and popular culture. Specific works
are studied within their historical and cul-
tural contexts and approached through meth-
ods developed in contemporary theory.

CLT 610 History and Institutions of
Cultural Studies
This course examines the institutional origins
and historical contexts of cultural studies by
focusing on the practical activity of intellectu-
als working in collective contexts.

CLT 690 Directed Readings for Doctoral
Candidates
Fall and spring, 1-12 credits, S/U grading
May be repeated for credit

CLT 698 Practicum in Teaching
The course is divided into two parts: one half
is normally given in the fall, one in the spring.
The first part deals primarily with matters of
pedagogy. The second part is designed to
help students plan their own undergraduate
courses. The practicum is required of all
students during their first year. Fall (Part 1) and spring (Part 2), 1-3 credits,
S/U grading
May be repeated once for up to three credits

CLT 699 Dissertation Research On Campus
Prerequisite: Advancement to candidacy
(G5); a portion of dissertation research must
take place on SB campus
Fall, spring, and summer, 1-9 credits,
S/U grading
May be repeated for credit

CLT 700 Dissertation Research Off
Campus–Domestic
Prerequisite: Must be advanced to candida-
y (G5); major portion of research will
take place off campus, but in the U.S. and/or
U.S. provinces (Brookhaven National Lab

123
and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

CLT 701 Dissertation Research Off Campus—International

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by a mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will be removed only if the other plan is deemed comparable); all international students must receive clearance from an International Advisor.

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

CLT 800 Summer Research

0 credit, S/U grading

May be repeated for credit

CLT 850 Summer Teaching

0 credit, S/U grading

May be repeated for credit

CST 597 Directed Readings for M.A. Students

1-3 credits, S/U grading

May be repeated for credit

CST 599 Independent Study

1-3 credits, ABCF grading

May be repeated for credit

CST 609 Seminar in Cultural Studies

Changing topics in the study of film, video, music, and popular culture. Specific works are studied within their historical and cultural contexts and approached through methods developed in contemporary theory.

3 credits, ABCF grading

May be repeated for credit

CST 610 History Cultural Study

This course examines the institutional origins and historical contexts of cultural studies by focusing on the practical activity of intellectuals working in collective contexts.

3 credits, ABCF grading

May be repeated for credit

CST 680 Cultural Studies Research Seminar

In addition to group readings in cultural studies theory and practice (continuing from CST 609), students will develop individual or collaborative research projects. Spring, 3 credits, ABCF grading

May be repeated once for credit

CST 690 Directed Readings for Doctoral Candidates

Fall and Spring, 1-12 credits, S/U grading

May be repeated for credit

CST 691 Cultural Studies Directed Readings—Part I

A student-led reading group, with some focus on reading for the Ph.D. oral comprehensive exam and other topics chosen by the group; may also feature invited faculty presentations. Fall, 1.5 credits, S/U grading

CST 692 Cultural Studies Directed Readings—Part II

A student-led reading group, with some focus on reading for the Ph.D. oral comprehensive exam and other topics chosen by the group; may also feature invited faculty presentations. Spring, 1.5 credits, S/U grading

CST 698 Practicum in Teaching

The course is divided into two parts: one half is normally given in the fall, one in the spring. The first part deals primarily with matters of pedagogy. The second part is designed to help students plan their own undergraduate courses. The practicum is required of all students during their first year.

Fall (Part 1) and spring (Part 2), 1-3 credits, S/U grading

May be repeated once for up to three credits

CST 699 Dissertation Research On Campus

Prerequisite: Advancement to candidacy (G5). A portion of dissertation research must take place on SB campus.

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

CST 700 Dissertation Research Off Campus—Domestic

Prerequisite: Must be advanced to candidacy (G5). Major portion of research will take place off-campus, but in the United States and/or U.S. provinces. Please note, Brookhaven National Labs and the Cold Spring Harbor Lab are considered on-campus. All international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.

Fall, spring, summer, 1-9 credits, S/U grading

May be repeated for credit

CST 701 Dissertation Research Off Campus—International

Prerequisite: Must be advanced to candidacy (G5). Major portion of research will take place outside of the United States and/or U.S. provinces. Domestic students have the option of the health plan and may also enroll in MEDEX. International students who are in their home country are not covered by a mandatory health plan and must contact the Insurance Office for the insurance charge to be removed. International students who are not in their home country are charged for the mandatory health insurance. If they are to be covered by another insurance plan they must file a waiver by the second week of classes. The charge will be removed only if the other plan is deemed comparable. All international students must receive clearance from an International Advisor.

Fall, Spring, Summer, 1-9 credits, S/U grading

May be repeated for credit

CST 800 Summer Research

0 credit, S/U grading

May be repeated

CST 850 Summer Teaching

0 credit, S/U grading

May be repeated
The Department of Computer Science offers an M.S. and a Ph.D. in Computer Science, and an M.S. in Information Systems Engineering.

The M.S. program in Computer Science is designed primarily to train students with professional goals in business, industry, or government, requiring a detailed knowledge of computer science concepts and applications. The program concentrates primarily on applied computer science, emphasizing software development, programming, computer systems, and applications. Each student is given the experience of working on a large-scale software or hardware development project involving analysis, design, evaluation, and implementation.

The Ph.D. program in Computer Science is for students interested in obtaining academic or research positions in colleges and universities or in government or commercial research laboratories. The program gives students a rigorous and thorough knowledge of a broad range of theoretical and practical research subject areas and develops the ability to recognize and pursue significant research in computer science. The first two years of graduate study are devoted to coursework. By the end of the second year the research phase of the student’s graduate career should be underway, with participation in advanced study and preliminary research work. The final years of graduate study are devoted to dissertation research.

The primary areas of Departmental research interests include, among others, algorithms, architecture, artificial intelligence, computation theory, concurrency, databases, image processing, graphics, languages, logic, networking, and operating systems.

Information in this Bulletin concerning the M.S. and Ph.D. programs in Computer Science is an abbreviated version of the Graduate Program Handbook found at www.cs.sunysb.edu/graduate/GraduateHandbook.html. Students must refer to the Handbook for further details and up-to-date information.

Additional information about the graduate program in Computer Science can be found on the Department’s Web site at www.cs.sunysb.edu.

The program for Master’s of Science in Information Systems Engineering (M.S.I.S.) emphasizes the engineering and application aspects of Information Technology (IT). The program differs from a traditional Information Systems program in that it focuses on an engineering approach to IT. The curriculum of the program also emphasizes individual communications skills and team participation.

The M.S.I.S. degree program has distinct specialization tracks geared to different classes of IT employment. The curriculum, consisting of 30 credits of coursework, is designed to accommodate students from a wide variety of backgrounds. An Executive track, specially designed for full-time employees with working experience, facilitates the 30 credits to be completed with an evening/weekend schedule. Specialization tracks for the program include Software Engineering, Systems Engineering, and Telecommunications. The core component of the program consists of courses in analysis, modeling, and design; data communications and networking; data management; hardware; programming; and technology integration. Following the completion of the core requirements, students can specialize in one of the tracks by choosing appropriate electives. Students are expected to solve real-world problems by applying and integrating newly acquired skills. The integration requirement can be satisfied at any time after the completion of the core courses.

Computing Environment

The Department of Computer Science is composed of a number of special-interest labs (Experimental Systems, File Systems, Human Interface with Computers, Logic Modeling, Security Systems, Visualization, and Wireless Networking and Multimedia) connected by a multi-gigabyte backbone. Typical systems are PCs running FreeBSD, Linux, MS Windows, and Sun Sparc systems. There are numerous multi-processor/large memory systems including a graphics cluster of Linux and MS Windows PCs. General-access labs provide UNIX and MS Windows systems, and each office desktop is equipped with a workstation. The Department maintains its own dial-up service and wireless network. The Stony Brook campus is connected to the Internet via multiple OC3 connections.

Admission to the M.S. and Ph.D. in Computer Science

Admission to the M.S. and Ph.D. programs are handled separately by the Departmental admissions committee. The requirements for admission to graduate study in computer science include:

A. Bachelor’s Degree: A bachelor’s degree, usually in a science or engineering discipline or in mathematics, with a grade point average of at least B (3.0/4.0) in all undergraduate coursework, and in the science, mathematics, and engineering courses;

B. Basic Mathematics: Two semesters of college-level calculus, plus a course in linear algebra; also desirable is a course in either probability theory or probability and statistics;

C. Minimal Background in Computer Science: As a measure of that background, the student must satisfy five of the following proficiency requirements:

1. Theory of Computation: CSE 303 or CSE 540
2. Algorithms: CSE 373 or CSE 548
3. Language/Compilers: CSE 304, CSE 307, CSE 504, or CSE 526
4. Architecture: CSE 320 or CSE 502
5. Databases: CSE 305 or CSE 532
6. Operating Systems: CSE 306 or CSE 506
7. Networks or Graphics: CSE 310, CSE 533, CSE 328, or CSE 528

D. Acceptance by the Department of Computer Science and Graduate School;
E. All applicants to the M.S. or Ph.D. program must submit Graduate Record Examination (GRE) scores for the general aptitude tests. Applicants are encouraged to submit GRE test scores for the advanced examination in Computer Science as well. More information on the application process can be found at www.cs.sunysb.edu/graduate

Admission to the M.S. in Information Systems Engineering

Admission to the regular program is based on the following criteria:

A. A baccalaureate degree from an accredited applied science or engineering program with a minimum GPA of 2.75. (Provisional admissions may be granted in exceptional cases if the GPA is less than 2.75 but above 2.25 provided it is approved by the Graduate School at the recommendation of the IS Graduate Committee. Provisionally admitted students are required to take at least two courses in the first semester and receive a B average to continue in the program.);

B. GRE scores (provisionally admitted students without GRE scores must take the examination within the first semester of their registration);

C. A minimum score of 550 in TOEFL for applicants whose first or native language is not English;

D. Letters of recommendation;

E. Other documents as described in the Graduate Bulletin.

Admission to the Executive track is considered in a separate pool. Their applications must contain a support letter from the employer describing the length of service in the company, the responsibilities and authority, evaluation of the job performance, and how the participation in the Executive track by the applicant benefits the company.

Students of high caliber seeking to enter the program with an incomplete set of undergraduate courses or not having enough prerequisites are required to complete a predetermined number of foundation courses (normally consisting of nine credits), including Fundamentals of Information Systems; Information Systems and Business; Information Technology Hardware and Software; and Programming, Data, and Object Structures.

Faculty

Professors

Bachmair, Leo, Ph.D., 1987, University of Illinois, Urbana-Champaign: Computational logic; automated deduction; symbolic computation.

Chueh, Tz-cker, Ph.D., 1992, University of California, Berkeley: Processor architecture; parallel I/O; high-speed networks; compression.

Kaufman, Arie, Chair, Ph.D., 1977, Ben-Gurion University: Computer graphics; visualization; user interfaces; computer architecture; virtual reality; multimedia.

Kifer, Michael, Ph.D., 1984, Hebrew University of Jerusalem: Database systems; logic programming; knowledge representation; Web information systems; workflow management systems.

Ko, Ker-I, Ph.D., 1979, Ohio State University: Computational complexity; theory of computation; computational learning theory.

Liang, Jerome, Ph.D., 1987, City University of New York: Medical imaging; image processing.

Mitchell, Joseph, Ph.D., 1986, Stanford University: Operations research; computational geometry; combinatorial optimization.

Qin, Hong, Ph.D., 1995, University of Toronto, Canada: Computer graphics; geometric and physics-based modeling; computer-aided design; computer animation and simulation; scientific computing and visualization; virtual environments; computational vision; medical imaging; human-computer interaction; robotics.

Ramakrishnan, I.V., Graduate Program Director, Ph.D., 1983, University of Texas, Austin: Automated reasoning; technologies for Web-based computing.

Sekar, R.C., Ph.D., 1991, Stony Brook University: Computer security; distributed systems; programming languages/software engineering.

Skiena, Steven, Ph.D., 1988, University of Illinois, Urbana-Champaign: Computational biology; combinatorial algorithms; combinatorial computing environments; data structures.

Smolka, Scott A., Ph.D., 1984, Brown University: Computer-aided verification of safety-critical systems; computer system security.

Stark, Eugene, Ph.D., 1984, Massachusetts Institute of Technology: Programming language semantics; theory of concurrency; formal methods; operating systems.

Warren, David S., Ph.D., 1979, University of Michigan: Logic programming; database systems; knowledge representation; natural language and logic.

Wittie, Larry D., Ph.D., 1973, University of Wisconsin: Computer architecture; massively parallel computation; simulation of memory and attention to mammal brains.

Yang, Yuanyuan, Ph.D., 1992, Johns Hopkins University: Parallel and distributed computing systems; high-speed networks; multicast communication; optical networks; high-performance computer architecture; computer algorithms; fault tolerant computing.

Associate Professors

Arkin, Esther, Ph.D., 1986, Stanford University: Combinatorial optimization; network flows; computational geometry.

Bender, Michael, Ph.D., 1998, Harvard University: Algorithms; scheduling; data structures; cache and I/O-efficient computing; parallel computing.
Brennan, Susan, Ph.D., 1990, Stanford University: Cognitive psychology; linguistics; human-computer interaction.
Das, Samir, Ph.D., 1994, Georgia Institute of Technology: Mobile/wireless networking; ad hoc and sensor networks; parallel discrete-event simulation; performance evaluation.
Grosu, Radu, Ph.D., 1994, Technical University of Munich, Germany: Model-based design and verification of embedded software systems; model checking; abstract interpretation; logic and automata theory; type theory; computational models in systems biology; applied formal methods; software and systems engineering.
Gao, Jie, Ph.D., 2004, Stanford University: Assistant Professors
Liu, Yanyong Annie, Ph.D., 1996, Cornell University: Programming languages; compilers; software systems.
Mueller, Klaus, Ph.D., 1998, Ohio State University: Computer graphics; visualization; projector-based graphics; augmented reality; virtual reality; medical imaging face recognition; GPU-acceleration of general purpose computing; visual data mining; functional brain analysis.
Ramakrishnan, C.R., Ph.D., 1995, Stony Brook University: Formal verification of concurrent systems; logic programming; computer security.
Samaras, Dimitris, Ph.D., 2000, University of Pennsylvania: Computer vision; computer graphics; medical imaging; animation and simulation; image-based rendering; physics-based modeling.
Stoller, Scott, Ph.D., 1997, Cornell University: Distributed systems; software testing and verification; program analysis and optimization.
Wasilewska, Anita, Ph.D., 1975, Warsaw University: Logic; knowledge representation; artificial intelligence.
Zadok, Erez, Ph.D., 2000, Columbia University: Operating systems; file systems; storage; networking; software engineering; security.
Zelinsky, Gregory J., Ph.D., 1994, Brown University: Visual search; visual working memory; object detection and recognition; visual attention and eye movements; scene perception and representation.

Assistant Professors
Gao, Jie, Ph.D., 2004, Stanford University: Algorithms; ad hoc communication and sensor networks; computational geometry.
Gu, Xianfeng, Ph.D., 2004, Harvard University: Computer graphics; computer vision; medical imaging; computational conformal geometry; global differential geometry; harmonic analysis; computational algebraic topology; computational optics; biometrics.
Gupta, Himanshu, Ph.D., 1999, Stanford University: Databases; data mining; data warehousing.
Johnson, Robert, Ph.D., 2007, University of California, Berkeley: Software security; system and network security; cryptography; digital rights management; operating systems; networks; algorithm design and analysis.
Lv, Qin, Ph.D., 2006, Princeton University: Development of efficient systems for managing and exploring massive amounts of digital data; focus on search systems, data management, distributed systems, storage systems and networking, but also spans the areas of algorithm design, machine learning, data mining, and specific application domains such as multimedia, bioinformatics, sensor networks, healthcare, and scientific computing.
Rizzo, Robert, Ph.D., 2001, Yale University: Computational biology.
Sion, Radu, Ph.D., 2004, Purdue University: Data security and privacy in distributed networked environments.
Stent, Amanda, Ph.D., 2001, University of Rochester: Natural language processing.
Vasilescu, M. Alex O., 2005, University of Toronto: Computer vision; computer graphics; tensor algebra; physics-based modeling; machine learning.
Wong, Jennifer, Ph.D., 2006, University of California, Los Angeles: Interaction of statistical models and optimization for CAD and embedded systems; low power wireless communication; sensor networks.

Affiliated Faculty for Program in Information Systems Engineering
Chiuheh, Tzi-cker, Computer Science
Doboli, Alex, Electrical and Computer Engineering
Djuric, Petar, Electrical and Computer Engineering
Donevski, Dmitri, Electrical and Computer Engineering
Feinberg, Eugene, Applied Mathematics
Hu, Peisen, Mechanical Engineering
Kao, Imin, Mechanical Engineering
Kaufman, Arie E., Computer Science
Kelly, Robert F., Computer Science
Lindquist, W. Brent, Applied Mathematics

Robertazzi, Thomas G., Electrical and Computer Engineering
Teng, Tian-Lih, Technology and Society
Zhou, Rong, Computer Science

Number of teaching, graduate, and research assistants, Fall 2006: 120

Degree Requirements

Requirements for the M.S. Degree in Computer Science

Students in the M.S. degree program choose between two options, the M.S. with thesis and the M.S. with project. The course requirements depend on the option chosen.

A. Registration

Students must register for at least one graduate credit in the semester in which the diploma is awarded.

B. Language Requirement

There is no foreign language requirement.

C. Course Requirements

Students are required to complete 31 graduate credits in the Department of Computer Science. There are no specific courses required other than a thesis or project, with the stipulation that the proficiency requirements must be satisfied. Students can take up to four credits of CSE 587 (at most two courses) to fill in missing proficiency requirements. All seven proficiency requirements must be satisfied by the time of M.S. certification. A list of graduate courses is provided in the course compendium at the end of this section.

D. Grade Point Average

To be certified for graduation a cumulative graduate grade point average of 3.0/4.0 or better is required.

E. No-Thesis Option

Students choosing the no-thesis option are required to take the courses CSE 523/524, Laboratory in Computer Science. The two courses may not be taken in the same semester. These courses provide students with the experience of dealing with large-scale, computer-oriented problems such as those encountered in commercial, industrial, or research environments. Students taking CSE 523/524 may not use any CSE 599 (M.S. Thesis Research) credits toward their M.S. degree.

F. Thesis Option

A student choosing the thesis option must select a project (or thesis) advisor by the end of the second semester in
the program. The role of the advisor is to guide the student through the M.S. studies, formulate a project or thesis topic, and supervise the student toward completion of the assigned task. The thesis must be approved by a Departmental faculty committee of no less than three members appointed by the graduate program director. At the discretion of the committee, the student may be required to present a seminar on the topic of his or her thesis.

A student registers for CSE 599 when writing a thesis. No more than nine credits of this course can be applied toward the 31 credits required for the M.S. degree.

G. Switching Between the M.S. and Ph.D. Programs

An M.S. student who wishes to advance to the Ph.D. program must take the qualifying examination. Regular applicants to the Ph.D. program will not be considered from current M.S. students. Please refer to the Graduate Program Handbook for more details.

Requirements for the M.S. Degree in Information Systems Engineering

To receive the M.S. in Information Systems Engineering degree the student must obtain a minimum of 3.0 overall GPA in the courses taken to satisfy the requirements of this program. In addition, the student must satisfy all other requirements of the Graduate School not mentioned here. Following are the specific requirements that must be met to obtain the degree:

Each student must complete a minimum of 30 credits of graduate coursework, consistent with program guidelines. Each student must complete 15 credits of core courses (Analysis; Data Management; Design, Data Communications, and Networking; Modeling; Quantitative Computer Architecture; and Systems Engineering Principles).

A three-credit course covering an integration topic is required for all students (e.g., ISE 511, CSE 580, or CSE 523).

The required courses total 18 credits, including the 15 credits of core courses and three credits of integration. A minimum of 12 credits of electives is required of all students, out of which nine credits must be taken in the area of specialization. In case of core courses waived for equivalent courses taken previously, the student must earn those credits through electives at Stony Brook University, bringing the total credits to a minimum of 30.

A maximum of six credits of graduate coursework can be transferred for the courses taken elsewhere provided these credits were not used by the previous institution to award a degree.

Each student is assigned an academic advisor who must approve the coursework, area of specialization, and sequence of courses.

Curriculum for the Executive Track: The Executive track is designed primarily for the employees of one company (or a group of companies). This requirement is identical to the requirement of the standard program. The curriculum is common to all the students in the program and targeted to the interests of the sponsoring company (or companies).

Courses for the M.S. Degree in Information Systems Engineering

Information Systems Engineering (ISE)

ISE 503 Data Management
ISE 504 Analysis, Modeling, and Design
ISE 506 Quantitative Computer Architecture
ISE 516 Systems Engineering Principles
ISE 517 Human Factors in Systems Engineering

Applied Mathematics and Statistics (AMS)

(A complete description of AMS courses below can be found at www.grad.sunysb.edu/academics/bulletin/Ams.pdf)

AMS 507 Introduction to Probability
AMS 550 Operations Research: Stochastic Models
AMS 553 Simulation and Modeling
Biomedical Engineering (BME)

(BME) (A complete description of BME courses below can be found at www.bme.sunysb.edu/bme/grad/courses.html)

BME 526 Biological Systems Engineering

Technology and Society (EMP/EST)

(A complete description of EMP courses below can be found at www.sunysb.edu/est/courses/graduate.html)

EMP 518 Project Management
EST 530 Internet Electronic Commerce
EST 582 Systems Approach to Human-Machine Systems

Electrical and Computer Engineering (ESE)

(A complete description of ESE courses below can be found at www.ee.sunysb.edu/~www/grad/coursedescriptions_b.html)

ESE 504 Performance and Evaluation of Communication and Computer Systems

ESE 505 Traffic Performance Analysis of Mobile, Wireless, and Personal Communication Systems

ESE 528 Communication Systems

ESE 546 Computer Communication Networks I

ESE 547 Digital Signal Processing

ESE 548 Computer Communication Networks II

Business Technology Management

(A complete description of BTM courses below can be found at www.grad.sunysb.edu/academics/bulletin/Bus.pdf)

BTM 514 Quality Management and Quality Assurance

Computer Science (CSE)

(A complete description of CSE courses below can be found at www.cs.sunysb.edu/graduate/courses/)

CSE 500 Patterns in Programming

CSE 506 Operating Systems

CSE 515 Introduction to Transaction Processing Systems

CSE 524 Introduction to Software Engineering and Project Planning I

CSE 524 Introduction to Software Engineering and Project Planning II

CSE 533 Computer Network Communications Protocols

CSE 536 Introduction to User-Interface Development

Requirements for the Ph.D. Degree in Computer Science

A. Residence

The student must complete two consecutive semesters of full-time graduate study. Full-time study is 12 credits per semester until 24 graduate credits have been earned. Students who have earned 24 graduate credits at another school may be assigned advanced status and are required to take only nine credits per semester for full-time status.

B. Qualifying Examination

Students must pass the written qualifying examination to demonstrate their ability to undertake the course of study leading to the Ph.D. degree. Qualifying examinations are given twice a year: in May (usually the week after the finals period) and in early January. Students must refer to www.cs.sunysb.edu/graduate/QualsHandbook.html for further details and up-to-date information on the qualifying examination. The following is a short summary of the contents of this examination.

The exam consists of three parts, three hours each, based on undergraduate
material as described below. Undergraduate Stony Brook courses covering that material are listed in parentheses. An appropriate way for students who have already taken an undergraduate course in a particular area to prepare for the exam is to take a graduate course in that area. Questions test not just routine knowledge but also the student’s ability to use that material in a creative way.

Theory and Mathematics:

Theory of Computation, Languages, and Automata Analysis of Algorithms and Logic. The examination is based on the following courses: CSE 303, CSE 371, CSE 213, and CSE 373.

Software:

Programming Languages, Compilers, Databases, and Graphics. The examination is based on CSE 304, CSE 305, CSE 307, and CSE 328.

Systems:

The results of the written examination will be communicated to each student individually following a meeting of the faculty, which evaluates the results of the examination along with the student’s ability to do research and the likelihood of completing the program.

C. Course Requirements

In the first year, a student seeking the Ph.D. degree will normally register for a full-time load of courses selected in conjunction with an advisor to prepare for the qualifying examination. By the time of graduation, each student is required to accumulate at least 20 credits of full (regular lecture) courses, internship, special topics courses, or seminars. At most five credits of seminars and internship can be included in the 20 credits required for graduation; generic courses such as CSE 587, CSE 593, CSE 600, CSE 698, and CSE 699 cannot be included. In addition, the following requirements should be noted:

M.S. specific courses. Students in the Ph.D. program may not enroll in CSE 523/524 or CSE 599. These courses are specific to the M.S. program.

Ongoing research seminar. The student must register and complete two semesters of CSE 600. Credits earned in this course cannot be used toward the 20 credits required for the Ph.D. program.

Internship, CSE 696. At most two credits of Internship in Research can be counted toward the 20 credits required for the Ph.D. program.

Dissertation Research, CSE 699. The Dissertation Research course can be taken only by Ph.D. students who have been advanced to candidacy (have G5 status). Prior to the advancement, students conduct research and participate in projects by taking CSE 593: Independent Study. G4 students can register for up to nine credits of CSE 593 in any semester. G3 students can register for only up to three credits of CSE 593.

Teaching requirement. University policy requires that all doctoral students participate in an appropriately structured teaching practicum. This can be CSE 698 in conjunction with a T.A. in the first year.

D. Research Proficiency Examination (RPE)

The purpose of the Research Proficiency Examination is to ascertain the breadth and depth of the student’s preparation to undertake a significant original research investigation.

By the end of the third semester since admission into the Ph.D. program, an RPE committee will have been formed for each student and an agreement reached on a research project. (M.S. students who were admitted to the Ph.D. program after passing the qualifying examination must form the RPE committee by the end of their first semester in the Ph.D. program.)

By the end of the fourth semester (at the latest), the student will take the RPE. (M.S. students who switched to Ph.D. must take the RPE by the end of their second semester in the Ph.D. program.)

Having passed both the qualifying examination and the RPE, the student is advanced to candidacy. This status, called G5, is conferred by the Dean of the Graduate School upon recommendation of the Department. Note that unlike the change from G3 to G4, the change from G4 to G5 is not automatic—the student must request to be advanced to candidacy by notifying the Computer Science Graduate Coordinator. Students must advance to candidacy at least one year before defending their dissertations. The Graduate School requires G5 students to register for nine credits, which can be research or other graduate courses relevant to their dissertation. Courses outside of the major require the approval of the dissertation advisor and Graduate Director. Failure to complete the RPE within the specified timeframe and obtain the G5 status is considered evidence of unsatisfactory progress.

E. Thesis Proposal Requirement

After the student has completed the requirements in subsections C and D, and with the approval of the student’s research advisor, the student will present a thesis proposal. The purpose of the thesis proposal is to assess the student’s progress toward the the Ph.D. thesis. The proposal must be submitted to the student’s thesis committee within 18 months of the time the student has passed the research proficiency examination. Failure to fulfill this requirement by that time without a formal extension may be considered evidence of unsatisfactory progress toward the Ph.D. degree.

The major requirements of the thesis proposal are as follows: (1) the student must be thoroughly familiar with the background and current status of the intended research area; (2) the student must have clear and well-defined plans for pursuing the research objectives; and (3) the student must offer evidence of progress in achieving these objectives.

The student will present the thesis proposal to the thesis committee in a seminar presentation. It is limited to members of the committee, invited computer science faculty, and invited graduate students. Faculty members are free to question the student on any topics they feel are in any way relevant to the student’s objectives and career preparation. Most questions, however, will be directed toward verifying the student’s grasp of the intended specialty in depth. The student will be expected to show complete familiarity with the current and past literature of this area.

The findings of the committee will be communicated to the student as soon as possible and to the Graduate School within one week of the presentation of the proposal. If the committee finds the thesis proposal unsatisfactory, the student will submit an improved proposal, if such resubmission is approved by the Dean of the Graduate School.
F. Dissertation

An important requirement of the Ph.D. program is the completion of a dissertation, which must be an original scholarly investigation. The dissertation shall represent a significant contribution to the scientific literature, and its quality shall be compatible with the publication standards of appropriate reputable scholarly journals.

G. Approval and Defense of Dissertation

The dissertation must be orally defended before a dissertation examination committee, and the candidate must obtain approval of the dissertation from this committee. The oral defense of the dissertation is open to all interested faculty members and graduate students. The final draft of the dissertation must be submitted to the committee no later than three weeks prior to the date of the defense.

H. Satisfactory Progress and Time Limit

A student who does not meet the target dates for the Qualifying Examination, the Research Proficiency Examination, and the Thesis Proposal, or who does not make satisfactory progress toward completing thesis research may lose financial support. The candidate must satisfy all requirements for the Ph.D. degree within seven years after completing 24 credit hours of graduate courses in the Department of Computer Science at Stony Brook. In rare instances, the Dean of the Graduate School will entertain a petition to extend this time limit, provided it bears the endorsement of the Department’s graduate program director. A petition for extension must be submitted before the time limit has been exceeded. The Dean or the Department may require evidence that the student is still properly prepared for the completion of work.

I. Part-Time Students

Students admitted into the Ph.D. program for part-time study are bound by all the rules set out henceforth. In particular, part-time students should adhere to the schedule for the Qualifying Examination, Research Proficiency Examination, and Thesis Proposal unless a different schedule has been approved in writing by the Graduate Director.

J. Satisfactory Progress and Time Limit

A Ph.D. student who has passed the Research Proficiency Examination can complete the requirements for an M.S. degree by satisfying the proficiency requirements and completing 31 credits of coursework. Passing the Qualifying Examination is considered to have satisfied the proficiency requirements. (Another way to satisfy these requirements is, of course, to take the required courses.) At most nine credits of seminars (excluding CSE 600), special topics courses, or CSE 593 (Independent study) can be included in the required 31 credits. A student who has switched from the M.S. program to the Ph.D. program can in addition use the previously earned credits of CSE 523/524 toward the aforesaid nine credits. These nine credits together with the RPE are considered to be equivalent to the Thesis Option in the M.S. program. The remaining 22 credits required for the M.S. degree must be satisfied by taking technical graduate courses in computer science (i.e., excluding courses such as CSE 523/524, CSE 587, CSE 593, CSE 596, CSE 599, CSE 696, CSE 698, CSE 699, seminars, and special topics).

Courses

A current list of courses can be found at www.cs.stonybrook.edu/graduate/courses/index.html.

Required Courses for the M.S. Non-Thesis Option

CSE 500 Patterns in Programming

This course provides an introduction to programming patterns often encountered in software systems. It presents the role of patterns and introduces patterns used by computer scientists and software engineers. The course covers a wide breadth of program types including user interfaces, numerical computing, event handling, and use of varied data structures. Patterns developed during the course are predominantly object-oriented patterns, including factory, facade, and many others. Not accepted for credit toward M.S. degree. Prerequisite: permission of instructor 3 credits, ABCF grading

Graduate Courses

CSE 502 Computer Architecture

Topics covered include instruction pipelines and memory caches to improve computer performance; instruction-level parallelism; machines; superscalar versus VLIW; cache and main memory hierarchy design tradeoffs; compiler optimizations to speed pipelines; low-power computer system design; processor, OS, and compiler support; graphics, DSP, and media processor design; disk I/O system design; interconnections and networking; and introduction to parallel architecture. Advanced topics include asynchronous microprocessors; FPGA-based reconfigurable computing system on a chip; embedded processors; intelligent RAM and superconducting computers. Prerequisites: CSE 245 Spring, 3 credits, ABCF grading

CSE 504 Compiler Design

This course covers advanced topics in compilation, including memory management, dataflow analysis, code optimization, just-in-time compilation, and selected topics from compilation of object-oriented and declarative languages. Prerequisites: CSE 301 and CSE 307 Spring, 3 credits, ABCF grading

CSE 505 Computing with Logic

The course explores logic-based computing and logic programming. It includes an introduction to programming in logic, covering basic techniques for solving problems in a logic programming system. Particular attention will be paid to user interface issues and how a logic system can provide a useful computing environment. The course covers implementation issues, emphasizing how a logic programming system generalizes both traditional programming language systems and traditional database systems. Prerequisites: CSE 211, 3 credits, ABCF grading

CSE 506 Operating Systems

This course is an in-depth study of important concepts and techniques found in modern computer operating systems. An undergraduate course in operating systems is a prerequisite. The course focuses on in-depth study of such important issues as virtual memory, file systems, networking, and multiprocessor support, with an eye to recent directions in these areas. Textbook readings are supplemented where appropriate by papers from the research literature. An important part of the course is the case study of an actual operating system. Students study the source code for this operating system and do programming exercises and projects that involve modifying the operating system and measuring its performance. Prerequisite: CSE 206 Spring, 3 credits, ABCF grading

CSE 507 Introduction to Computational Linguistics

Overview of computational approaches to language use. Core topics include mathematical and logical foundations, syntax, semantics, and pragmatics. Special topics may include speech processing, dialog system machine translation information extraction, and information retrieval. Statistical and traditional approaches are included. Students will develop familiarity with the literature and tools of the field. Prerequisites: CSE 537; CSE 541 recommended Spring, 3 credits, ABCF grading

CSE 508 Network Security

Principles and practice of computer network security. Cryptography, authentication protocols, public key infrastructures, IP/WWW/ E-commerce security, firewalls, VPN, and
Fall, spring, and summer; 3 credits; ABCF grading
May be repeated once for credit

CSE 524 Lab in Computer Science II
This course involves implementation and completion of the project undertaken in CSE 523. Results are to reflect all aspects of large-scale problem-solving, including cost analysis, design, testing, and documentation. A final report documenting requirements, design, implementation, and testing is required. When appropriate, a user’s manual may be written.
Prerequisite: CSE 523
Spring; 3 credits; ABCF grading

CSE 525 Introduction to Robotics
This course introduces fundamental concepts in robotics. In the first half of the course, basic concepts will be discussed, including coordinate transformation, kinematics, dynamics, Laplace transforms, equations of motion, feedback and feedforward control, and trajectory planning. These topics will be exemplified with Matlab/Simulink simulations and studies. The second half of the course will focus on applying the knowledge from the initial lectures to various motor systems, including manipulators, artificial eye systems, locomotory systems, and mobile robotics. There will be homeworks for Matlab/Simulink and a final project, a midterm, and a final. 3 credits; ABCF grading

CSE 526 Principles of Programming Languages
Discusses programming language concepts and design, with emphasis on abstraction mechanisms. Topics include language paradigms (procedural, object-oriented, functional, and logic), language concepts (values, bindings, types, modules), and foundations (lambda calculus, denotational semantics). Examples will be drawn from several representative languages, such as C, Java, Standard ML, and Prolog.
Prerequisite: CSE 205
Fall; 3 credits; ABCF grading

CSE 527 Introduction to Computer Vision
Introduction to basic concepts in computer vision. Low-level image analysis, image formation, edge detection, segmentation. Image transformations for image synthesis methods for 3-D scene reconstruction, motion analysis, object recognition.
Prerequisites: CSE 214, linear algebra, calculus, C/C++ proficiencies
3 credits; ABCF grading

CSE 528 Computer Graphics
This course emphasizes a hands-on approach to the use of computer graphics. The topics covered include models, picture description, and interaction; e windowing, clipping, panning, and zooming; geometrical transformations in 2-D and 3-D; algorithms for raster displays (scan-line conversion, polygon fill, polygon clipping, etc.); hidden line and hidden surface removal, shading models, user interaction. The students will implement a substantial graphics application program.
Prerequisite: CSE 228
Fall; 3 credits; ABCF grading

CSE 529 Simulation and Modeling
A comprehensive course in formulation, implementation, and application of simulation models. Topics include data structures, simulation languages, statistical analysis, pseudo-random number generation, and design of simulation experiments. Students apply simulation modeling methods to problems of their own design. This course is offered as CSE 529, AMS 553, and MBA 553.
Prerequisite: CSE 214 or equivalent; AMS 310 or 507 or equivalent; or permission of instructor
3 credits; ABCF grading

CSE 530 Geometric Foundations
This course will focus on mathematical tools, geometric modeling techniques, and fundamental algorithms that are relevant to graphics, visualization, and other visual computing areas. The goal is to provide graduate students with a comprehensive knowledge of geometric concepts and demonstrate the significance of these mathematical tools and geometric algorithms in graphics and relevant areas. Course topics include geometric algorithms for both polygonal and curved objects, theory of parametric and implicit representations, modeling methods of curves, surfaces, and solids, in-depth spline theory, rudiments of wavelet theory and multi-resolution shape representations, differential geometry fundamentals, and other sophisticated topics and latest advances in the field.
Prerequisites: CSE 228 and CSE 232
Spring; 3 credits; ABCF grading

CSE 532 Theory of Database Systems
The course will cover advanced topics in modern database systems, including object-oriented databases, rule-based databases, temporal and active databases, parallel and distributed databases, distributed object model, data mining, online analytical processing, data warehousing, multimedia databases.
Fall and spring; 3 credits; ABCF grading

CSE 533 Network Programming
Topics include socket and client-server programming, remote procedure calls, data compression standards and techniques, real-time protocols (audio chat, etc.) security and cryptography (specifically, application layer security issues, authentication), Web-related programming (CGI, Java/JavaScript, HTTP, etc.), network management (SNMP-based management, dynamic/CORBA-based management).
Prerequisites: CSE 206 and CSE 210
Fall and spring; 3 credits; ABCF grading

CSE 534 Fundamentals of Computer Networks
Data Transmission: Introduction to Fourier analysis; data coding and signals, noise, Nyquist’s Theorem, Shannon’s theorem, bandwidth/band rate/bit rate; data multiplexing techniques, ASK, FSK, PSK, MSK, and modern standards and techniques (e.g. Trellis Coding, etc.). Data Link Layer: Protocols; Error detection and correction; flow control; etc., Network Layer: protocols; routing algorithms; flow and detection and congestion control; etc., quality-of-service issues at the network and transport layer; local area networks (including MAC, high-speed LANs; wireless LANs; bridges, etc.); high-speed
networks (BISDN; ATM standard, etc.).
3 credits, ABCF grading

CSE 535 Asynchronous Systems
Discusses asynchronous systems, their description using concurrent and distributed programming languages, and their verification. Topics include concurrent programming using shared memory and message passing, formal semantics of communication, reliability, and concurrent algorithms.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
3 credits, ABCF grading

CSE 536 Introduction to User-Interface Development
Survey of user-interface systems, includes command language, windowing, multiple input/output devices, architecture of user interface management systems, toolkits for designing user-interface, human factors, standards, visual languages. The course also includes discussion of emerging technologies, such as systems for cooperative work, physically distributed user-interfaces, parallelism and user-interfaces, virtual reality. A substantial project requiring the design, implementation, and evaluation of a user-interface will be required.
3 credits, ABCF grading

CSE 537 Artificial Intelligence
A comprehensive introduction to the problems of artificial intelligence and techniques for attacking them. Topics include problem representation, problem-solving methods, search, pattern recognition, natural language processing, learning, expert systems, AI programming languages and techniques. Covers both theoretical methods and practical implementations.
Prerequisites: MAT 371 or CSE 541
Fall, 3 credits, ABCF grading

CSE 540 Theory of Computation
Topics include models of computation: finite-state machines, stack machines, Turing machines, Church’s thesis; computability theory: halting problem and unsolvability, introductory recursion theory; complexity theory: complexity measures, time and space hierarchy, NP-complete problems.
Prerequisite: CSE 362
Fall, 3 credits, ABCF grading

CSE 541 Logic in Computer Science
A survey of the logical foundations of mathematics and the relationships to computer science; development of propositional calculus and quantification theory; the notions of a proof and of a model; completeness theorem.
Pre- or co-requisite: MAT 313 and CSE 213
Spring, 3 credits, ABCF grading

CSE 542 Speech Processing
Introductory speech processing course, surveying speech analysis, speech recognition and speech synthesis. Students will develop familiarity with speech processing tools (FRAXT, HTK, Festival).
Prerequisite: CSE 526 or permission of instructor
Spring, 3 credits, ABCF grading

CSE 547 Discrete Mathematics
This course introduces such mathematical tools as summations, number theory, binomial coefficients, generating functions, recurrence relations, combinatorics, asymptotics, and graph theory for use in algorithmic and combinatorial analysis. This course is offered as both CSE 547 and AMS 547.
Prerequisite: AMS 301
Spring, 3 credits, ABCF grading

CSE 548 Analysis of Algorithms
Techniques for designing efficient algorithms, including choice of data structures, recursion, branch and bound, divide and conquer, and dynamic programming. Complexity analysis of searching, sorting, matrix multiplication, and graph algorithms. Standard NP-complete problems and polynomial transformation techniques. This course is offered as both AMS 542 and CSE 548.
Prerequisite: CSE 372 recommended
Spring, 3 credits, ABCF grading

CSE 549 Computational Biology
This course focuses on current problems in computational biology and bioinformatics. Our emphasis will be algorithmic, on discovering appropriate combinatorial algorithm problems and the techniques to solve them. Primary topics will include DNA sequence assembly, RNA/protein sequence assembly; DNA/protein sequence comparison, hybridization array analysis, RNA and protein folding, and phylogenetic trees.
Prerequisite: CSE 372 or CSE 548; or consent of instructor
Fall, 3 credits, ABCF grading

CSE 555 Computational Geometry
Study of the fundamental algorithmic problems associated with geometric computations, including convex hulls, Voronoi diagrams, triangulation, intersection, range queries, visibility, arrangements, and motion planning for robotics. Algorithmic methods include plane sweep, incremental insertion, randomization, divide-and-conquer, etc. This course is offered as both AMS 554 and CSE 555.
Prerequisite: CSE 372 or CSE 548
Spring, 3 credits, ABCF grading

CSE 564 Visualization
The course emphasizes a hands-on approach to scientific visualization. Topics include traditional visualization, the visualization process, visual perception, basic graphics and imaging concepts, volume and surface visualization, volume graphics, visualization of sampled and computed data case studies, and visualization systems.
Spring, 3 credits, ABCF grading

CSE 580 Topics in Computer Science
An advanced lecture course on a new topic in computer science. The course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
3 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy CSE major requirements for M.S.

CSE 581 Topics in Computer Science
An advanced lecture course on a new topic in computer science. The course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
3 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy CSE major requirements for M.S.

CSE 582 Topics in Computer Science
An advanced lecture course on a new topic in computer science. The course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
3 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy CSE major requirements for M.S.

CSE 587 Proficiency Requirement in Computer Science
Students can get credit for a 300-level undergraduate course by registering for CSE 587. The syllabus of the undergraduate course must specify additional work that graduate students must do in order to pass the course. Graduate students taking an undergraduate course under CSE 587 number must be graded separately from the undergraduate students. See Graduate Student Handbook for restrictions on the use of this course.
Fall and spring, 2 credits, ABCF grading
May be repeated for credit

CSE 590 Topics in Computer Science
An advanced lecture course on a new topic in computer science. The course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy CSE major requirements for M.S.

CSE 591 Topics in Computer Science
An advanced lecture course on a new topic in computer science. The course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy CSE major requirements for M.S.

CSE 592 Topics in Computer Science
An advanced lecture course on a new topic in computer science. The course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy CSE major requirements for M.S.

CSE 593 Independent Study in Computer Science
Students can register for this course to conduct or participate in a project under the supervision of a Computer Science faculty member. The student must prepare a description of the project or the course to be taken and submit it before the add/drop deadline to the project sponsor. The description will reside in the student's file. Both M.S. and Ph.D. students can take this course. This course cannot be taken as part of M.S. thesis research—use CSE 599 in this case. Ph.D. students take CSE 593 for any kind of research or project work prior to advancement to candidacy (G5 status). After the advancement, CSE 699 should be used to conduct Dissertation Research.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Fall, spring, and summer, 1-9 credits, ABCF grading
May be repeated for credit

CSE 594 Topics in Computer Science
An advanced lecture course on a new topic in computer science. This course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered. May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy the CSE major requirements for the M.S.
Prerequisite: Admission to CSE Graduate Program; instructor's permission
Fall, spring, every year, 3 credits, ABCF grading
May be repeated for credit

CSE 595 Topics in Computer Science
An advanced lecture course on a new topic in computer science. This course is primarily designed for M.S. students, but can be taken by Ph.D. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
Fall, spring, every year, 3 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy the CSE major requirements for the M.S.

CSE 596 M.S. Internship in Research
Participation in private corporations, public agencies, or non-profit institutions. Students will be required to have a faculty coordinator as well as a contact in the outside organization to participate with them in regular consultations on the project, and to submit a final report to both. At most one credit can be accepted toward the M.S. degree.
Prerequisite: Permission of graduate program director
Fall and spring, 1-3 credits, SU grading
May be repeated for credit

CSE 599 M.S. Thesis Research
This course can be used only for M.S. Thesis research; non-thesis research should be done under the designation of CSE 590: Independent Study. M.S. students who wish to enroll in CSE 599 for any number of credits must prepare a one-to-two-page description of the work to be completed. The description must be approved by the research advisor, signed by both student and advisor, and will reside in the student's file. Amendments to the proposal must be approved by the advisor. Up to nine credits of CSE 599 can be counted toward the 31 credits that are required for graduation.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Fall, spring, and summer, 1-12 credits, SU grading
May be repeated for credit

Advanced Courses
The following are courses normally considered appropriate for the Ph.D. program, although they can be elected by M.S. students with permission of the advisor.

CSE 600 Topics in Modern Computer Science
A survey of current computer science research areas and issues. This course comprises lectures by faculty members and visitors, selected readings, and introductory-level research problems.
Prerequisite: Permission of instructor
1 credit, SU grading
May be repeated for credit

CSE 601 Advanced Image Processing
Modern approaches to image processing, statistical image formation and image models, image restoration, reconstruction and segmentation, and applications to medical imaging. Crosslisted with ESE 559.
Prerequisites: Linear analysis, engineering math, Fourier analysis, calculus, programming
3 credits, ABCF grading
May be repeated for credit

CSE 602 Advanced Computer Architecture
The focus will be on the architectural rather than micro-architectural issues, and a systems approach to computer architecture taking into account the interaction between the architecture and the compiler, operating system, database, and networking. The course starts with superscalar/VLIW processor architecture and proceeds to memory hierarchy, storage systems, network hardware, graphics processor, and database machines. The emphasis will be on hands-on evaluation of architectural ideas, the exploration of software/hardware design trade-offs, and the articulation of experimental procedures and performance analysis. A publication-quality class project will be required.
Prerequisite: CSE 502 or permission of instructor
3 credits, ABCF grading

CSE 605 Performance Evaluation of Computer Systems
The purpose of this course is to provide background and training in understanding and evaluating performance of computer systems, including centralized, distributed, parallel, client/server based systems, and computer communication networks. The goal is to develop a perspective on how the performance of computer systems or networks should be evaluated to decide on various design alternatives. The course will include various analytical techniques, mainly based on Markov models and queuing theory, and simulation modeling.
Prerequisites: Limited to CSE graduate students; others, permission of instructor
Fall, 3 credits, ABCF grading
May be repeated twice for credit

CSE 606 Performance Evaluation of Computer Systems
The purpose of this course is to provide background and training in understanding and evaluating performance of computer systems, including centralized, distributed, parallel, client/server based systems, and computer communication networks. The goal is to develop a perspective on how the performance of computer systems or networks should be evaluated to decide on various design alternatives. The course will include various analytical techniques, mainly based on Markov models and queuing theory, and simulation modeling.
Prerequisites: Limited to CSE graduate students; others, permission of instructor
Fall, 3 credits, ABCF grading
May be repeated twice for credit

CSE 608 Advanced Computer Security
Advanced course on principles and practice of engineering secure information systems. Topics covered include threats and vulnerabilities, counter measures, legal policy issues, risk management and assurance. In-depth coverage of various research problems, which will vary from one offering of the course to another.
Prerequisite: CSE 508 or permission of instructor
Spring, 3 credits, ABCF grading
May be repeated twice for credit

CSE 610 Parallel Computer Architectures
Topics include parallel computer systems; important parallel applications; parallel computation models; interconnection networks; SIMD and MIMD architectures; hybrid architectures; memory management; cache coherence; distributed shared memory; synchronization methods; operating systems; compilers; and programming tools.
Prerequisite: CSE 502 or permission of instructor
3 credits, ABCF grading

CSE 611 Transaction Processing
An advanced course in transaction processing systems covering the latest developments in the area. Topics include stable storage, distributed database systems, commitment protocols, failures, replication and advanced models of transactions.
Prerequisite: CSE 515
3 credits, ABCF grading
CSE 612 Advanced Visualization and Volume Graphics
This course discusses advanced concepts in the area of volumetric data modeling and visualization. Topics included are: visual exploration of multi-variate and multi-dimensional datasets on regular and irregular grids, modeling of natural phenomena and simulation of realistic illumination, volumes as magic clay for sculpting and deformation effects, numerical techniques for rendering for illustration and artistic works, information-centric exploration of large datasets and exploitation of hardware for acceleration. The course strives to provide a snapshot of the current state of the art and will be supported mostly by recent research papers. Students will expand on a topic of their choice by completing an individual project.
Prerequisites: CSE 561; limited to CSE graduate students; others, permission of instructor
Fall, 3 credits, ABCF grading

CSE 613 Parallel Programming
Algorithms and technique for programming highly parallel computers. Trends in parallel and distributed computing; shared address space and message passing architectures; design issues for parallel algorithms; converting sequential algorithms into equivalent parallel algorithms; synchronization and data sharing; improving performance of parallel algorithms; interconnection network topologies, routing, and flow control; latency limits on speedup of algorithms by parallel implementations.
Prerequisite: CSE 502 or permission of instructor
3 credits, ABCF grading

CSE 614 Advanced Programming Languages
Selected topics on advanced programming languages technology. Program analysis and transformation, program optimization and program manipulation systems. Very high-level and declarative languages such as sets and relations-based languages and deductive and object-oriented languages.
Prerequisite: CSE 526 or CSE 504
Spring, 3 credits, ABCF grading
May be repeated for credit

CSE 615 Advanced Computer Vision
Survey of methods used for the analysis of images by computer, including computer vision and pattern recognition. Topics to be covered are image formation, image segmentation and edge detection, binary images and shape analysis, shape from shading, motion field and optical flow, surface inference, classification techniques.
Prerequisite: B.S. degree in Computer Science, Engineering, Mathematical or Physical Sciences
3 credits, ABCF grading

CSE 616 Digital Multimedia Systems
In-depth survey of multimedia computing, including media conversion, data compression, multimedia data representation and modeling, authoring techniques, audio and video editing, 2-D and 3-D animation, media synchronization, distributed multimedia, and advanced application development.
Prerequisite: CSE 533 or CSE 536
3 credits, ABCF grading

CSE 618 Advanced Computer Graphics
Advanced topics in rendering and modeling realistic 3-D imagery including texture mapping and synthesis, radiosity, amorphous phenomena, artificial life, and animation. Further contents include introductions to free-form curves and surfaces, volume rendering, and image-based rendering.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
May be repeated up to nine times for credit
3 credits, ABCF grading

CSE 620 Virtual Reality
Practical issues in the design and implementation of virtual environments. Topics include system requirements, transformations, user interaction models, human vision models, input/output devices and techniques, tracking systems, augmented reality, and virtual-reality applications. The course will involve a substantial programming project to implement an immersive virtual reality system.
Prerequisite: CSE 328, 528, 332, or 564
3 credits, ABCF grading

CSE 621 Physics-based Modeling for Visual Computing
A unified approach to various fields such as graphics, visualization, computer-aided geometric design, biomedical imaging, vision, and virtual environment. The course will explore select research topics centered on physics-based modeling methodology and associated computational methods for theoretical and practical problems in widespread areas of visual computing. The emphasis will be on geometric and solid modeling, geometric design techniques, wavelets and multi-resolution analysis, deformable models based on mathematical physics, variational analysis, optimization methods, numerical simulation with finite-difference and finite-element algorithms, differential equations for initial-value and boundary-value problems, force-driven interaction with other objects, sculpting system, and a large variety of applications for visual computing.
Prerequisite: CSE 528 or permission of instructor
3 credits, ABCF grading

CSE 622 Advanced Database Systems
The course covers selected topics on the cutting edge of database technology, such as deductive database query languages and systems, object-oriented data models, persistent programming languages, heterogeneous databases, and advanced transaction models.
Prerequisite: CSE 532 or permission of instructor
3 credits, ABCF grading

CSE 624 Advanced Operating Systems
This is a survey of modern operating system techniques, especially those needed for distributed operating systems. Topics include network topologies, interprocess communication, fault detection and system recovery, local kernel functions, global network services, location transparency, large network constraints, distributed control algorithms (synchronization, configuration, deadlock detection, and searches), and existing distributed operating systems.
Prerequisite: CSE 506 or permission of instructor
3 credits, ABCF grading

CSE 625 Asynchronous Systems
Formal specification and verification of asynchronous systems. Topics include concurrent programming, process algebras, logics for describing the properties of concurrent systems, and formal semantics of communication.
Prerequisite: CSE 535 or permission of instructor
3 credits, ABCF grading
May be repeated for credit

CSE 626 Switching and Routing in Parallel and Distributed Systems
This course covers various switching and routing issues in parallel and distributed systems. Topics include message switching techniques, design of interconnection networks, permutation, multicast and all-to-all routing in various networking Nonblocking, and rearrangeable capability analysis and performance modeling.
Prerequisites: ESE 503 and 545 or CSE 502 and 547, or permission of instructor
3 credits, ABCF grading

CSE 628 Natural Language Processing
A survey of computational approaches to natural language processing issues in phonology, morphology, syntax, semantics, and pragmatics. Topics to be discussed include natural language parsing algorithms, generation algorithms, and knowledge representations. Models for speech recognition systems, story understanding systems, and natural language front ends to databases and other application programs will be investigated.
Prerequisite: CSE 537
3 credits, ABCF grading

CSE 630 Theory of Computational Complexity
Machine-based polynomial-time complexity theory, including noncomputational and probabilistic computation, probabilistic computation, time and space trade-off, and complexity hierarchy; applications to related areas such as combinatorial algorithms and cryptography.
Prerequisites: CSE 530 or CSE 518 or permission of instructor
3 credits, ABCF grading

CSE 631 Advanced Logic in Computer Science
The course may include the following: deductive theorem proving (resolution, sequent-style calculi, natural deduction), inductive theorem proving, equational reasoning (rewriting systems), non-classical logics (modal logics, intuitionistic logic).
Prerequisite: CSE 541 or permission of instructor
3 credits, SU grading

CSE 633 Computability and Undecidability
Computability theory based on Turing machines and recursive functions; proof by diagonalization and reducibility; unsolvable problems in set, group, number and language
Seminars and Special Topics Courses

CSE 640 Seminar in Theory of Computing
1 credit, S/U grading

CSE 641 Seminar in Logic in Computer Science
1 credit, S/U grading

CSE 642 Seminar in Algorithms
1 credit, S/U grading

CSE 643 Seminar in Concurrency
1 credit, S/U grading

CSE 644 Seminar in Databases
1 credit, S/U grading

CSE 645 Seminar in Languages
1 credit, S/U grading

CSE 646 Seminar in Artificial Intelligence
1 credit, S/U grading

CSE 647 Seminar in Image Processing
1 credit, S/U grading

CSE 648 Seminar in Graphics
1 credit, S/U grading

CSE 649 Seminar in Operating Systems
1 credit, S/U grading

CSE 650 Seminar in Architecture
1 credit, S/U grading

CSE 651 Seminar in Applications
1 credit, S/U grading

CSE 652 Seminar in User Interfaces
1 credit, S/U grading

CSE 653 Seminar in Virtual Reality
1 credit, S/U grading

CSE 654 Seminar in Visualization
1 credit, S/U grading

CSE 655 Seminar in Modeling and Simulation
1 credit, S/U grading

CSE 656 Seminar in Computer Vision
Current readings in computer vision and image understanding.
1 credit, S/U grading

CSE 657 Seminar in Design Analysis
Methods for constructing reliable and efficient computer systems. Topics include: modeling and specification, analysis and verification, design and optimization, code generation, simulation and testing. Tool support. Applications and case studies.
1 credit, S/U grading

CSE 658 Seminar on Mobile and Wireless Networking
This seminar course will draw topics from mobile and wireless networks of current interest. The main focus will be multi-hop wireless networks. It will cover topics on mobile routing, multiple access and transport protocols for such networks. It will also cover topics from micromobility architectures and pervasive computing.
Fall, 1 credit, S/U grading
May be repeated for credit

CSE 659 Seminar in Computer Security
Seminar course, covering various research problems in computer security.
Spring, 1 credit, S/U grading
May be repeated for credit

CSE 660 Seminar in Media Networks
Graduate seminar that covers recent work on multimedia and networks.
Fall and spring, 1 credit, S/U grading
May be repeated for credit

CSE 661 Seminar in Data Privacy
Current research in data privacy.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Spring, 1 credit, S/U grading
May be repeated for credit

CSE 662 Seminar in Applied Cryptography
1 credit, S/U grading
May be repeated for credit

CSE 665 Special Topics in Theory of Computing
2 credits, ABCF grading

CSE 666 Special Topics in Logic in Computer Science
2 credits, ABCF grading

CSE 667 Special Topics in Algorithms
2 credits, ABCF grading

CSE 668 Special Topics in Concurrency
2 credits, ABCF grading

CSE 669 Special Topics in Databases
2 credits, ABCF grading

CSE 670 Special Topics in Languages
2 credits, ABCF grading

CSE 671 Special Topics in Artificial Intelligence
2 credits, ABCF grading

CSE 672 Special Topics in Image Processing
2 credits, ABCF grading

CSE 673 Special Topics in Graphics
2 credits, ABCF grading
CSE 674 Special Topics in Operating Systems
2 credits, ABCF grading

CSE 675 Special Topics in Architecture
2 credits, ABCF grading

CSE 676 Special Topics in Applications
2 credits, ABCF grading

CSE 677 Special Topics in User Interfaces
2 credits, ABCF grading

CSE 678 Special Topics in Virtual Reality
2 credits, ABCF grading

CSE 679 Special Topics in Visualization
2 credits, ABCF grading

CSE 680 Special Topics on Modeling and Simulation
This is an advanced modeling and simulation course on selected research topics. This application-oriented course tries to address issues of modeling and simulation from graphics, animation, CAD/CAM, medicine, artificial life, and virtual environments. Primary areas covered by this course include visual modeling, mathematical methods for geometry, shape design technology, computational physics for simulation, and scientific computing techniques. New topics will be added each year to reflect the latest state of the art.
Prerequisite: Graphics/visualization background or permission of the instructor
Fall and spring, 2 credits, ABCF grading

CSE 681 Special Topics in Computer Vision
Advanced research topics course.
Prerequisite: Limited to CSE graduate students; others need instructor consent
Fall, 2 credits, ABCF grading
May be repeated for credit

CSE 682 Special Topics in Design Analysis
Methods for constructing reliable and efficient computer systems. Topics include: modeling and specification, analysis and verification, design and optimization, code generation, simulation and testing, tool support, applications and case studies.
Prerequisite: Limited to CSE graduate students; others, instructor consent
Fall, 2 credits, ABCF grading
May be repeated for credit

CSE 683 Special Topics in Mobile and Wireless Networking
This course will draw topics from mobile and wireless networks of current interest. The main focus will be multi-hop wireless networks. It will cover topics on mobile routing, multiple access and transport protocols for such networks. It will also cover topics from micromobility architectures and pervasive computing.
Prerequisites: Limited to CSE graduate students; others, permission of instructor
Fall and spring, 2 credits, ABCF grading
May be repeated twice for credit

CSE 684 Special Topics in Computer Security
Special topics course covering selected research areas in computer security.
Spring, 2 credits, ABCF grading
May be repeated once for credit

CSE 685 Special Topics in Media Networks
Current topics in media networks.
Prerequisite: Limited to CSE graduate students
Fall and spring, 2 credits, ABCF grading
May be repeated for credit

CSE 686 Special Topics in Data Privacy
Advanced research topics course.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Spring, 2 credits, S/U grading
May be repeated for credit

CSE 687 Special Topics in Applied Cryptography
2 credits, ABCF grading
May be repeated for credit

CSE 690, 691, 692 Advanced Topics in Computer Science
An advanced lecture course on new topics in computer science. This course is primarily designed for Ph.D. students, but can be taken by M.S. students as well. Semester supplements to this Bulletin contain specific description when course is offered.
Prerequisite: Limited to CSE graduate students; others, permission of instructor
Spring, 2 credits, ABCF grading
May be repeated for credit as the topic changes, but cannot be used more than twice to satisfy CSE major requirements for M.S.

CSE 696 Internship in Research
See CSE 596 for similar description.
Fall and spring, 1 credit, S/U grading
May be repeated for credit

CSE 698 Practicum in Teaching
Normally taken by Ph.D. students in their first year in conjunction with a TA.
Fall, spring, and summer, 1-3 credits, ABCF grading
May be repeated for credit

CSE 699 Dissertation Research On Campus
This course is normally taken by advanced Ph.D. students when they conduct research toward their thesis. Only Ph.D. students who have been advanced to candidacy (G5 status) can take this course. Students who have the G5 and G4 status and participate in a research project with their advisor can register for CSE 598 Independent Study.
Prerequisite: Must be advanced to candidacy (G5); major portion of research must take place on SE campus, at Cold Spring Harbor, or at Brookhaven National Lab; limited to CSE graduate students; others, permission of instructor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

CSE 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

CSE 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan they must file a waiver by the second week of classes; the charge will be removed only if other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

CSE 800 Summer Research
0 credit, S/U grading
May be repeated for credit

ISE 503 Data Management
This course provides an understanding of the issues in managing database systems as an essential organizational resource. Students learn the enterprise data architecture components, data storage configurations, and information retrieval methods. It expands from the relational model to the multidimensional model, object-relational techniques, and web accessed data. The course includes concepts, principles, issues, and techniques for managing corporate data resources. Techniques for managing the design and development of large database systems including logical data models, concurrent processing, data distribution, database administration, data warehousing, data cleansing, and data mining. Students will use current methods and tools for database design and development.
Prerequisite: Limited to CSE/ISE graduate students; others, permission of instructor
2 credits, ABCF grading
May be repeated up to nine times for credit

ISE 504 Analysis, Modeling, and Design
This course provides an understanding and application of system analysis and design processes. Students evaluate and choose appropriate system development methodologies and
design a system. Students learn the importance of effective communication and integration with users and user systems. The course emphasizes interpersonal skill development with clients, users, team members, and others associated with the development, operation, and maintenance of systems. The course includes the system development life cycle; analysis and design techniques; information systems planning and project identification and selection, requirements collection and structuring, process modeling, data modeling, design of interface and data management, system implementation and operation, system maintenance, change management implications of systems, and globalization issues in systems. Students will use current methods and tools such as rapid application development, prototyping, and visual development.

ISE 506 Quantitative Computer Architecture
Explores the physical structure of a computer; machine representation of information; architecture and organization of various mainframe, mini-, and microcomputers; primary and secondary storage; and input and output communication. Architectural choices are compared and used to determine resulting function and performance. Architectural trade-offs are also identified.

ISE 507 Project Management
The course focuses on both the technical aspects of project management and the human aspects. Technical components include project definition, work breakdown structure development, and the use of optimization techniques for planning a project and optimizing schedules. Graphical approaches to project definition are addressed, as are needs analysis, preliminary design, and detailed design and implementation. Human aspects of project management include forming a project team, managing performance, and resolving conflicts.

ISE 516 Systems Engineering Principles
An introduction to the full range of systems engineering concepts, tools and techniques. These elements are applied to both large- and small-scale projects. The course provides a review of the stages of an integrated, top-down, life-cycle approach to design engineering—from analysis of customer requirements to maintenance and support, from definition of systems operational concepts through material disposal and ability and maintainability engineering, human factors, safety, logistics engineering, quality engineering and value-cost engineering. The course also includes a treatment of crucial management issues, such as the planning and development of Systems Engineering Management Plans (SEMPs), work breakdown structures (WBSs), cost projections, and supplier selection and management.

ISE 517 Human Factors in Systems Engineering
The course focuses on techniques to integrate human factors into the design of systems so that the systems match human abilities and limitations. The course addresses techniques to translate system requirements into project-specific design requirements. The course addresses physiological and mental characteristics of humans and emphasizes methods used to generate human factors inputs for engineering work products. The course describes the effect of human factors on each stage of development. Cannot be used towards M.S. or Ph.D. degree in Computer Science.

ISE 506 Quantitative Computer Architecture
Explores the physical structure of a computer; machine representation of information; architecture and organization of various mainframe, mini-, and microcomputers; primary and secondary storage; and input and output communication. Architectural choices are compared and used to determine resulting function and performance. Architectural trade-offs are also identified.

ISE 507 Project Management
The course focuses on both the technical aspects of project management and the human aspects. Technical components include project definition, work breakdown structure development, and the use of optimization techniques for planning a project and optimizing schedules. Graphical approaches to project definition are addressed, as are needs analysis, preliminary design, and detailed design and implementation. Human aspects of project management include forming a project team, managing performance, and resolving conflicts.

ISE 516 Systems Engineering Principles
An introduction to the full range of systems engineering concepts, tools and techniques. These elements are applied to both large- and small-scale projects. The course provides a review of the stages of an integrated, top-down, life-cycle approach to design engineering—from analysis of customer requirements to maintenance and support, from definition of systems operational concepts through material disposal and ability and maintainability engineering, human factors, safety, logistics engineering, quality engineering and value-cost engineering. The course also includes a treatment of crucial management issues, such as the planning and development of Systems Engineering Management Plans (SEMPs), work breakdown structures (WBSs), cost projections, and supplier selection and management.

ISE 517 Human Factors in Systems Engineering
The course focuses on techniques to integrate human factors into the design of systems so that the systems match human abilities and limitations. The course addresses techniques to translate system requirements into project-specific design requirements. The course addresses physiological and mental characteristics of humans and emphasizes methods used to generate human factors inputs for engineering work products. The course describes the effect of human factors on each stage of development. Cannot be used towards M.S. or Ph.D. degree in Computer Science.
Creative Writing and Literature (CWL)

Director: Robert Reeves, Southampton, Chancellors Hall Room 238, (631) 632-5030
Associate Director: Carla Caglioti, Southampton, Chancellors Hall Room 238, (631) 632-5016
Program Coordinator: Adrienne Unger, Southampton, Chancellors Hall Room 238, (631) 632-5030

Degrees awarded: MFA in Creative Writing and Literature

The MFA program in Writing and Literature at Stony Brook Southampton emphasizes creative work in fiction, poetry, and scriptwriting. However, the program also extends its emphasis beyond the familiar categories of creative expression to treat all forms of writing as equally relevant to understanding and mastering a world constructed out of words. In particular, the program broadens its interest to include forms of scientific writing—environmental, medical, technological—to draw benefits from the University’s well-established strength in science.

The 42 academic credits for the MFA program is divided among required courses that introduce students to the profession and discipline of writing and the skills necessary to teach writing to others; advanced writing workshops in a variety of writing genres; seminars designed to focus closely on an issue or type of contemporary writing, graduate-level literature courses; and an MFA thesis intended to be a publishable, book-length work. The program is offered in two academic semesters, two six-week summer sessions, and a credit-bearing writers conference.

Courses are taught by a full-time core faculty of three, joined by a part-time faculty of ten distinguished visiting writers whose teaching and lecturing assignments rotate among the fall, spring, and summer sessions. These distinguished visitors provide creative breadth to the writing program, offering coverage in areas of writing that are essential in contemporary society, in particular fiction, non-fiction, scriptwriting, scientific writing, and writing for the media.

Special Programs
Southampton Writers Conference

The MFA in Writing and Literature sponsors the Southampton Writers Conference, an intensive program of three-credit workshops in contemporary writing that includes lectures, readings, workshops, and panels featuring nationally distinguished authors who join the Department’s summer faculty. Graduate students in the program will assist in planning and running the Conference, and will have the option of taking a Conference workshop for credit. The Writers Conference also encourages participation by visiting students—new writers, established writers, teachers of writing, and editors—who will be admitted by application and may receive academic credit upon request.

Stony Brook Manhattan

MFA courses are regularly taught in the fall and spring semester at Stony Brook Manhattan. Stony Brook Manhattan is conveniently located at 28th Street and Park Avenue South. The location is easy to reach by bus, train, and subway.

The Southampton Review
The Southampton Review (TSR), sponsored by the MFA Program in Writing and Literature at Stony Brook Southampton, is a carefully edited, beautifully designed journal dedicated to publishing fine fiction, nonfiction, poetry, and art. TSR focuses on work by students and graduates of the MFA program and from the Southampton Writers Conference, but we do open our pages to writers from across the globe whose work is compelling. Our pages are equally devoted to writers whose voices are fresh as well as to those whose are well-established.

Admission

Application for admission to the Graduate School is made to a specific program for a specific degree. For the MFA in Writing and Literature, applicants must fulfill both the Graduate School admission requirements and the specific requirements for the MFA in Writing and Literature. See sections I and II for details on these requirements. Application forms may be found online at www.grad.sunysb.edu/prospective/apply/index.shtml. Please note that applications for Admission to the MFA in Writing and Literature are made to the MFA in Writing and Literature program and not to the Graduate School. Completed applications should be mailed to:

MFA in Writing and Literature
Stony Brook Southampton
239 Montauk Highway
Southampton, NY 11968
Phone: (631) 632-5030

Application Deadline:
The MFA program in Writing and Literature accepts applications for admission on a rolling basis. To receive full consideration for admission with financial support, completed admission and financial aid applications should be filed by January 15 for the fall semester and October 1 for the spring semester.

I. M.F.A. in Writing and Literature Admission Requirements

Applicants for the MFA program in Writing and Literature must have a bachelor’s degree from an accredited college or university. The program accepts applications from candidates whose undergraduate degrees were taken in areas other than the humanities.

Admission to the program is based on the evaluation of a portfolio of the applicant’s writing, made in conjunction with a review of the candidate’s entire academic career, and letters of recommendation. The portfolio may include works in any written form including creative non-fiction, fiction, poetry, scripting, or other genre. Results from the Graduate Record Examination are encouraged, but not required.

In addition to the Graduate School admission requirements, the MFA in Writing and Literature requires the following:

- Letters of recommendation from three instructors or writing professionals familiar with your written work.
- A statement discussing your reasons for graduate study (one to two pages, may be submitted with the online application)
- A writing sample consisting of up to 10 pages of poetry (single-spaced, stapled) or 30 pages of prose (double-spaced, stapled); your name should appear on the writing sample.
• A single sheet listing your address, phone number, e-mail address, and title(s) of submission(s)
• A copy of your résumé or C.V. (may be submitted with the online application)
Any deficiencies in these or the Graduate School admission requirements will not automatically bar admission, but it is understood that inadequacies in undergraduate preparation normally will require the student to take additional work, the amount to be determined by the appropriate graduate advisory committee. Additional work may not be used to fulfill MFA degree requirements.

Faculty

Professor

Associate Professor

Lecturer

Writers
Alda, Alan, B.S., 1956, Fordham University: Science and writing
Fiffer, Jules. The Pratt Institute: Humor and truth, screenplay
Hegi, Ursula. M.A., 1979, University of New Hampshire: Fiction
Jones, Kayle, M.F.A., 1988, Columbia University: Novel, Russian literature
Klam, Matthew. M.A., 1992, Hollins College: Creative nonfiction
McCourt, Frank. M.A., 1958, Brooklyn College: Memoir
Sheehan, Julie, M.F.A., 2000, Columbia University: Poetry

Affiliated Faculty
Westermann, John. Popular fiction

Degree Requirements

Requirements for the MFA Degree
The MFA in Writing and Literature degree requires 33 credits of course work and a nine credit thesis for a total of 42 credits. Following are the specific requirements:

A. Required Introduction to the MFA Program (three credits)
B. CWL 500 Introduction to Graduate Writing
B. Six of the following writing workshops (18 credits). Individual courses under each category will be labeled according to the content of the course. Although courses may be repeated for credit, students are strongly encouraged to experiment among the disciplines:
CWL 510 Forms of Fiction
CWL 520 Forms of Poetry
CWL 530 Forms of Scriptwriting
CWL 540 Forms of Creative Nonfiction
CWL 550 Forms of Professional and Scientific Writing

C. CWL 570 Advanced Writing Workshop
(One course is for manuscripts in progress across writing disciplines and is strongly recommended for students preparing to take the thesis.)
CWL 575 Writers Conference
C. Three of the following special topic writing and literature seminars (nine credits):

* CWL 560 Topics in Literature for Writers
* CWL 565 Special Topics in Writing
* CWL 588 Independent Study
* CWL 599 Thesis

Courses

CWL 500 Introduction to Graduate Writing
A seminar that introduces students to one another, the faculty, the program in Writing and Literature, and to issues in contemporary writing. Offered in conjunction with the Writers Reading Series. Students will attend the regular series of readings sponsored by the Writing program and meet at weekly intervals under the direction of a faculty advisor to discuss and write about topics raised in the lecture series, as well as issues generated from seminar discussions.

3 credits, ABCF grading

CWL 510 Forms of Fiction
Regular submission, discussion, and analysis of students’ work in one or more of the modes of fiction, including the short story, the novella, and the novel. Writing assignments may include exercises, imitations, responses, and original work. Students will examine relevant works that illustrate point of view, character development, dialogue, plot, setting, theme, motif, and other aspects of fiction. Specific mode or topic to be studied will be announced in the course schedule.

Prerequisite: Permission of instructor and/or Departmental consent
3 credits, ABCF grading
May be repeated for credit

CWL 520 Forms of Poetry
Regular submission, discussion, and analysis of students’ work in one or more of the modes of poetry. Writing assignments may include exercises, imitations, responses, and original work. Students will examine relevant works that illustrate structural principles, metrical and syntactical rhythm, sound and rhyme, formal and stanzaic organization, the use of figurative language, and other aspects of poetry.

Prerequisite: Permission of instructor and/or program director
3 credits, ABCF grading
May be repeated for credit

CWL 530 Forms of Scriptwriting
Regular submission, discussion, and analysis of students’ work in one or more of the contemporary modes of scriptwriting, including writing for film, theater, radio, and television.
Writing assignments may include exercises, imitations, responses, and original work. Students will examine relevant works that illustrate point of view, character development, dialogue, plot, setting, and other techniques vital to scriptwriting. Specific mode or
topic to be studied will be announced in the course schedule.

Prerequisite: Permission of instructor and/or program director
3 credits, ABCF grading
May be repeated for credit

CWL 540 Forms of Creative Nonfiction
Regular submission, discussion, and analysis of students' work in one or more of the contemporary fields of nonfiction writing, including biography, autobiography, memoir, expositional writing, and social commentary. Writing assignments may include exercises, imitations, responses, and original work. Students will examine relevant works that illustrate the methods and techniques available to the non-fiction writer. Specific mode or topic to be studied will be announced in the course schedule.

Prerequisite: Permission of instructor and/or program director
3 credits, ABCF grading
May be repeated for credit

CWL 550 Forms of Professional and Scientific Writing
Regular submission, discussion, and analysis of students' work in one or more of the contemporary modes of professional writing, including technological writing; writing about science; and writing for advertising, business, and public relations, as well as for governmental, educational, and professional organizations. Writing assignments may include exercises, imitations, responses, and original work. Students will examine relevant works that illustrate the strategies available in modern professional communication. Specific mode or topic to be studied will be announced in the course schedule.

Prerequisite: Permission of instructor and/or program director
3 credits, ABCF grading
May be repeated for credit

CWL 550 Topics in Literature for Writers
A seminar for writers concentrating on one area of literary study to be announced in the course schedule. The course may examine a contemporary or historical trend in literature, the rise of a specific genre, a social issue expressed in literature, an issue in literary theory, or any other topic of relevance and concern to students of writing. The emphasis will be on scholarly analysis.

3 credits, ABCF grading
May be repeated for credit

CWL 565 Special Topics in Writing
A seminar concentrating on a specific topic or concern in writing. The particular theme of the course will be announced in the course schedule. Topics may include, among others, studies of character development, the uses of humor, writing about place, finding one's voice, and narrative style. Written work will be supported by the reading of related texts.

3 credits, ABCF grading
May be repeated for credit

CWL 570 Advanced Writing Workshop
The focus is on work in progress and the extension of the manuscript. The workshop is open to students interested in any form of

writing. Students are encouraged to pursue their own writing interests while simultaneously being exposed to the work of others in varying genres. Regular writing is required, and vigorous analysis and discussion are encouraged. Strongly recommended for students preparing for the thesis.

3 credits, ABCF grading
May be repeated for credit

CWL 575 Writers Conference
The Southampton Writers Conference is an intensive program of workshops in contemporary writing that includes lectures, readings, workshops, and panels featuring nationally distinguished authors who join the Department's summer faculty. Graduate students in the program will assist in planning and running the Conference, and will have the option of taking a Conference workshop for credit. The Writers Conference will also encourage participation by visiting students, new writers, established writers, teachers of writing, and editors who will be admitted by application and may receive academic credit upon request.

1-6 credits, ABCF grading
May be repeated for up to six credits

CWL 580 Practicum in Arts Administration
Under the guidance of a faculty advisor, students will learn the essentials of arts administration. This may include assisting in the coordination of reading and lecture series, conference organization, or other writing and arts administration activities.

Prerequisites: Permission of instructor and program director
Semester: On demand, 1-3 credits,
ABCF grading
May be repeated for up to six credits

CWL 581 Practicum in Teaching Writing
Students take the seminar in conjunction with teaching a section of WRT 101. This course provides hands-on experience and instruction in the basics of writing pedagogy, including designing writing assignments, sequencing assignments, motivating writing, writing skill development, and evaluating writing. Students will also be given a preliminary overview of the major theories driving composition pedagogy.

Fall, 3 credits, S/U grading

CWL 582 Practicum in Publishing and Editing
Under the guidance of the faculty advisor, students will be exposed to the hands-on process of editing and publishing a literary journal.

Prerequisites: Permission of instructor and program director
Semester: On demand, 1-3 credits,
S/U grading
May be repeated for up to six credits

CWL 588 Independent Study
Independent studies in topics chosen by the student are arranged through an individual instructor.

Prerequisites: Permission of instructor and program director
1-3 credits, S/U grading
May be repeated once for credit

CWL 599 Thesis
Every student in the M.F.A. program in Writing must complete a thesis that is a publishable, book-length work. It may be fiction, non-fiction, poetry, or a script for the visual media. It may be a collection of short pieces. Its subject matter may be scientific or literary. It may be business-oriented or academic. The thesis is judged solely on the quality of its intelligence and its writing. Every student will, with the assistance of the program director, choose a thesis supervisor to provide guidance and criticism in the completion of the project. At the same time that the thesis supervisor is chosen, the program director will also guide the student in the selection of a thesis committee, which will consist of the thesis supervisor, one other member of the faculty in Writing, and one outside reader knowledgeable in the student's field of interest. Progress toward the completion of the thesis will be reviewed not only by the thesis supervisor but also by members of the thesis committee.

Prerequisites: Permission of thesis advisor and program director
Offered every semester, 1-9 credits, S/U grading
May be repeated once for up to 12 credits
The primary mission of the School of Dental Medicine at Stony Brook University is to graduate dentists who are highly skilled general practitioners, able to integrate clinical, biomedical, and behavioral knowledge to advance the health and well being of their patients and their communities. They are expected to provide compassionate patient-centered care while demonstrating consistently the highest level of professionalism and sensitivity to the diverse personal and cultural contexts in which dental care is delivered. Furthermore, the educational experience encourages students to pursue postdoctoral training in general dentistry, the various clinical specialties, and/or research.

The School of Dental Medicine is fully accredited by the Commission on Dental Education and the State Education Department, and is a component school of the Health Sciences Center at Stony Brook. Admission to the School of Dental Medicine is highly competitive. The grade point averages and Dental Aptitude scores of incoming freshmen typically place Stony Brook in the top tier of dental schools in the nation. Dental students take courses in anatomy, biochemistry, microbiology, neurosciences, pathology, pharmacology, and physiology at the medical school along with medical students. In the clinical component of the dental curriculum students take courses in behavioral sciences, dental anesthesia, dental materials, dental medicine, endodontology, operative dentistry, oral biology, oral pathology, oral and maxillofacial surgery, orthodontics, pediatric dentistry, practice development, periodontics, and prosthetics. Didactic and clinical performance on national and regional board examinations typically rank the School of Dental Medicine in the top tier of dental schools in the United States.

The School of Dental Medicine offers postdoctoral education in endodontics, orthodontics, periodontics, and care for the developmentally disabled. Residency programs exist in General Dental Practice, Dental Anesthesiology, and Pediatric Dentistry. In addition, the School of Dental Medicine is affiliated with the oral and maxillofacial surgery residency program at Long Island Jewish Medical Center. The Master of Science and Doctor of Philosophy degrees are offered through the Graduate School of the University and the school's Department of Oral Biology and Pathology.

The Dental Care Center has 55,000 patient visits annually and delivers highly sophisticated care through its predoctoral program, postgraduate programs, and Faculty Practice. This enables the school to provide a very high level of clinical experience for students. The school is also the primary provider on Long Island of oral health care for individuals afflicted with developmental disabilities. The School of Dental Medicine provides an array of dental health educational programs for the public and conducts continuing education programs for community dental health professionals. The school has affiliations with a number of regional hospitals, including Long Island Jewish Medical Center, Nassau County Medical Center, and the Veterans Affairs Medical Center at Northport. These institutions, together with Stony Brook University Hospital, provide an environment for students to observe the effect of systemic disease on the structures of the oral cavity, and to participate as members of a health-care team in the treatment of patients.

Since its inception in 1973, the School of Dental Medicine has been an innovative, research-oriented institution, which has sought to improve oral and systemic health through basic and applied research. A significant facet of the school's research mission is the translation of basic knowledge into practical clinical application. This endeavor has resulted in numerous patented technologies and the development of three oral health-care companies. Further evidence of the school's research productivity includes the success of the faculty in obtaining a high level of funding from federal, state, and industrial sources. Two faculty members have received prestigious MERIT Research Awards from the NIH. The School of Dental Medicine's Ph.D. program in Oral Biology has a record over the past 25 years of training basic science and clinical researchers who have assumed leadership roles in both academic and industrial institutions.

Excellence through diversity is the standard by which the school conducts its education and patient care programs. Multicultural representation by faculty and students is present at all levels in the school. Over the last quarter-century, the School of Dental Medicine at Stony Brook has achieved an enviable reputation for the excellence of its educational programs. It continues to supply both the national and local community with dentists who are well educated in the latest technical, biological, and psychological aspects of dental practice.

For further information, call the School of Dental Medicine at Stony Brook, 632-8900.

All questions concerning admission to the School of Dental Medicine should be addressed to:

School of Dental Medicine
Office of Academic Affairs, Admissions, and Financial Aid
Stony Brook University
Stony Brook, NY 11794-8709
(631) 632-8871

You may also request a copy of the School of Dental Medicine Admissions and Application Guide.

Refer all questions concerning the Doctor of Philosophy in Oral Biology and Pathology to the Graduate School.
The Department of Ecology and Evolution and the Graduate Program in Ecology and Evolution (GPEE) at Stony Brook were the first such units in the United States and have served as models for corresponding units at many other institutions. GPEE at Stony Brook is generally ranked among the leading programs in its field. Its faculty includes two members of the National Academy of Sciences, several past presidents of national and international societies in ecology, evolution, and systematics, and authors of influential books in these disciplines. GPEE provides training that leads to the M.A. and Ph.D. Since its inception, the program has emphasized the integration of concepts from ecology and evolutionary biology.

The faculty and the graduate students in GPEE are engaged in research on Long Island and around the world, including Alaska, Hawaii, the continental U.S., Africa, the Caribbean, Central and South America, India, and Mexico. They study terrestrial, freshwater, and marine organisms in a wide range of taxa, including amphibians, bacteria, birds, fish, fungi, insects, mollusks, primates, reptiles, and vascular plants. Their research interests incorporate experimental, comparative, statistical, and theoretical approaches and utilize field and laboratory studies. Research in GPEE includes biological invasions, evolutionary developmental biology, evolutionary ecology, evolutionary genomics, experimental evolution, geographical variation and phylogeography, interspecific interactions, paleontology, phenotypic plasticity, phylogenetic biology, and population genetics. There is great interest in development of methods for morphometrics, multivariate statistics, and systematics. Many faculty members are interested in the application of their research to problems in conservation.

Graduates are qualified for positions in academic or research institutions, conservation organizations, environmental consulting companies, and government agencies. Former students have become faculty members in such departments as agricultural entomology, ecology, evolution, and marine biology at prominent private and public universities as well as selective liberal arts and smaller state colleges. Although GPEE emphasizes basic research, many of its graduates have entered careers that apply ecological and evolutionary principles to problems in such areas as agricultural entomology, conservation, invasive species, marine toxicology, natural resource management, and risk assessment.

M.A. Program in Applied Ecology

A three-semester program leads to an M.A. in Biological Sciences with a concentration in Applied Ecology. This curriculum provides training in environmental sciences for positions in conservation and environmental protection organizations, environmental consulting firms, environmental departments of industrial companies, and government environmental offices. Applied environmental research involves data collection, data analysis, and interpretation of the findings. The need for trained personnel is greatest in the area of data analysis, which is a focus of the concentration in Applied Ecology. Students need to complete 30 credits and the master’s paper to graduate.

Ph.D. Program in Ecology and Evolution

Graduate students in the GPEE are supervised by a temporary advisor and the Entering Student Advisory Committee (ESAC) during their first year. First-year students take courses in biometry, ecology, and evolution, and they take a general preliminary examination at the end of the first year. They are encouraged to take specialized courses at other institutions or to become involved in research during the first summer. Advanced courses and seminars are taken in subsequent years, and students appoint a permanent advisor and advisory committee during the second year. After passing an oral examination that concentrates on the areas of their proposed research and submitting a research proposal to the faculty, students undertake original research that is typically independent of their advisor’s research. An atmosphere of collegiality and intellectual interchange prevails throughout the GPEE and is fostered by discussion groups and an exciting program of invited speakers each week during the academic year. A detailed description of the program, including degree requirements, descriptions of the faculty research interests, and application materials are available on the Web at http://life.bio.sunysb.edu/ee. Applicants should contact individual faculty members whose interests they share.

Facilities

Ample environmental, greenhouse, and laboratory facilities and all of the normal laboratory equipment for molecular studies are available. All the equipment typically found in modern laboratories concerned with protein electrophoresis and DNA analysis is available, including automated sequencers, fraction collectors, high-speed and ultracentrifuges, liquid scintillation, sonicators, spectrofluorometers, and spectrophotometers. The Department houses laboratories of bacterial genetics, Drosophila genetics, and ecology. The Department has excellent computing facilities. In addition to microcomputers in most labs, UNIX-based servers are also available within the Department for mail and more intense computations than can be provided by desktop computers.

Field and marine study areas are at Flax Pond, a University-affiliated laboratory near campus. Terrestrial studies are performed at the Ashley Schiff Nature Preserve, a 26-acre forested area on campus. The University is a member of the Organization for Tropical Studies, which maintains field
stations in Costa Rica. There are other opportunities for field studies both in this country and abroad; faculty members have continuing projects at Cook Inlet in Alaska, Friday Harbor Marine Labs in Washington, Cajas National Park in Ecuador, and Ranomafana National Park in Madagascar. Collaboration is possible with scientists at Brookhaven National Laboratory, and several field stations are maintained by other university centers and colleges of the State University of New York. The School of Marine and Atmospheric Sciences is located on campus. Stony Brook is close enough to New York City and Washington, D.C., for arrangements to be made for consultation and work at museums and other institutions in those cities.

Admission

Admission to the Ph.D. Program

In addition to Graduate School admission requirements, the Department requirements include:

A. A bachelor's degree in biology, chemistry, mathematics, or other courses of study that provide an appropriate background for advanced training in ecology and evolution

B. Formal coursework in ecology, evolution, genetics, and the biology of a particular group of organisms is strongly recommended

C. Report of Graduate Record Examination (GRE) General Test scores and, for international students, TOEFL scores

D. Acceptance by the Graduate Program in Ecology and Evolution and by the Graduate School

Admission to the M.A. Program in Applied Ecology

In addition to Graduate School admission requirements, the Department requirements include:

A. A bachelor's degree in a course of study that provides an appropriate background for advanced training in ecology

B. Report of Graduate Record Examination (GRE) General Test scores and, for international students, TOEFL scores

C. Acceptance by the Graduate Program in Ecology and Evolution and by the Graduate School

Faculty

Distinguished Professors

Levinton, Jeffrey S., Ph.D., 1971, Yale University: Marine benthic ecology; population genetics of bivalve mollusks; paleoecology.

Associate Professors

Armstrong, Robert, Ph.D., 1975, University of Minnesota: Mathematical modeling in marine ecology and biogeochemistry.

Battley, Edwin H., Emeritus, Ph.D., 1956, Stanford University: Thermodynamics of microbial growth; ecological energetics; microbial ecology; nitrification and denitrification in aquatic systems.

Bharathan, Geeta, Director of the Ph.D. Program, Ph.D., 1993, University of Arizona: Evolution of angiosperms; homeobox genes; genome size.

Bingham, Paul, Ph.D., 1979, Harvard University: Regulation of transcription in developing multicellular organisms; the role of transposons in evolution and speciation.

Chase, Ivan, Ph.D., 1972, Harvard University: Social behavior; dominance hierarchies; cooperation; resource distribution.

Hechtel, George J., Ph.D., 1962, Yale University: Systematics and zoogeography of marine demospongiae.

True, John, Ph.D., 1995, Duke University: Evolutionary and developmental genetics of color patterning in Drosophila.

Wiens, John J., Ph.D., 1995, University of Texas at Austin: Systematics and biology of reptiles and amphibians.

Assistant Professors

Baines, Stephen, Ph.D., 1993, Yale University: Aquatic ecosystem ecology; biogeochemistry of carbon and trace elements.

Graham, Catherine, Ph.D., 2003, University of Missouri, St. Louis: Landscape and behavioral ecology.

Munch, Stephen, Ph.D., 2002, Stony Brook University: Evolutionary ecology of growth and life history traits; evolution in harvested populations; applied population dynamics modeling; mathematical modeling and statistics.

Rest, Joshua S., Ph.D., 2004, University of Michigan: Regulatory evolution; protein network evolution; bioinformatics.
Degree Requirements
Requirements for the M.A. Degree

The Graduate Program in Ecology and Evolution (GPEE) usually does not accept a student whose goal is an M.A. degree, except those who wish to concentrate in applied ecology (see below). However, a student already in GPEE may be awarded an M.A. degree upon satisfaction of the following requirements in addition to the minimum Graduate School requirements:

A. Completion of an approved course of study including 30 graduate credit hours with a minimum 3.0 overall grade point average.
B. Preparation of a research thesis

Requirements for the Ph.D. Degree

A. Course Requirements

1. In the first year in residence, students are normally required to take BEE 550 Principles of Ecology, BEE 551 Principles of Evolution, BEE 552 Biometry, and BEE 556 Research Areas in Ecology and Evolution.
2. Students must take a minimum of three other graduate courses, other than seminars, within this or other programs of this or other universities.
3. BEE 671-672 Colloquium in Ecology and Evolution must be taken each semester in residence.
4. A minimum of one graduate seminar per year is required under normal circumstances.
5. Most students will require advanced training in various ancillary disciplines appropriate to their chosen field of research. Requirements will be determined by the student’s advisory committee and might include one or more foreign languages or advanced studies in biochemistry, computer sciences, mathematics, statistics, taxonomy, or other areas.

B. Entering Student Advising and Evaluation

Early in the first semester of study, each student meets with an advisory committee that recommends additional courses beyond required first-year courses. At the end of the second semester, an exam will be given testing the student’s knowledge of ecology and evolution.

C. Preliminary Examination

No later than the end of the fourth year of study, the student takes a preliminary examination tailored to the student’s interests and administered by his or her advisory committee. The examination includes an oral portion and may include a written portion, at the option of the student. The student and his or her committee decide in advance on the areas to be covered in this examination.

D. Advancement to Candidacy

The faculty will recommend a student to the Graduate School for advancement to candidacy upon satisfactory completion of the preliminary examination and any language requirement established for the student, and upon acceptance of a dissertation proposal by the faculty.

E. Research and Dissertation

A dissertation is required for the Ph.D. degree. It must contain the results of original and significant investigation. A dissertation proposal must be approved by the faculty during an early stage of the student’s research. A student’s progress in research is monitored by regular evaluations by the faculty in meetings held twice a year. Continued lack of progress may result in probation or dismissal.

F. Dissertation Committee

Students select a temporary advisor during the first semester and a permanent advisor at the beginning of the third semester. The advisory committee, consisting of the permanent advisor and at least two other GPEE faculty members, is nominated by the student in consultation with his or her permanent advisor and must be approved by the graduate program director. Additional members from outside GPEE and/or the University may be appointed to the dissertation committee.

G. Final Examination

The dissertation must be approved by the student’s advisory committee. A dissertation examining committee (which must include an external examiner) is then approved by the Dean of the Graduate School. A formal public oral dissertation defense is held, at which the student presents his or her findings and is questioned by the examining committee and other members of the audience.

H. Teaching Requirement

All graduate students completing a doctoral degree will function as teaching assistants during at least two semesters of their graduate careers.

J. Residence Requirement

At least two consecutive semesters of full-time graduate study are required. The demands of the course of study usually necessitate a longer period of residence.

K. Time Limit

The time limit imposed by the Graduate School is observed by GPEE. Students must satisfy all requirements for the Ph.D. degree within seven years after completing 24 credit hours of graduate courses in GPEE.

Requirements for the M.A. Degree in Applied Ecology

Students must complete 30 credits and achieve a 3.0 overall grade point average to graduate; this can be achieved in three semesters. Six courses form the core of the program: three courses focus on ecology; three provide training in mathematical methods, statistics, and computer programming. The six courses are:

- BEE 550 Principles of Ecology
- BEE 552 Biometry
- BEE 555 Mathematical Methods in Population Biology
- BEE 571 Ecology Laboratory
- BEE 585 Introduction to Ecological Research
- BEE 587 Applied Ecology and Conservation Biology Laboratory

A large number of elective courses are available to fulfill the degree requirements.

Courses

BEE 500 Directed Readings in Population Biology

Directed readings in topics of current interest, under supervision of a faculty sponsor, culminating in one or more critical review papers.

Prerequisite: Sponsor and approval of master’s program executive committee

Fall and spring, 1-3 credits, S/U grading

May be repeated for credit
BEE 501 Directed Readings in the Biology of Organisms
Directed readings in topics of current interest, under supervision of a faculty sponsor, culminating in one or more critical review papers. Prerequisite: Sponsor and approval of master's program executive committee Fall and spring, 1-3 credits, S/U grading May be repeated for credit

BEE 550 Principles of Ecology
Population dynamics, interactions of organisms, theoretical concepts of community structure and their biological and evolutionary implications. Prerequisite: Permission of instructor Fall, 4 credits, ABCF grading

BEE 552 Biometry
An intensive course in statistical theory and methodology. The analysis of real biological data is emphasized. Topics include analysis of variance, simple multiple and curvilinear regression analysis, correlation analysis, and goodness of fit tests. Prerequisite: BEE 552 or equivalent Spring, 4 credits, ABCF grading

BEE 553 Multivariate Analysis in Biology
An introduction to multivariate statistical analysis for biologists. Topics include general least squares analysis, MANOVA, cluster analysis, and factor analysis. Prerequisite: BEE 552 or equivalent Fall, 3 credits, ABCF grading

BEE 554 Population Genetics and Evolution
A general introduction to mathematical population genetics and evolutionary theory. The effects of mutation, recombination, selection, and migration are studied. Modern concepts in both theoretical and experimental population genetics are covered. Prerequisite: BEE 552 or equivalent Fall, 3 credits, ABCF grading

BEE 555 Mathematical Methods in Population Biology
This course covers a variety of mathematical methods used in modern theoretical biology. Topics include linear algebra and applications, ordinary and partial differential equations, and stochastic processes. Examples from population biology, i.e., mathematical ecology and population genetics, are used throughout. Prerequisite: BEE 552 or equivalent Fall, even years, 3 credits, ABCF grading

BEE 556 Research Areas of Ecology and Evolution
A description of the current research areas of ecology and evolution, broadly conceived. All first-year ecology and evolution students are expected to participate. Fall and spring, 1-2 credits, S/U grading May be repeated for credit

BEE 558 Tutorial Readings
Individual tutorial study with an instructor in the graduate program in Ecology and Evolution for the purpose of background reading in an area of ecology and evolution. Fall and spring, 1-4 credits, S/U grading May be repeated for credit

BEE 559 Individual Studies in Organisms
A detailed study of the biology of a selected systematic group chosen by the graduate student and a faculty member. This is conducted as a tutorial course. Fall and spring, 1-4 credits, ABCF grading May be repeated for credit

BEE 561 Macroevolution
This course emphasizes the processes generating large-scale evolutionary trends and patterns; the role of constraint and innovation in molding evolutionary patterns; adaptive landscapes and complex character evolution; development and evolution; the origin and importance of major body plans; and the role of biogeography and climate in evolution. Prerequisite: BEE 553 recommended Spring, odd years, 3 credits, ABCF grading

BEE 562 Concepts and Methods in Evolutionary Biology
The course aims at achieving two related objectives: first, to provide graduate students in Ecology and Evolution, and other Biology departments, as well as Philosophy, with a basic understanding of the varied methods (both experimental and statistical) that make up the body of evolutionary quantitative biology. The focus will be in particular on quantitative genetics and its interface with more modern approaches, including QTL mapping, bioinformatics, and the various omics (genomics, proteomics, etc.). Second, students will become familiar with the fundamental concepts of philosophy of science, in particular as they relate to the conceptual analysis of the ideas that shape modern evolutionary and ecological theory. In this respect, the focus will be both on philosophical concepts such as falsificationism, induction, deduction, hypothesis testing, and the nature of evidence, as well as on the meaning of key ideas in evolutionary ecology, such as natural selection, genetic drift, and constraints. Prerequisite: BEE 552 or equivalent Fall, even years, 3 credits, ABCF grading

BEE 564 Geometric Morphometrics
An introduction to theory and methods used in geometric morphometrics. Image analysis, outline methods, landmark methods, and shape statistics are covered. Prerequisite: BEE 552 or equivalent; BEE 553 recommended Fall, even years, 3 credits, ABCF grading

BEE 565 Molecular Evolution
An introduction to the use of molecular information in population genetics, evolution, and taxonomy. This course combines discussions of methodology, data, and theory to illustrate how molecular information is changing our view of the evolutionary process. Prerequisite: BEE 551 or permission of instructor Spring, odd years, 3 credits, ABCF grading

BEE 567 Molecular Diversity Laboratory
This course will provide hands-on experience in established and recently developed methods of detecting and analyzing molecular variation (DNA, RNA, Proteins) in nature. Natural populations of Drosophila melanogaster will be the model material for this laboratory. The exam theme of this course is that molecular variation is abundant in nature and is an important tool for understanding adaptive evolution and species relationships. Prerequisite: Permission of instructor Fall, 3 credits, ABCF grading

BEE 571 Ecology Laboratory
This course stresses the collection, analysis, and interpretation of ecological data, mostly in terrestrial settings. Laboratory and field exercises demonstrate the operation of general ecological principles in specific populations and communities. Fall, 3 credits, ABCF grading

BEE 575 Evolutionary Ecology
The approach is to understand the theoretical basis and review empirical tests of diverse topics. The format includes both lectures and student-led discussions of primary literature. Prerequisite: BEE 550, BEE 551, or permission of instructor Fall, alternate years, 3 credits, ABCF grading

BEE 585 Research Design and Analysis in Ecology
This course covers topics relevant to carrying out ecological research, including sampling and quantitative description of ecological communities, spatial pattern and spatial heterogeneity, design and analysis of field experiments, application of demographic models, analysis of meta-population dynamics, and population estimations. Spring, even years, 0-3 credits, ABCF grading

BEE 586 Introduction to Ecological Modeling
This course will provide students with a familiarity of the major concepts, approaches, and underlying rationale for modeling in the ecological sciences. Topics will include reviews of theoretical and empirical models, the use of models in adaptive management, and how to confront models with data to evaluate alternative hypotheses. Roughly one third of the course will be devoted to the use of models in management, focusing on the problems of fitting models to data and management pitfalls that follow. Course work will consist of readings, in-class exercises, and group assignments that involve the construction, analysis, and interpretation of ecological models. Prerequisite: BEE 550, BEE 552; MAT 131 or equivalent; any statistics course Spring, 3 credits, ABCF grading

BEE 587 Applied Ecology and Conservation Biology Laboratory
A computer laboratory course introducing students to ecological risk analysis and conservation biology. Laboratories are based on
interactive software. Computer simulation techniques for addressing problems in applied ecology are emphasized.

BEE 588 Current Topics in Ecology and Evolution
Subject matter varies from semester to semester, depending upon the interests of students and staff.
Fall and spring, 2 credits, S/U grading
May be repeated once for credit

BEE 599 Research
Original investigation undertaken with the supervision of a member of the staff.
Fall and spring, 1-12 credits, S/U grading
May be repeated for credit

BEE 670 Informal Seminar
Presentation of preliminary research results and current research problems by students and faculty.
Fall and spring, 0-2 credits, S/U grading
May be repeated for credit

BEE 671 Ecology and Evolution Colloquium
A weekly series of research seminars presented by visiting scientists as well as by the faculty. Required every semester of all ecology and evolution graduate students.
Fall, 0-2 credits, S/U grading
May be repeated for credit

BEE 672 Ecology and Evolution Colloquium
A weekly series of research seminars presented by visiting scientists as well as by the faculty. Required every semester of all ecology and evolution graduate students.
Spring, 0-2 credits, S/U grading
May be repeated for credit

BEE 689 Seminar on Adaptations of Marine Organisms
Seminars on selected topics concerning ecological, genetical, and evolutionary problems in the marine environment.
Fall or spring, alternate years, 0-2 credits, S/U grading
May be repeated for credit

BEE 690 Seminar on Evolutionary Processes
Seminars on selected topics concerning evolutionary processes.
Fall or spring, alternate years, 0-2 credits, S/U grading
May be repeated for credit

BEE 691 Seminar on Systematics and Phylogeny
Seminars on selected topics in systematics. Topics will include the theory of classification and numerical taxonomy, both phenetic and cladistic.
Fall or spring, alternate years, 0-2 credits, S/U grading
May be repeated for credit

BEE 692 Seminar on the Environment and Human Affairs
Student seminars on selected topics concerned with the effect of man on the environment. Application of ecological and evolutionary theory to the solution of human problems.
Fall or spring, 0-2 credits, S/U grading
May be repeated for credit

BEE 693 Seminar on Population and Community Ecology
Student seminars on selected topics in population and community ecology.
Fall or spring, 0-2 credits, S/U grading
May be repeated for credit

BEE 699 Dissertation Research On Campus
Prerequisite: Must be advanced to candidacy (G5); major portion of research must take place on SE campus, at Cold Spring Harbor, or at Brookhaven National Lab.
Fall, spring, and summer, 1-12 credits, S/U grading
May be repeated for credit

BEE 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and the Cold Spring Harbor Lab are considered on-campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

BEE 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by a mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan they must file a waiver by the second week of classes; the charge will be removed only if the other plan is deemed comparable); all international students must receive clearance from an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

BEE 800 Full-Time Summer Research
0 credit, S/U grading
May be repeated for credit
Degree Requirements

Requirements for the M.A. Degree in Economics

In addition to the minimum Graduate School requirements, the Department has specific degree requirements. The M.A. degree requires a minimum of 30 resident graduate course credits in economics (500 level or above, not including ECO 698) with an average grade of B or higher. Evening or part-time programs are not available. Note: All these courses are Ph.D.-level courses.

Requirements for the Ph.D.

Degree in Economics

The Ph.D. degree requirements are as follows:

A. Course Requirements

A minimum of 15 courses in economics (including core courses) must be completed, with a grade of B or better in each elective course. Included in the elective courses must be at least two in each of two approved pairs of courses forming fields (listed below). However, the Ph.D. committee may approve a waiver of part of the 15-course requirement for students with graduate work elsewhere.

1. Core Courses: Those courses that provide the foundation in economic theory (micro and macro) and quantitative analysis (econometrics, mathematical methods, and statistics) are referred to as core courses. Comprehensive examinations in econometrics, macroeconomics, and microeconomics beginning at the end of the first year of study, and are to be completed by the beginning of the fourth semester. Comprehensive examinations are written but may be supplemented by oral examinations at the discretion of the examining committee.

2. Elective Courses and Fields of Specialization: In addition to core courses, normally at least six elective courses must be taken, including two pairs of courses, where each pair forms an approved field. It is usual but not necessary that a dissertation topic be chosen from one of these fields of specialization. The two elective fields must be satisfactorily completed by the end of the sixth semester. One field may be completed on the basis of an average grade of B+ or higher in the courses in that field. At least one field must be completed by passing a written comprehensive exam. Fields currently offered by the Department are composed of courses in applied econometrics, computational macroeconomics, computational methods, demographic economics, game theory, health economics, industrial organization, and labor economics.

B. Second-Year Paper, Seminars, and Workshops

Each student must write a successful research paper during the second year. Each student takes a research workshop in the fifth semester. The purpose of this workshop is to provide a structured introduction to research methodology. In addition, participation in program seminars and research workshops is considered an essential part of a student’s progress toward the doctorate. Seminars in economic theory and applied economics are presented on a regular basis by faculty, graduate students, and visitors. Workshops oriented toward thesis research are conducted by faculty and students working in related areas.

C. Advancement to Candidacy

Advancement to candidacy for the Ph.D. is achieved by satisfactory completion of most course requirements specified in item A, above, and successful work on the second-year paper. Advancement to candidacy normally must be achieved by the end of the fourth semester.

D. Dissertation

A dissertation, presenting the results of original and significant research, must be approved. An examination on dissertation propositional research must be passed by the end of the sixth semester of study. The examination is both written and oral, and its syllabus is to be determined by the student’s dissertation committee in consultation with the student. Final approval of the dissertation will be by a committee including the candidate’s principal advisor, two other Department members, and one member from another department. The results of the dissertation will be presented at a colloquium convened for that purpose.

E. Teaching

The program is committed to achieving a high quality of teaching and encourages all graduate students to acquire teaching experience during their graduate studies. The Department operates a training program to prepare teaching assistants for classroom instruction.

F. Time Limit

If the degree requirements have not been met within five years of entry into the program, Departmental approval is required for continuation in the program.

G. Dismissal Policy

A student may be dismissed from the program at the end of any semester in which he or she does not achieve a semester or cumulative B average or fails to meet the pertinent requirements for the Ph.D. as specified.

Courses

ECO 500 Microeconomics I

The first semester of a one-year course in microeconomic theory. Deals with decision-making of economic agents in different choice environments using the analytical approach of duality theory. Topics include theory of the consumer, theory of the firm, decision-making under risk and uncertainty, intertemporal choice, aggregation, and capital theory.

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director

Fall, 3 credits, ABCF grading

ECO 501 Microeconomics II

A continuation of ECO 500, focusing on theories of equilibrium and market structure. Topics include general competitive equilibrium, imperfect competition and game theory, imperfect information, theory of public goods, and social choice.

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director

Spring, 3 credits, ABCF grading

ECO 510 Macroeconomics I

The first semester of a one-year course in macroeconomic theory. Deals with theories and determinants of income, employment, and inflation. Topics include static equilibrium models, theories of money demand and monetary phenomena, theories of the labor market and unemployment, rational expectations and stabilization policy, consumption, and investment.

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director

Fall, 3 credits, ABCF grading

ECO 511 Macroeconomics II

A continuation of ECO 510, focusing on dynamic models. Topics include models of economic growth, optimal growth and efficiency, overlapping-generations models, rational expectations, and optimal policy.

Prerequisite: ECO 510, graduate standing in the Department of Economics or permission of the graduate director

Spring, 3 credits, ABCF grading
ECO 520 Mathematical Statistics
The first semester of a one-year course in quantitative methods. Statistical methods and their properties of particular usefulness to economists. Topics include probability theory, univariate and multivariate distributions, limit laws, distribution, point and interval estimation, hypothesis testing.
Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director
Fall, 3 credits, ABCF grading

ECO 521 Econometrics
A continuation of ECO 520. The application of mathematical and statistical methods of economic theory, including the concept of an explanatory economic model, multiple regression, hypothesis testing, simultaneous equations models, and estimating techniques.
Prerequisite: ECO 520; graduate standing in the Department of Economics or permission of the graduate director
Spring, 3 credits, ABCF grading

ECO 522 Applied Econometrics
Prerequisite: ECO 521; graduate standing in the Department of Economics or permission of the graduate director
Fall, 3 credits, ABCF grading

ECO 590 Mathematical Foundations of Contemporary Economic Theory
A one-semester course dealing with mathematical concepts and techniques relevant to economic theory. Topics in set theory, topology, linear algebra, and optimization theory. Applications to economic theory developed as time permits.
Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director
Fall, 3 credits, ABCF grading

ECO 599 Research in Special Topics
Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director
Fall and spring, 1-12 credits, S/U grading
May be repeated for credit

ECO 604 Game Theory I
Elements of cooperative and noncooperative games. Matrix games, pure and mixed strategies, and equilibria. Solution concepts such as core, stable sets, and bargaining sets. Voting games, and the Shapley and Banzhaff power indices. This course is offered as both ECO 604 and AMS 552.
Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director
0-3 credits, ABCF grading

ECO 605 Game Theory II
Refinements of strategic equilibrium, games with incomplete information, repeated games with and without complete information, and stochastic games. The Shapley value of games with many players, and NTU-values. This course is offered as both ECO 605 and AMS 555.
Prerequisite for AMS 555: AMS 552/ECO 604.
Prerequisites for ECO 605: ECO 604 and graduate standing in the Department of Economics or permission of the graduate director.
Spring, 0-3 credits, ABCF grading

ECO 606 Advanced Topics in Strategic Behavior in Economics
An analysis of varying topics in strategic behavior in economics. One or more of the following topics and others will be dealt with each week: repeated games with incomplete information; stochastic games; bounded rationality complexity and strategic entropy; values of non-atomic games; strategic aspects in the telecommunication industry; general equilibrium and financial markets; auction mechanisms; knowledge, common knowledge, and strategic equilibria.
Prerequisites: ECO 501, ECO 604, ECO 605, or permission of instructor; graduate standing in the Department of Economics or permission of the graduate director.
Spring, 1-3 credits, ABCF grading
May be repeated for credit

ECO 610 Advanced Macroeconomic Theory I
Topics in macroeconomic theory, including microfoundations of macroeconomics, temporary general equilibrium and disequilibrium, monetary theory, equilibrium theory of business cycles, implicit contracts, rational expectations, and econometric implications.
Prerequisites: ECO 501, ECO 511; graduate standing in the Department of Economics or permission of the graduate director
0-3 credits, ABCF grading

ECO 612 Computational Economics and Dynamic Modeling
An analysis of the theory and applications of the dynamic modeling literature using computational methods, and on the methods themselves. Dynamic Modeling and Computational Economics are possibly the fastest-growing areas of interest in the profession due to its suitability to model, solve, and also estimate realistic decision-making problems in most areas of economics.
Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director
Fall, 0-3 credits, ABCF grading

ECO 613 Computational Macroeconomics
A concentration on numerical methods commonly used to solve dynamic macroeconomic models. These include methods relying on dynamic programming techniques, linear approximation methods, and non-linear methods that can be applied to models with disturbances and heterogeneous agents. The different methods will be explained and their application to macroeconomics will be illustrated with examples from various areas such as Real Business Cycles, Asset Pricing with Complete and Incomplete Markets, and Recursive Contracts.
Prerequisite: ECO 612; graduate standing in the Department of Economics or permission of the graduate director
Spring, 0-3 credits, ABCF grading

ECO 623 Data Analysis and Economic Applications
Survey of major sources of data in economics and theoretical hypotheses and statistical methods for organizing and analyzing such data. Statistical models for quantitative data as well as qualitative choices are presented. Computer usage is expected.
Prerequisite: ECO 521; graduate standing in the Department of Economics or permission of the graduate director
Spring, 0-3 credits, ABCF grading

ECO 629 Studies in Quantitative Methods
Prerequisites: ECO 521; graduate standing in the Department of Economics or permission of the graduate director
Fall, 0-3 credits, ABCF grading

ECO 636 Industrial Organization I
Applications of microeconomic theory to the determinants of market structure. Relationships between market structure, firm behavior, and allocational efficiency. Econometric estimation and testing of some hypotheses suggested by the theory.
Prerequisite: ECO 501, ECO 521; graduate standing in the Department of Economics or permission of the graduate director
Fall, 0-3 credits, ABCF grading

ECO 637 Industrial Organization II
This course is a continuation of ECO 636. It deals with the same questions and tools as ECO 636, and provides an introduction to antitrust policy and to public policy toward industry, including regulation and deregulation, the design of optimal regulation, and the effectiveness of current regulation.
Prerequisite: ECO 501, ECO 521; graduate standing in the Department of Economics or permission of the graduate director
Fall, 0-3 credits, ABCF grading

ECO 640 Labor Economics I
This is the first course in the graduate sequence in labor economic theory and empirical applications. Topics include human capital theory, labor supply, life cycle behaviors, and the behavioral effects of social insurance programs. The emphasis is on up-to-date treatments of these topics in the literature.
Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director
Spring, 0-3 credits, ABCF grading

ECO 641 Labor Economics II
This is an advanced course in labor economics which continues ECO 640. Topics include both theory and estimation of job search, matching, dynamic discrete and continuous choice models of the labor market. Special emphasis will be given to the role of economic
theory in specification and testing econometric models.

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director

Spring, 3 credits, ABCF grading

ECO 642 Demographic Economics I

This course deals with the economics of the family. It utilizes recently developed techniques in economics and demography to deal with questions concerning marriage, divorce, fertility, contraception, the intragenerational and intergenerational distribution of resources, and the intergenerational distribution of resources. Students will do original theoretical and empirical research under the professor's supervision.

Prerequisite: ECO 510; graduate standing in the Department of Economics or permission of the graduate director

Spring, 0-3 credits, ABCF grading

ECO 643 Demographic Economics II

This course is a continuation of ECO 642. It deals with the same questions and tools as ECO 642, but emphasizes developing economies. The connections between population growth and development are stressed.

Prerequisites: ECO 501; graduate standing in the Department of Economics or permission of the graduate director

0-3 credits, ABCF grading

ECO 645 Health Economics I

Critical reviews of research in health economics topics of current interest, such as empirical and conceptual models of physician behavior, competition in the pharmaceutical industry, the economic impacts of managed care, and the causes and consequences of unhealthy behaviors. Students will present and critique original research and produce a research paper on a topic of their interest.

Prerequisites: ECO 501, ECO 521; graduate standing in the Department of Economics or permission of the graduate director

0-3 credits, ABCF grading

ECO 646 Health Economics II

Theoretical and econometric analysis of selected aspects of the health-care delivery system, such as the demand for medical services, the supply and distribution of physician services, the utilization of non-physician medical personnel, alternative models of hospital behavior, third-party insurance reimbursement, national health insurance and cost, and price inflation in the hospital and long-term care sectors. Co-scheduled with ECO 646 or HPH 664.

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director

Spring, 0-3 credits, ABCF grading

ECO 647 Research Methods in Applied Microeconomics

Presentation, discussion, and analysis of student and faculty research in the areas of applied microeconomics, labor economics, health economics, and industrial organization, as well as applied econometrics. The purpose of the course is to provide skills and feedback to students at various levels in the program that assist them toward the completion of their second-year paper, dissertation proposals and thesis. It is a course in research and presentation methods that provides an effective mechanism for learning about current areas of research interest.

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director

Fall or spring, 0-3 credits, ABCF grading

ECO 690 Seminar in Applied Economics

Preparation, presentation, and discussion of student and faculty research in applied economics. Topics covered by student papers are usually related to students' long-term research interests.

Fall or spring, 1-6 credits, SU grading

ECO 695 Research Workshop

Designed to direct students to the selection of dissertation topics. Oral and written presentation of student papers with active faculty participation. Several sections may be offered each semester in areas of broad research interest.

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate program director and three semesters of coursework in the Ph.D. program

Fall, 0-6 credits, SU grading

May be repeated for credit

ECO 698 Practicum in Teaching

Prerequisite: Graduate standing in the Department of Economics or permission of the graduate director

Spring, 1-6 credits, SU grading

May be repeated for credit

ECO 699 Dissertation Research On Campus

Prerequisite: Have declared thesis advisor in Economics Ph.D. program (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab

Fall, spring, and summer, 1-9 credits, SU grading

May be repeated for credit

ECO 700 Dissertation Research Off Campus—Domestic

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off-campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor

Fall, spring, and summer, 1-9 credits, SU grading

May be repeated for credit

ECO 701 Dissertation Research Off Campus—International

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX;
Education and Teacher Certification
Professional Education Program

The Professional Education Program (PEP) prepares students to become teachers of academic subjects in secondary schools (grades 7 through 12) and to become teachers of English to Speakers of Other Languages (TESOL) in grades PreK through 12. Stony Brook's teacher certification programs are registered and approved by the New York State Education Department (NYSED). PEP has had a significant positive impact upon the Long Island region and the greater metropolitan area, and is widely recognized as a symbol of Stony Brook's commitment to teacher education, educational research and development, and partnership programs in collaboration with regional schools.

University-Wide Coordination of the Teacher Education Programs

PEP provides University-wide coordination of the teacher education programs. The programs are advised by an active and dedicated Advisory Board consisting of University faculty and representatives from regional school districts. PEP performs a major role in the region by coordinating, supporting, strengthening, and developing pre-service and in-service teacher certification and professional development; educational research and development; and school-university partnership programs.

The University-wide approach to teacher education adopted by Stony Brook provides graduates with the intellectual rigor of an academic major as well as valuable professional credentials that qualify them to teach in New York State and many other states in the country. Stony Brook students preparing for teacher certification take their courses with the same faculty who teach undergraduate and graduate students in the academic departments and interdisciplinary programs, and they have the same opportunities for experiences with renowned professors in each teaching field. Stony Brook students have consistently scored higher than the state average on each of the sub-tests of the New York State Teacher Certification Examinations (NYSTCE).

Fieldwork and clinical placements for Stony Brook students are available in an interesting cross-section of cooperating school districts that draw upon school populations with a wide range of socio-economic backgrounds, including students that are culturally diverse, those with disabilities, and gifted and talented students. Many schools are engaged in innovative and experimental programs in education.

The Office of Teacher Certification advises prospective teacher certification candidates on procedures for obtaining New York State teacher certification. Upon successful completion of the University’s program, the student must apply for state certification by completing the necessary application forms (available from the Office of Teacher Certification); completing the certificate requirements for Training in Child and Substance Abuse, Recognition and Reporting of School Violence (Project Safe), processing of fingerprints, and passing the New York State Teacher Certification Examinations (NYSTCE). Clearance and applications for the certificate are processed by the Office of Teacher Certification, which keeps documentation pertaining to these services on file and makes it available to students for in-state and out-of-state certification purposes, and to prospective employers.

The Career Placement Center is available to assist students. Through its credentials service, recommendations supporting students in their application for jobs are kept on file. Copies of these recommendations are sent to prospective employers upon request. The Center also posts announcements for teaching jobs available locally and in schools around the country. Students seeking employment in school districts off Long Island are invited to participate in the Long Island Teachers Recruitment Consortium. For more information, contact the Career Placement Center at (631) 632-6810 (Voice/TDD).

Teacher preparation programs are offered in the following subject areas:

Certification Grades 7 through 12:
- Sciences: Biology, Chemistry, Earth Science, Physics, and an option for General Science with a science certification
- English
- Foreign Languages: French, German, Italian, Russian, and Spanish
- Mathematics
- Social Studies

Certification Grades PreK through 12:
- Teaching English to Speakers of Other Languages (TESOL)

In addition to baccalaureate and separate master's degree programs, PEP offers opportunities to complete a combined bachelor's/master's degree program within a five-year period. Both degrees are awarded at the end of the program. For further information on the B.A./M.A. TESOL, contact the Department of Linguistics at www.linguistics.stonybrook.edu/contact or (631) 632-7774. For further information on all other combined programs, contact the School of Professional Development at (631) 632-7055, or spd_teachercertprograms@notes.cc.sunysb.edu.
Major Components of the Teacher Preparation Programs

Students applying for certification must satisfy the following requirements:

A. Students must consult with the Program Director in the department in which they seek certification for the specific requirements of their program. Admission includes an application, an application essay (described in the application form), GRE General Exam scores (for the English, History/Social Studies, and TESOL Programs), and additional requirements set by the academic department.

B. Students must complete all pedagogy courses encompassed in the professional study of education (credits may vary depending on the specific certification program).

Note: Students must achieve a minimum grade of B in all pedagogy courses.

C. Students must complete the State-mandated literacy requirement (contact your teacher preparation program director for course information).

D. Students must complete 100 field experience hours, prior to student teaching, with specific and diverse internships that include high-needs districts, inclusion of students with special needs, integration of technology in the curriculum, literacy across all curricula, etc.

E. Students must complete one semester of clinical practice (Supervised Student Teaching). Seventy-five days of student teaching are required. Dependent upon the semester and public school vacation schedules, student teaching may extend beyond the University semester calendar.

F. Students must complete one year of a language (two years for TESOL students) other than English at the college level (this may include ASL). However, individual majors may have more rigorous language requirements.

G. Requirements for certification and resulting license include passage of the Liberal Arts and Sciences Test (LAST), Assessment of Teaching Skills (ATS-W), and Content Specialty Test (CST). In addition, all candidates for license must complete seminars in the following: Training in Identifying and Reporting Suspected Cases of Child Abuse and Maltreatment, Identification and Referral of Substance Abuse, and Prevention and Intervention of School Violence. They must also be fingerprinted and receive clearance from the Department of Criminal Justice Services.

Faculty

Affiliated
Frank Anshen, Linguistics, Ph.D.
Charles Backfish, History, A.M.
Lisa Berger, Mathematics, Ph.D.
Robert Bloomer, European Languages, Literatures, and Cultures, Ph.D.
David Byrum, Biochemistry and Cell Biology, Ph.D.
Pamela Dunn, English, D.A.
Joy Janzen, Linguistics, Ph.D.
Sarah Jouardin, European Languages, Literatures, and Cultures, Ph.D.
Karen Lund, English, M.A.
Kenneth Lindblom, English, Ph.D.
Irene Marchegiani, European Languages, Literatures, and Cultures, Ph.D.
Celia Marshik, English, Ph.D.
Robert McCarthy, Mathematics, M.S.
Linda Padwa, Science, M.A.T.
Anthony Phillips, Mathematics, Ph.D.
Gabriela Polt, Hispanic Language, Literatures, and Cultures, Ph.D.
Prosper Sanou, European Languages, Literatures, and Cultures, Ph.D.
Keith Sheppard, Science, Ed.D.
Scott Sutherland, Mathematics, Ph.D.
Kathleen Vemon, Hispanic Languages, Literatures, and Cultures, Ph.D.
Judy Wiegand, Mathematics, M.S.
Anne Wilding, Linguistics, M.A., P.D.
Zuzana Zachar, Biochemistry and Cell Biology, Ph.D.
Ximena Zate, Linguistics, Ph.D., P.D.

Note: Additional affiliated content faculty are listed within the departments of the relevant disciplines.

Adjunct
Robert Andersen, Mathematics, M.S.
Barbara Biondo, Mathematics, P.D.
Marianne Catalano, TESOL, M.A.
Genevieve Heidrich, History, M.S.W.
Paul Kaplan, Psychology, Ph.D.
Harvey Karron, History, M.A./M.S.
Gerard Lannigan, History, M.A.
Michael LoMonico, English, M.A.L.S.
Natalie Lukas, N.Y.C. Coordinator, M.S.
Barbara McAdory-Morreale, History, M.A.
Frank Rizza, Ed.D./P.D.
Richard Rocco, History, M.A.
William Schiavo, English, M.A.
Stephen Z. Schneider, Ed.D.
Eli Selfman, SUTEC, Ph.D.
Pamela Selzer, TESOL, M.A.
Madeline Turan, European Languages, Literatures, and Cultures, M.S.
Wendy Turgeon, Philosophy, Ph.D.

Number of graduate assistants, Fall 2008: 2

Master of Arts in Teaching: English

A. Program Description

The Master of Arts in Teaching (M.A.T.): English (HEGIS 1501) is a course of study leading to New York State certification for teaching English in the secondary schools (grades 7 to 12). This program, which is offered in collaboration with the University's Department of English and Professional Education Program, is designed for those who have little or no previous coursework in education or formal classroom teaching experience.

B. Course of Study

This degree program consists of 41 credits, distributed among the areas listed below. Unless otherwise noted, each course is three credits.

English Language and Literature (15 credits)

Course selection will be determined by the student and advisor: The National Council of Teachers of English requires that certain content areas be met prior to completion of the M.A.T. Students will determine, in conjunction with the Program Director, what courses they must take to fulfill the M.A.T. and N.C.T.E. content requirements. If more
than five N.C.T.E. areas have not been covered by the student's prior coursework, more than 15 credits may be required.

Professional Studies in Education (20 credits)

CEE 505 Education: Theory and Practice

CEE 565 Human Development

CEE 588 Methods of Instruction in Literature and Composition in the Secondary School

CEE 590 Student Teaching Seminar (prerequisites: CEE 588 and 593, CEF 551 and 552; co-requisites: CEQ 591 and 592)

CEE 593 Performance and Technology in Teaching Literature and Composition (prerequisites: CEE 588 and CEF 551; co-requisite: CEF 552)

CEF 551 Field Experience I—Grades 7 to 9 (co-requisite: CEE 588); one credit

CEF 552 Field Experience II—Grades 10 to 12 (prerequisites: CEE 588 and CEF 551; co-requisite: CEE 583); one credit

LIN 544 Language Acquisition and Literacy Development

Field Experience and Clinical Practice

Students are required to complete 100 clock hours of field experience related to coursework prior to student teaching or practice. These experiences include practicing skills for interacting with parents, experiences in high-need schools, and experiences with each of the following student populations: socio-economically disadvantaged students, students who are English language learners, and students with disabilities.

Supervised Student Teaching (six credits)

CEQ 591 Supervised Student Teaching High School Grades 10 to 12: English (prerequisites: CEE 588 and 593, CEF 551 and 552; co-requisites: CEQ 590 and 592)

CEQ 592 Supervised Student Teaching Middle School Grades 7 to 9: English (prerequisites: CEE 588 and 593, CEF 551 and 552; co-requisites: CEQ 590 and 591)

Final Project

Students are required to submit a professional portfolio at the completion of the program.

C. Admissions Requirements

Students must have completed an academic major in English with a minimum GPA of 2.75 in their overall bachelor's degree program, and have a minimum GPA of 3.00 in English studies. Students must demonstrate, through their application and recommendations, that they possess the temperament and disposition to be an effective teacher. In addition, academic transcripts must indicate that the student has completed at least one year of college-level study of a foreign language.

Application Procedure

Applications and instructions are available on SPD's Web site at www.stonybrook.edu/spd/graduate/index.html. Students may also call (631) 632-7055 to obtain an application packet. Return the completed packet to SPD (not to the Graduate School).

Applications and supporting documentation for the spring term must be received by November 15; for the fall term, by April 15. A completed packet consists of:

- Completed M.A.T. application with a $100 non-refundable application fee;
- Three letters of recommendation;
- Official copies of all previous college transcripts;
- Immunization record.

Teacher Certification

While NYSED requires a minimum of 30 credits in the content field to be certified, Stony Brook requires that students must have completed an undergraduate degree with a major in the content field, and a minimum of 36 credits, for admission to the M.A.T. program. This major must be equivalent to a similar major at Stony Brook. To be recommended for New York State certification, students must complete all courses required for the M.A.T. In addition, transcripts must indicate that the student has completed at least one year of college-level study of a foreign language.

To be recommended for New York State certification, students must complete all courses required for the M.A.T. plus any ancillary requirements. Students must also achieve a minimum grade of B in all pedagogy courses. Note: The M.A.T. in English consists of at least three to four semesters of work (excluding summer session) for full-time students and a somewhat longer period of time for part-time students.

Contact Information

Please contact one of the following:

Kenneth Lindblom, Ph.D., Program Director, M.A.T. in English
Kenneth.Lindblom@stonybrook.edu
(631) 632-7303

Professional Education Program
(631) 632-4PEP

School of Professional Development
Stony Brook University
Stony Brook, NY 11794-4310
E-mail: spd_teachercertprograms@notes.cc.sunysb.edu
(631) 632-7055

See also the English Teacher Education Program Web site at www.stonybrook.edu/pep/tep_english.shtml

Master of Arts in Teaching: Foreign Languages

A. Program Description

The Master of Arts in Teaching (M.A.T.); Foreign Languages programs are designed as courses of study leading to New York State certification for teaching French, German, Italian, Russian, and Spanish in the secondary schools (grades 7 to 12). These programs are offered in collaboration with the University's Department of European Languages, Literatures, and Cultures; Hispanic Language, Literatures, and Cultures; and the Professional Education Program, and are designed for those with little or no previous coursework in education or formal classroom teaching experience.

B. Course of Study

These degree programs consist of 44 credits distributed among the areas listed below. Unless otherwise noted, each course is three credits.

Language, Literature and Culture (15 credits)

Courses not listed are selected with the approval of a Departmental advisor.

French (HEGIS 1102)

FRN 501 Contemporary French Culture and Institutions

FRN 507 Advanced Stylistics
FRN 510 French Phonetics and Diction
Plus two additional graduate-level
FRN literature courses

German (HEGIS 1103)
GER 504 German Cultural History
GER 506 Advanced Stylistics
Plus one of the following:
GER 557 History of the German Language
GER 539 Contrastive Structures: German-English
GER 558 Middle High German
Plus two additional graduate-level GER literature courses

Italian (HEGIS 1104)
ITL 501 Contemporary Italy
ITL 508 Advanced Grammar and Stylistics
ITL 509 Contrasting Italian and English
ITL 511 History of the Italian Language
Plus one additional graduate-level ITL literature course

Russian (HEGIS 1106)
RUS 506 Russian Stylistics, or
RUS 520 Russian Syntax
RUS 538 Structure of Russian
SLV 504 Slavic Culture
Plus, two RUS graduate-level literature courses

Spanish
Five courses selected with approval of the graduate Spanish advisor. Courses may include:
SPN 501 Spanish Historical Linguistics
SPN 502 Methods in Linguistic Research
SPN 503 Spanish Linguistics
SPN 504 Contrastive Analysis: Spanish and English
SPN 505 Spanish Dialectology and Sociolinguistics
SPN 510 Hispanic Culture
SPN 515 Spanish Composition and Stylistics
SPN 500-level courses in

Literature/Culture/Linguistics/Special Topics (with the permission of the graduate director)
SPN 691 Practicum in the Teaching of Spanish Language

Professional Studies in Education (23 credits)
CEE 505 Education: Theory and Practice
CEE 565 Human Development
FLA 505 Methods of Teaching Foreign Languages
FLA 506 Methods of Teaching Foreign Languages (prerequisite: FLA 505)
FLA 540 Foreign Language Acquisition Research
FLA 549 Field Experience I—Grades 7 to 9 (co-requisite: FLA 505)
FLA 550 Field Experience II—Grades 10 to 12 (co-requisite: FLA 506)
FLA 554 Student Teaching Seminar (prerequisites: FLA 505, 506, 540, and 571; co-requisites: FLA 551 and 552)
FLA 571 Technology and Education

Field Experience and Clinical Practice
Students will be required to complete 100 clock hours of field experience related to coursework prior to student teaching or practica. These experiences include practicing skills for interacting with parents, experiences in high-need schools, and experiences with each of the following student populations: socio-economically disadvantaged students, students who are English language learners, and students with disabilities.

Supervised Student Teaching (six credits)
FLA 551 Supervised Student Teaching High School Grades 10 to 12: Foreign Languages (prerequisites: FLA 505, 506, 540, and 571; co-requisites: FLA 552 and 554)
FLA 552 Supervised Student Teaching Middle School Grades 7 to 9: Foreign Languages (prerequisites: FLA 505, 506, 540, and 571; co-requisites: FLA 551 and 554)

Final Project
Students are required to submit a professional portfolio at the completion of the program.

C. Admissions Requirements
Students are expected to have good preparation in the program language (a major or a minimum of 36 credits) with a minimum GPA of 2.75 in their overall bachelor’s degree program, and have a minimum GPA of 3.00 in language studies. Students must demonstrate, through their application and recommendations, that they possess the temperament and disposition to be an effective teacher.

Prior to student teaching, students must participate in an official ACTFL OPI (Oral Proficiency Interview) and receive a minimum spoken proficiency rating of Advanced-Low as defined in the ACTFL Proficiency Guidelines-Speaking (1999). Students must contact Language Testing International (LTI) and arrange for either a face-to-face OPI or a phone interview.

Application Procedure
Applications and instructions are available on SPD’s Web site at www.stonybrook.edu/spd/graduate/index.html. Students may also call (631) 632-7055 to obtain an application packet. Return the completed packet to SPD. Applications and supporting documentation for the spring term must be received by November 15; for the fall term, by April 15. A completed packet consists of:

Completed MAT application with a $100 non-refundable application fee;
Three letters of recommendation;
Official copies of all previous college transcripts;
Several sample papers from your undergraduate program that demonstrate level of proficiency in the program language;
Immunization record.

Teacher Certification
While NYSED requires a minimum of 30 credits in the content field to be certified, Stony Brook requires that students must have completed an undergraduate degree with a major in the content field and a minimum of 36 credits for admission to the M.A.T. program. This major must be equivalent to a similar major at Stony Brook. To be recommended for New York State certification, students must complete all courses required for the M.A.T. plus any ancillary requirements. Students must also achieve a minimum grade of B in all pedagogy courses.

Contact Information
Please contact one of the following:
Sarah Jourdain, Ph.D., Program Director,
M.A.T. in Foreign Languages
Sarah.Jourdain@stonybrook.edu
(631) 632-7440

Professional Education Program
(631) 632-4PEP

School of Professional Development
Stony Brook University
Stony Brook, NY 11794-4310
E-mail: spd_teachercertprograms@notes.cc.sunysb.edu
(631) 632-7055

Master of Arts in Teaching: Mathematics

A. Program Description

The Master of Arts in Teaching: Mathematics (HEGIS 1701) is a course of study leading to New York State certification for teaching Mathematics in the secondary schools (grades 7 to 12). This program, offered in collaboration with the University's Department of Mathematics and Professional Education Program, is designed for those who have little or no previous coursework in education or formal classroom teaching experience.

B. Course of Study

The degree program consists of 42 credits, distributed among the areas listed below. Unless otherwise noted, each course is three credits.

Mathematics Content Courses (12 credits)

Course selection will be determined by the student and advisor. Students who have academic deficiencies in Mathematics will be required to include courses that specifically address these deficiencies. These courses will be part of the 12 credits selected to satisfy this requirement. If additional deficiencies exist, those credits required to meet these mandates will be over and above those requirements for the degree.

- MAT 511 Fundamental Concepts of Mathematics (required of all students in this program), plus nine additional credits selected from the following:
 - AMS 504 Foundations of Applied Mathematics
 - AMS 507 Introduction to Probability
 - AMS 572 Data Analysis I
 - MAT 512 Algebra for Teachers
 - MAT 513 Analysis for Teachers I
 - MAT 514 Analysis for Teachers II
 - MAT 515 Geometry for Teachers
 - MAT 516 Probability and Statistics for Teachers
 - MAT 530 Topology/Geometry I
 - MAT 534 Algebra I
 - MAT 542 Complex Analysis I
 - MAT 544 Analysis
 - MAT 550 Real Analysis I
 - MAT 589 Master’s Level Independent Study

Professional Studies in Education (24 credits)

CEE 505 Education: Theory and Practice

CEE 565 Human Development

LIN 544 Language Acquisition and Literacy Development

MAE 501 Foundations of the Secondary School Mathematics Curriculum

MAE 510 Introduction to Methods of Teaching and Learning Standards (pre- or co-requisite: MAE 501)

MAE 520 Advanced Methods of Teaching Secondary School Mathematics (prerequisites: MAE 501 and 510)

MAE 530 Directed Readings in Mathematics Education (prerequisites: MAE 510 and 520; co-requisite: MAE 540); one credit

MAE 540 Clinical Experience (prerequisites: MAE 510 and 520; co-requisite: MAE 530); two credits

MAE 554 Student Teaching Seminar (prerequisites: CEE 505, CEE 565, LIN 544, MAE 501, MAE 510, MAE 520, MAE 530, MAE 540, satisfaction of all content requirements and permission of the Director of Mathematics Education; co-requisites: MAE 551 and 552)

Field Experience and Clinical Practice

Students will be required to complete 100 clock hours of field experience related to coursework prior to student teaching or practicum. These experiences include practicing skills for interacting with parents, experiences in high-need schools, and experiences with each of the following student populations: socio-economically disadvantaged students, students who are heritage language learners (where applicable), and students with disabilities.

Supervised Student Teaching (six credits)

MAE 551 Supervised Student Teaching Middle School Grades 7 to 9: Mathematics (prerequisites: CEE 505, CEE 565, LIN 544, MAE 501, MAE 510, MAE 520, MAE 530, MAE 540, satisfaction of all content requirements and permission of the Director of Mathematics Education; co-requisites: MAE 552 and 554)

MAE 552 Supervised Student Teaching High School Grades 10 to 12: Mathematics (prerequisites: CEE 505, CEE 565, LIN 544, MAE 501, MAE 510, MAE 520, MAE 530, MAE 540, satisfaction of all content requirements and permission of the Director of Mathematics Education; co-requisites: MAE 551 and 554)

Written Project

Students will be required to complete a four-week Mathematics teaching module specifically designed for the Supervised Student Teaching project.

C. Admissions Requirements

Students are expected to have good preparation in mathematics (a major in Mathematics or Applied Mathematics, including at least 36 credits, or the equivalent of such a major, as described below), with a minimum GPA of 2.75 in their overall bachelor’s degree program, and a minimum GPA of 3.0 in mathematics. Students must demonstrate, through their application and recommendations, that they possess the temperament and disposition to be an effective teacher.

Application Procedure

Applications and instructions are available on SPD's Web site at www.stonybrook.edu/spd/graduate/index.html. Students may also call (631) 632-7055 to obtain an application packet. Return the completed packet to SPD. Applications and supporting documentation for the spring term must be received by November 15; for the fall term, by April 15. A completed packet consists of:

- Completed M.A.T. application with a $100 non-refundable application fee;
- Three letters of recommendation;
- Official copies of all previous college transcripts;
- Immunization record.

Teacher Certification

While NYSED requires a minimum of
B. Course of Study
These degree programs consist of 41 credits, distributed among the areas listed below. Unless otherwise noted, each successfully completed course fulfills three credits.

Graduate Science Courses (15 credits)
Courses are selected with the approval of a Departmental advisor. Listed below are samples of typical programs.

Science (HEGIS 1905)
CHE 501 Instrumental Methods in Chemistry
CHE 504 Structure and Reactivity in Organic Chemistry
CHE 507 Biomolecular Structure and Reactivity
CHE 511 Structural Inorganic Chemistry
CHE 590 Master’s Term Paper

Earth Science (HEGIS 1917)
GEO 543 Stratigraphy
GEO 546 Mineralogy and Petrology
GEO 549 Structural Geology
GEO 585 Directed Studies
MAR 527 Global Change

Physics (HEGIS 1902)
PHY 525 Current Research Instrumentation
PHY 585 Special Study: Optics and Waves
PHY 585 Special Study: Introductory Quantum Mechanics
PHY 585 Special Study: Electromagnetic Theory

Plus two graduate-level courses selected in concert with an academic advisor.

Field Experience and Clinical Practice
Students are required to complete 100 clock hours of field experience related to coursework prior to student teaching or practice. These experiences include practicing skills for interacting with parents, experiences in high-need schools, and experiences with each of the following student populations: socio-economically disadvantaged students, students who are English language learners, and students with disabilities.

Supervised Student Teaching (six credits)
SCI 551 Supervised Student Teaching High School Grades 10 to 12; Science (prerequisites: SCI 510, 520, 549, and 550; corequisites: SCI 552 and 554)
SCI 552 Supervised Student Teaching Middle School Grades 7 to 9; Science (prerequisites: SCI 510, 520, 549, and 550; corequisites: SCI 551 and 554)

Final Project
Students are required to submit a professional portfolio at the completion of the program.

C. Admissions Requirements
Students must have completed an undergraduate course of study that is substantially the equivalent to that of a Stony Brook undergraduate degree program in the science for which they seek certification. They must also have achieved a minimum overall GPA of 2.75 in their overall bachelor’s degree program, and have a minimum GPA of 3.00 in science courses. Students must
demonstrate, through their application and recommendations, that they possess the temperament and disposition to be an effective teacher. In addition, academic transcripts must indicate that the student has completed at least one year of college-level study of a foreign language. Applications and supporting documentation for the spring term must be received by November 15; for the fall term, by April 15.

Students must first consult with the appropriate M.A.T. departmental advisor to determine whether they should proceed with the application process. Departmental Program Advisors
Biology: Zuzana Zachar, Ph.D.
(631) 632-8970
E-mail: zzachar@ms.cc.sunysb.edu
Chemistry: Robert Kerber, Ph.D.
(631) 632-7940
E-mail: Robert.Kerber@stonybrook.edu
Geosciences: Gilbert Hanson, Ph.D.
(631) 632-8210
E-mail: Gilbert.Hanson@stonybrook.edu
Physics: Robert McCarthy, Ph.D.
(631) 632-8086
E-mail: mccarthy@sbhep1.physics.sunysb.edu

Application Procedure
Applications and instructions are available on SPD’s Web site at www.stonybrook.edu/spd/graduate/index.html. Students may also call (631) 632-7055 to obtain an application packet. Return the completed packet to SPD. A completed packet consists of:
- Completed M.A.T. application with a $100 non-refundable application fee;
- Three letters of recommendation;
- Official copies of all previous college transcripts;
- Immunization record.

Teacher Certification
While NYSED requires a minimum of 30 credits in the content field in order to be certified, Stony Brook requires that students must have completed an undergraduate degree with a major in the content field, and a minimum of 36 credits, for admission to the M.A.T. program. This major must be equivalent to a similar major at Stony Brook. In addition, academic transcripts must indicate that the student has completed at least one year of college-level study of a foreign language. To be recommended for New York State certification, students must complete all courses required for the M.A.T. plus any ancillary requirements. Students must also achieve a minimum grade of B in all pedagogy courses.

Contact Information
Please contact one of the following:
The appropriate science departmental program advisor as noted above
Professional Education Program
(631) 632-4PEP
School of Professional Development
Stony Brook University
Stony Brook, NY 11794-4310
E-mail: spd_teachercertprograms@notes.cc.sunysb.edu
(631) 632-7055

Master of Arts in Teaching: Social Studies

A. Program Description
The program leads to New York State certification for teaching social studies in the secondary schools (grades 7 to 12). The program, offered in collaboration with the University’s Department of History and the Professional Education Program, was designed for those who have little or no previous coursework in education or formal classroom teaching experience.

B. Course of Study
The program consists of a minimum of 39 credits, distributed among the areas listed below. Unless otherwise noted, each course counts for three credits.

History (15 credits)
CEG 523 Historiography
Plus 12 credits selected from the following courses:
CEG 522 U.S. History to Civil War
CEG 522 U.S. History Since Civil War
CEG 516 Early Modern Europe
CEG 524 Late Modern Europe
HS 541 Colonial Latin America
CEG 517 Modern Latin America
CEG 534 Topics Seminar: Africa
CEG 534 Topics Seminar: Asia
CEJ 501 Traditional China: Culture and Society
CEJ 502 Modern China: Culture and Society
Professional Studies in Education (15 credits)
CEE 505 Education: Theory and Practice
CEE 565 Human Development
CEE 577 Teaching Social Studies
(co-requisite: CEF 548)
CEE 578 Social Studies Strategies
(prerequisites: CEE 577 and CEF 548; co-requisite: CEF 549)
CEF 548 Field Experience I—Grades 7 to 9 (co-requisite: CEE 577)
CEF 549 Field Experience II—Grades 10 to 12 (prerequisites: CEE 577 and CEF 548; co-requisite: CEE 578)
CEE 580 Student Teaching Seminar
(prerequisites: CEE 577 and 578, CEF 548 and 549; co-requisites: CEQ 581
and 582)
LIN 544 Language Acquisition and Literacy Development

Field Experience and Clinical Practice
Students are required to complete 100 clock hours of field experience related to coursework prior to student teaching or practica. These experiences include practicing skills for interacting with parents, experiences in high-need schools, and experiences with each of the following student populations: socio-economically disadvantaged students, students who are English language learners, and students with disabilities.

Supervised Student Teaching (six credits)
CEQ 581 Supervised Student Teaching High School Grades 10 to 12
(prerequisites: CEE 577 and 578, CEF 548 and 549; co-requisites: CEE 580
and CEQ 582)
CEQ 582 Supervised Student Teaching Middle School Grades 7 to 9
(prerequisites: CEE 577 and 578, CEF 548 and 549; co-requisites: CEE 580
and CEQ 581)

Final Project
Students are required to submit a professional portfolio at the completion of the program.

C. Admissions Requirements
Students must have completed an academic major (a minimum of 36 credits) in History or within another social science
major (excluding Education, Linguistics, and Psychology) and at least 18 credits of history, with nine of these credits at the upper-division level. Transcripts must show a minimum undergraduate GPA of 3.0. Students must demonstrate, through their application and recommendations, that they possess the temperament and disposition to be an effective teacher. Applications and supporting documentation (including GREs) for the spring term must be received by November 15; for the fall, by April 15.

Application Procedure

Applications and instructions can be downloaded at www.stonybrook.edu/spd/graduate/index.html. Students may also call (631) 632-7055 to obtain an application packet. Return the completed packet to SPD. A completed packet consists of:

- Completed M.A.T. application with a $100 non-refundable application fee;
- Three letters of recommendation;
- Official copies of all previous college transcripts;
- Official report of scores on the Graduate Record Examination (General Test);
- Immunization record.

Teacher Certification

Students in the M.A.T. program must also satisfy the following required areas of study. These requirements may be met by either the graduate courses taken toward the M.A.T. degree or by undergraduate coursework. Equivalent undergraduate courses will normally be accepted. In addition, a cluster of undergraduate courses may be accepted as evidence of satisfaction of individual standards. Undergraduate transcripts will be evaluated on an individual basis. However, the student will bear the burden of proof of showing that such coursework does provide a broad introductory knowledge of the area of study.

1. U.S. History to 1877
2. U.S. History since 1877
3. Western Civilization or European History Survey
4. Latin America—Survey of the history or politics of the region or one of the major countries of the region
5. Asia—Survey of the history or politics of the region or one of the major countries of the region
6. Africa—Survey of the history or politics of the region or one of the major countries of the region
7. Principles of Economics
8. Human Geography
9. The Culture Concept in Theory or History—may be satisfied by courses in cultural anthropology or by dealing with cultural differences and conflicts in the contemporary world
10. American Government and Politics
11. Science, Technology, and Society

Important note: The Department of History does not offer graduate courses that satisfy requirements in areas 7 to 10. These requirements will have to be satisfied through undergraduate courses.

The M.A.T. consists of at least three semesters of work (excluding summer session) for the full-time student and a somewhat longer period of time for the part-time student.

Contact Information

Please contact one of the following:

Lawrence Frohman, Ph.D. Program Director
M.A.T. in Social Studies
E-mail: lfromhman@notes.cc.sunysb.edu
(631) 632-7686

Professional Education Program
(631) 632-4PEP
School of Professional Development
Stony Brook University
Stony Brook, NY 11794-4310
E-mail: spd_teachercertprograms@notes.cc.sunysb.edu
(631) 632-7055

Master of Arts in TESOL

A. Program Description

The Master of Arts in TESOL (HEGIS 1508) is a course of study leading to New York State certification for Teaching English to Speakers of Other Languages in the elementary and secondary schools (grades PreK to 12). This program, which is offered in collaboration with the University’s Department of Linguistics and the Professional Education Program, is designed for those who have little or no previous coursework in education or formal classroom teaching experience.

B. Course of Study

This degree and certification program consists of 45 credits distributed among the areas listed below. All courses are three credits except for the one-credit fieldwork courses (LIN 578, LIN 579).

Linguistics and Foundation (15 credits)

LIN 522 Phonetics
LIN 530 Intro to General Linguistics
LIN 541 Bilingualism
LIN 552 Second Language Acquisition and one of the following:
LIN 542 Sociolinguistics
LIN 525 Contrastive Analysis
LIN 526 Analysis of an Uncommonly Taught Language
LIN 555 Error Analysis

Professional Studies in Education (24 credits)

CEE 505 Education: Theory and Practice
CEE 565 Human Development
LIN 524 TESOL Pedagogy: Theory and Practice and LIN 579 Field Experience N-12
LIN 529 Content-based Language and Literacy Development and LIN 579 Field Experience N-12
LIN 527 Structure of English
LIN 571 Curriculum Design and Evaluation and LIN 578 Field Experience in Adult and Tertiary Contexts
LIN 574 Managing Instruction, Assessment, and Resources

Field Experience and Clinical Practice

Students are required to complete 100 clock hours of field experience (LIN 579) related to coursework prior to student teaching. These experiences include practicing skills for interacting with parents, experiences in high-need schools, and experiences with each of the following student populations: socio-economically disadvantaged students, students who are English language learners, and students with disabilities. LIN 574, 581, and 582 are co-requisites and cannot be taken until
completion of all other course and ancillary requirements.

Supervised Student Teaching (six credits)

LIN 581 Supervised Student Teaching Grades N-6

LIN 582 Supervised Student Teaching Grades 7-12

Final Project

Students are required to submit a professional portfolio at the completion of the program.

C. Admissions Requirements

Students must have completed an undergraduate degree in a liberal arts or science major with a minimum GPA of 3.00 in the overall bachelor's degree. Students must demonstrate, through their application and recommendations, that they possess the temperament and disposition to be an effective teacher. To be recommended for New York State certification, students must complete all courses required for the M.A. TESOL. In addition, transcripts must indicate completion of at least two years of college-level study of a language other than English (this may include American Sign Language).

Application Procedure

Applications and instructions are available on the Graduate School Web site at www.grad.stonybrook.edu. You may also call (631) 632-7774 to obtain an application packet. Return the completed packet to the Department of Linguistics. A completed packet consists of:

- Completed Graduate School application with a non-refundable $100 application fee;
- Three letters of recommendation;
- Official copies of all previous college transcripts;
- Official report of scores on the Graduate Record Examination (General Test);
- Curriculum Vitae (résumé);
- A writing sample.

Admission is competitive and no single factor will exclude anyone from being admitted. Similarly, no single factor will ensure admission.

The M.A. TESOL consists of approximately four semesters of study (excluding summer session) for the full-time student and a somewhat longer period of time for the part-time student.

Applications and supporting documentation (including GRE results) for the fall semester must be received by March 1.

Teacher Certification

To be recommended for New York State certification, students must complete all courses required for the M.A. plus any ancillary requirements. Students must also achieve a minimum grade of B in all pedagogy courses.

Contact Information

Please contact one of the following:

Ximena Zate, Ph.D., Interim Program Director
M.A. in TESOL
E-mail: xzate@notes.cc.sunysb.edu
(631) 632-8003

Professional Education Program
(631) 632-4PEP

Department of Linguistics
Stony Brook University
www.linguistics.stonybrook.edu/contact
(631) 632-7774
Electrical and Computer Engineering (ESE)

Chair: Serge Luryi, Light Engineering Building Room 215, (631) 632-8420
Graduate Program Director: Yuanyuan Yang, Light Engineering Building Room 215, (631) 632-8400/8474
Senior Staff Assistant: Deborah Kloppenburg, Light Engineering Building Room 273, (631) 632-8420
Graduate Program Coordinator: Gail Giordano, Light Engineering Building Room 267A, (631) 632-8400

Degrees awarded: M.S. in Electrical Engineering; M.S. in Computer Engineering; Ph.D. in Electrical Engineering; Ph.D. in Computer Engineering

The fields of electrical and computer engineering are in an extraordinary period of growth; new application areas and increased expectations are accelerating due to new technologies and decreased costs. The Department of Electrical and Computer Engineering, in the College of Engineering and Applied Sciences, is involved in graduate teaching and research in many of these areas, including circuits and VLSI, communications and signal processing, computer engineering, networking, and semiconductor devices and quantum electronics. The Department has laboratories devoted to research and advanced teaching in the following areas: communications, computing, digital signal processing, DNA sequencing, engineering design methodology, fiber optic sensors and computer graphics, high-performance computing and networking, machine vision, micro and optoelectronics/VLSI, parallel and neural processing, and telerobotics.

Since Long Island contains one of the highest concentrations of engineering-oriented companies in the country, the Department is particularly strongly committed to meeting the needs of local industry. As part of this commitment, most graduate courses are given in the late afternoon or evening, so as to be available to working engineers on Long Island.

The value of this commitment to industry is evidenced by the support received by the Department in return; in particular, from AT&T, Intel Corporation, Lucent Technologies, Motorola, Texas Instruments, and Westinghouse.

The Department of Electrical and Computer Engineering offers graduate programs leading to the M.S. and Ph.D. degrees. Graduate programs are tailored to the needs of each student to provide a strong analytical background helpful to the study of advanced engineering problems. Ample opportunities exist for students to initiate independent study and to become involved in active research programs, both experimental and theoretical.

Areas of Emphasis in Graduate Study
Areas of emphasis in current research and instruction are Communications and Signal Processing, Computer Engineering, Semiconductor Devices and Quantum Electronics, Circuits, and VLSI.

Specialties that fall under one or more of the above categories include: biomedical electronics, computer networks, computer vision, digital computer-aided design, communications, fiber optic sensors, image processing, integrated circuit fabrication, microprocessors, novel electronic devices, optical signal processing, parallel and distributed computing, signal processing, and VLSI. Theoretical and experimental programs reflecting these areas are currently underway and students are encouraged to actively participate in these efforts. Outlined below is an overview of the Department’s research areas.

Communications and Signal Processing
Subject areas of current interest include coding and modulation techniques; communications traffic; computer vision; data compression; detection and estimation; digital communication; high-speed data and computer communication networks; image analysis and processing; mobile, wireless, and personal communications; spectrum estimation; and statistical signal processing.

Computer Engineering
The goal of computer engineering in the Department is to provide a balanced view of hardware and software issues. The areas of expertise in the program include artificial neural networks, communications and signal processing, computer networks, computer vision, embedded microprocessor system design, fault tolerant computing, high-performance computer architecture, interconnection networks and high-speed packet switching, parallel and distributed computing, and software engineering.

Semiconductor Devices and Quantum Electronics
The program of courses and research pertinent to electromagnetics, optics, and solid-state electronics ranges from a study of the fundamental electronic processes in solids and gases through a description of the mechanism that yields useful devices, to a study of the design simulation and fabrication of integrated circuits. The program’s scientific interests center on physics, characterization, and development of optoelectronic devices and systems. Over the past several years, major efforts have focused on the studies of physics of semiconductor lasers and detectors. The Department is also heavily involved in developing coherent fiber optic sensors, integrated fiber optics, and optical processors.

Circuits and VLSI
The program in the Circuits and VLSI area addresses problems associated with modeling, simulation, design, and fabrication of analog, digital, and mixed-signal integrated circuits. Analog and mixed-mode integrated circuit (IC) devices have important applications in many fields including avionics, medical technology, and space technology. The Department offers basic and advanced courses covering the following subjects: analog circuit design; design automation for analog, digital, and mixed-mode circuits; device modeling; integrated circuit technology; software tools for circuit design and simulation; VLSI circuits; testing of analog and digital ICs; and VLSI systems for communications and signal processing.

Facilities
The Department operates laboratories for both teaching and research:

The Advanced IC Design and Simulation Laboratory contains equipment and computing facilities for the design, simulation, and characterization of analog, digital, and mixed-signal integrated circuits. The lab is equipped with several SUN workstations and
PCs, and assorted electronic measurement equipment.

The Communications, Signal Processing, and Networking (COSINE) Laboratory is equipped with modern computers with specialized software for research in networks, signal processing, and telecommunications. The computers are connected to Departmental computing facilities allowing access to shared campus resources and the Internet.

The Computer-Aided Design Laboratory provides a network of 386-based workstations. Advanced computer-aided design software for analog and digital systems design is available on these workstations.

The Computer Vision Laboratory has state-of-the-art equipment for experimental research in three-dimensional machine vision. The facilities include desktop computers, imaging hardware, and printers.

The Digital Signal Processing Research Laboratory is involved in digital signal processing architectures and hardware and software research. The laboratory is presently active in the development of algorithms to be implemented on a variety of signal processing chips.

The Fluorescence Detection Laboratory is involved in the design, development, implementation, and testing of various DNA sequencing instruments. Research areas include capillary electrophoresis phenomena, design and development of analog and digital integrated circuits, DNA sequencing, fast data acquisition and transfer, laser-induced fluorescence detection, signal processing, and single photon counting techniques.

The Graduate Computing Laboratory has 12 Windows 2000 Professional-based Windows PCs, equipped with Microsoft Office XP, Microsoft Visual Studio, X-Windows for UNIX connectivity, Adobe Acrobat reader; Ghost script and Ghost view. There is an HP LaserJet 5Si/MX printer. The lab is also equipped with eight Sun Blade 100 machines. These machines run Sun Solaris 8 operating systems and are connected to the Departmental UNIX servers. Industry standard packages such as Cadence tools, Hspice, Matlab, and Synopsys are available from the application servers.

The High Performance Computing and Networking Research Laboratory is equipped to conduct experimental research in the broad area of networking, including interconnection networks, multicast communication, optical networks, and wireless/mobile networks. The laboratory has one Dell PowerEdge 1800 server, nine Dell OPTIPLEX Gx20MT PCs, one Sun Ultra workstation with dual processors, and four Sun Ultra 5 workstations. All machines are networked.

The Medical Image Processing Laboratory, located in the Medical School, is involved in research in image reconstruction methods and image analysis with applications to medical imaging. It is well equipped for high-speed computing with SUN-UNIX and Linux desktops as well as high-performance 20-node cluster.

The Fiber Optic Sensors Laboratory research emphasis is on the development and fabrication of novel fiber optic systems for very diverse applications ranging from aerospace to biomedical projects involving the development of new techniques and algorithms. Some of the current research projects include development of capillary waveguide based biosensors for detection of pathogens in a marine environment, integrated fiber optic-based systems for real-time detection of synchronous and asynchronous vibrations in turbomachinery, and single photon-based detection schemes for submicroscopic particle sizing. Equipment includes a diamond saw, fiber optic fusion splicer, fiber polisher, micropositioners, optical microscope, optical scanners, optical spectrometer (visible range), and various laser sources. Additionally, the laboratory has the facilities for designing printed circuits and fabricating optical and electronic subsystems.

The Parallel and Neural Processing Laboratory conducts research in various parallel and neural network applications. Current research projects include natural adaptive critic control, pattern recognitions, and Bayesian Neural Networks. It is equipped with Pentium PCs and Synapse3 parallel neural network processing boards.

The Petaflops Design Laboratory is a research facility equipped with two SUN workstations, several PCs with Linux, and a 16-processor Beowulf-type cluster. All computers are connected by Fast 100 Mbps/sec Ethernet LAN.

The Semiconductor Optoelectronics Laboratory possesses the infrastructure for wafer processing, testing, and sophisticated characterization of optoelectronics devices. Processing facilities are based on a “Class 100” clean room with Darl Suss aligner, Temescal metal film deposition system, and other equipment required for modern semiconductor wafer processing. Wafer testing can be performed by low and high temperature probe-stations. Characterization of devices after processing includes electrical, optical, and spectral measurements. Electrical and optical measurements can be carried out within a wide frequency range from CW to 22GHz. Semiconductor laser near and far field emission patterns can be studied in a wide spectral range from visible to mid-infrared. Spectral analysis of radiation is performed with high resolution and sensitivity using grating and two Fourier transform spectrometers in combination with state-of-the-art detector systems. Time resolved luminescence experiments are available with ns resolution. The laboratory is equipped with 150fs Nd-glass mode locked laser for optical pumping as well as other pump sources including a high-energy Q-switched Nd solid-state laser. New experimental methods of studying semiconductor laser parameters, developed in the laboratory, include direct heterobarrier leakage current measurements as well as gain, loss, and alpha-factor measurements in broad area and single mode lasers.

Admission

For admission to graduate study in the Department of Electrical and Computer Engineering the minimum requirements are:

A. A bachelor's degree in electrical engineering from an accredited college or university; outstanding applicants in other technical or scientific fields will be considered, though special make-up coursework over and above the normal requirements for a graduate degree may be required;

B. A minimum grade point average of B in all courses in engineering, mathematics, and science;

C. Official results of the Graduate Record Examination (GRE) General Test;

D. Acceptance by both the Department of Electrical and Computer Engineering and the Graduate School.
Faculty

Distinguished Professors
Luryi, Serge, Chair, Ph.D., 1978, University of Toronto, Canada: Solid-state electronic devices.

Professors
Chang, Sheldon S.L., Emeritus, Ph.D., 1947, Purdue University: Optimal control; energy conservation; information theory; economic theory.
Chen, Chi-Tsong, Ph.D., 1966, University of California, Berkeley; CA systems and control theory.
Djuric, Petar M., Ph.D., 1990, University of Rhode Island: Signal processing; signal and systems modeling.
Parekh, Jayant P., Ph.D., 1971, Polytechnic Institute of Brooklyn: Microwave acoustics; microwave magnetics; microwave electronics; microcomputer applications.
Shamash, Yacov, Dean of the College of Engineering and Applied Sciences, Ph.D., 1973, Imperial College of Science and Technology, England: Control system; robotics.
Short, Kenneth L., Ph.D., 1973, Stony Brook University: Digital system design; microprocessors; instrumentation.
Subbarao, Murali, Ph.D., 1986, University of Maryland: Machine vision; image processing; pattern recognition.
Tuan, Hang-Sheng, Ph.D., 1965, Harvard University: Electromagnetic theory; integrated optics; microwave acoustics.
Yang, Yuanyuan, Graduate Program Director, Ph.D., 1992, Johns Hopkins University: Wireless networks; optical networks; high-speed networks; parallel and distributed computing systems; multicast communication; high-performance computer architecture; and computer algorithms.

Associate Professors
Dhadwal, Harbans, Ph.D., 1980, University of London, England: Laser light scattering; fiber optics; signal processing and instrumentation.
Doboli, Alex, Ph.D., 2000, University of Cincinnati: VLSI CAD and design, synthesis and simulation of mixed analog/digital systems, hardware/software co-design of embedded systems, and high-level synthesis of digital circuits.

Degree Requirements

Requirements for the M.S. Degree
The M.S. degree in the Department of Electrical and Computer Engineering requires the satisfactory completion of a minimum of 30 graduate credits. These requirements may be satisfied by either one of the two following options:

I. M.S. Non-Thesis Option
A. At least 30 graduate credits with a cumulative and Departmental grade point average of 3.0 or better. Among these 30 credits, up to six credits may be ESE 597, ESE 599, or ESE 698.

B. Minimum of eight regular courses with at least a 3.0 grade point average. Of these eight, at least seven regular courses must be in the Department of Electrical and Computer Engineering; three of the seven must be selected from the following: ESE 502, ESE 503, ESE 511, ESE 520, ESE 528, ESE 545, ESE 554, or ESE 555.

C. ESE 597, ESE 599, ESE 698, and ESE 699 are not counted as regular courses in item B. Courses that permit repetitive credit, such as research seminars or special topics, can be counted only once (three or four credits) for item B. However, ESE 670 may be counted only once for regular course credit toward the M.S. degree, and ESE 680 may be counted only once (three credits) for credit toward the M.S. degree.

D. Up to 12 transfer credits may be applied toward the degree with the approval of the program committee.

II. M.S. Thesis Option
A. Students must inform the Department in writing at the end of their first semester if they choose the M.S. Thesis Option. At least 30 graduate credits with a cumulative and Departmental grade point average of 3.0. At least six credits of ESE 599. No more than a total of 12 credits may be taken from ESE 597, ESE 599, and ESE 698.

B. Minimum of six regular courses with at least a 3.0 grade point average. Of these six, at least four courses must be in the Department of Electrical and Computer Engineering. At least three of these four regular courses must be selected from the following: ESE 502, ESE 503, ESE 511, ESE 520, ESE 528, ESE 545, ESE 554, or ESE 555.

C. ESE 597, ESE 599, ESE 698, and ESE 699 are not counted as regular courses in item B. Courses that permit repetitive credit, such as research seminars or special topics, can be counted only once (three or four credits)
for item B. However, ESE 670 may be counted only once for regular course credit toward the M.S. degree, and ESE 698 may be counted only once (three credits) for credit toward the M.S. degree.

D. Up to 12 transfer credits may be applied toward the degree with the approval of the program committee.

E. Satisfactory completion of a thesis.

Requirements for the Ph.D. Degree

A. Qualifying Examination

There is a major and minor part to the qualifying examination. The written examination is offered once every year in April. Students must pass one major written examination in two consecutive tries. The two consecutive tries do not need to be in the same area. The minor requirement can be satisfied by taking and passing a second major written examination or by taking three graduate courses in a different area than the major. Previous examinations are available in the Departmental office for review; however, students must make their own copies. Please refer to the Department’s Graduate Student Guide for additional information on the qualifying examination.

B. Course Requirements

1. A minimum of six regular courses beyond the bachelor’s degree must be completed within seven years after passing the qualifying examination. The study plan, which will include the six regular courses as required in item 1, will be developed under the aegis of the designated faculty advisor (who may or may not be the eventual thesis advisor). Modification of the study plan may be made by the preliminary examination committee and at any later time by the thesis advisor. An up-to-date plan must always be placed on file with the graduate program committee each time a modification is made.

2. The student must satisfy the stipulations of a plan of study which must be filed with the graduate program committee within six months after the student passes the qualifying examination. The study plan, which will include the six regular courses as required in item 1, will be developed under the aegis of the designated faculty advisor (who may or may not be the eventual thesis advisor). Modification of the study plan may be made by the preliminary examination committee and at any later time by the thesis advisor. An up-to-date plan must always be placed on file with the graduate program committee each time a modification is made.

C. Preliminary Examination

A student must pass the preliminary examination not more than 18 months after passing the qualifying examination. Both a thesis topic and the thesis background area are emphasized.

D. Advancement to Candidacy

After successfully completing all requirements for the degree other than the dissertation, the student is eligible to be recommended for advancement to candidacy. This status is conferred by the Dean of the Graduate School upon recommendation from the chair of the Department. Students must advance one year prior to the dissertation defense.

E. Dissertation

The most important requirement for the Ph.D. degree is the completion of a dissertation, which must be an original scholarly investigation. The dissertation must represent a significant contribution to the scientific and engineering literature, and its quality must be compatible with the publication standards of appropriate and reputable scholarly journals.

F. Approval and Defense of Dissertation

The dissertation must be orally defended before a dissertation examination committee, and the candidate must obtain approval of the dissertation from this committee. The committee must have a minimum of four members (at least three of whom are faculty members from the Department), including the research advisor, at least one person from outside the Department, and a committee chair. (Neither the research advisor nor the outside member may serve as the chair). On the basis of the recommendation of this committee, the Dean of the College of Engineering and Applied Sciences will recommend acceptance or rejection of the dissertation to the Dean of the Graduate School. All requirements for the degree will have been satisfied upon the successful defense of the dissertation.

G. Residency Requirement

The student must complete two consecutive semesters of full-time graduate study. Full-time study is 12 credits per semester until 24 graduate credits have been earned. After 24 graduate credits have been earned, the student may take only nine credits per semester for full-time status.

H. Time Limit

All requirements for the Ph.D. degree must be completed within seven years after completing 24 credits of graduate courses in the Department.

Courses

ESE 501 System Specification and Modeling

A comprehensive introduction to the field of System-on-Chip design. Introduces basic concepts of digital system modeling and simulation methodologies. Various types of hardware description language (HDL) will be studied, including Verilog, VHDL, and SystemC. Topics include top-down and bottom-up design methodology, specification language syntax and semantics, RTL, behavioral and system-level modeling, and IP core development. Included are three projects on hardware modeling and simulation.

Fall, every year, 3 credits, ABCF grading

ESE 502 Linear Systems

Fall, 3 credits, ABCF grading

ESE 503 Stochastic Systems

Fall, 3 credits, ABCF grading
ESE 504 Performance Evaluation of Communications and Computer Systems
Spring, 3 credits, ABCF grading
May be repeated for credit

ESE 505 Wireless Communications
This course covers first-year graduate-level material in the area of wireless communications: Wireless channels, overview of digital communications and signal processing for wireless communications, voice and data applications, design basics for wireless modems, analysis of system issues like resource management and hamloff, cellular and wireless LAN systems.
Fall or spring, every year, 3 credits, ABCF grading

ESE 506 Wireless Network
This course will examine the area of wireless networking and mobile computing, looking at the unique network protocol challenges and opportunities presented by wireless communications and host or router mobility. The course will give a brief overview of fundamental concepts in mobile wireless systems and mobile computing, it will then cover system and standards issues including second-generation circuit switched and third-generation packet switched networks, wireless LANs, mobile IP, ad-hoc networks, sensor networks, as well as issues associated with small handheld devices and new applications that can exploit mobility and location information. This is followed by several topical studies around recent research publications in mobile computing and wireless networking field. This course will make the system architecture and applications accessible to the electrical engineer.
Prerequisite: ESE 505 and ESE 516 or ESE 538 or permission of instructor
3 credits, ABCF grading
May be repeated once for credit

ESE 508 Analytical Foundations of Systems Theory
An exposition of the basic analytical tools for graduate study in systems, circuits, control, and signal processing. Sets and mappings, finite-dimensional linear spaces, metric spaces, Banach spaces, Hilbert spaces. The theory will be developed and exemplified in the context of systems applications such as nonlinear circuits, infinite networks, feedback control, signal restoration via projections, and optimal signal modeling.
Spring, 3 credits, ABCF grading

ESE 510 Electronic Circuits
This is a course in the design and analysis of analog circuits, both discrete and integrated. The first part of the course presents basic topics related to circuit analysis: laws, theorems, circuit elements and transforms. Fundamental semiconductor devices are introduced next. A number of aspects of circuit design beginning with basic device operation through the design of large analog functional blocks including amplifiers, oscillators, and filters are discussed. Cannot be used to fulfill any ESE degree requirements.
Fall, 3 credits, ABCF grading

ESE 511 Solid-State Electronics
A study of the electron and hole processes in solids leading to the analysis and design of solid-state electronic devices. Solutions to the Schrödinger representation of quantum effects, perturbation techniques. Simple band structure, effective mass theorem. Derivation and application of the Boltzman transport theory. Electrical and thermal conductivities of metals and of semiconductors, Hall effect, thermal effects, and their application to electronic devices. Properties of semiconductors and the theories underlying the characteristics of semiconductor devices.
Fall, 3 credits, ABCF grading

ESE 512 Bipolar Junction and Heterojunction Electronic Devices
A study of fundamental properties of homojunction and heterojunction semiconductor devices. Derivation of the characteristic equation for p-n junction diodes, for the bipolar junction transistor (BJT), and for the heterojunction bipolar transistor (HBT); the device parameters for low- and high-frequency operation, the effects on the device characteristics of fabrication methods and of structural arrangements. The development of the large-signal and small-signal equivalent circuits for the p-n diode and the BJT and HPT devices, with emphasis on models used in prevalent computer-aided analysis (e.g., SPICE). Consideration of the devices in integrated-circuit applications.
Spring, 3 credits, ABCF grading

ESE 513 MOS Transistor Modeling
An overview of the metal-oxide semiconductor (MOS) transistor and its models for circuit analysis. The course is modular in structure. In a common first part, CMOS fabrication, device structure, and operation are introduced. Starting from basic concepts of electronics, MOS field-effect transistor operation is presented in an intuitive fashion, and no advanced background in solid-state theory is required. Analytical models of increasing complexity and their SPICE Implementations are discussed. The second part of the course allows students to focus on their field of preference: device physics; digital circuits; analog circuits. The course includes a project in one of these subtopics.
Fall, 3 credits, ABCF grading

ESE 514 MOS Transistor Modeling
Prerequisite: ESE 505 and ESE 516 or ESE 538 or permission of instructor
3 credits, ABCF grading
May be repeated once for credit

ESE 515 Quantum Electronics I
Physics of microwave and optical lasers. Topics include introduction to laser concepts; quantum theory; classical radiation theory; resonance phenomena in two-level systems; Bloch equations-Kramers-Kronig relation, density matrix; rate equation and amplification; CO2 lasers; discharge lasers; semiconductor lasers.
Fall, 3 credits, ABCF grading

ESE 516 Integrated Electronic Devices and Circuits I
Theory and applications: elements of semiconductor electronics, methods of fabrication, bipolar junction transistors, FET, MOS transistors, diodes, capacitors, and resistors. Design techniques for linear digital integrated electronic components and circuits. Discussion of computer-aided design, MSI, and LSI.
Fall, 3 credits, ABCF grading

ESE 517 Integrated Electronic Devices and Circuits II
Theory and applications: elements of semiconductor electronics, methods of fabrication, bipolar junction transistors, FET, MOS transistors, diodes, capacitors, and resistors. Design techniques for linear digital integrated electronic components and circuits. Discussion of computer-aided design, MSI, and LSI. Spring, 3 credits, ABCF grading

ESE 518 Integrated Electronic Devices and Circuits III
This course covers the essential components of a modern optical fiber communication system: (I) wave propagation in optical fiber waveguides, (II) transmitter design, (III) receiver design, (IV) single wavelength fiber-optic networks, and (V) wavelength division multiplexing networks.
Prerequisite: ESE 519
Fall, 3 credits, ABCF grading

ESE 519 Semiconductor Lasers and Photodetectors
This course teaches students the fundamental techniques necessary for analyzing and designing optical systems. Topics include matrix methods for ray optics, fundamentals of wave optics, beam optics, Fourier optics, and electromagnetic optics. The latter part of the course will deal with optical activity in anisotropic media and include polarization and crystal optics, electro-optics, and acousto-optics.
3 credits, ABCF grading

ESE 521 Applied Optics
This course teaches students the fundamental techniques necessary for analyzing and designing optical systems. Topics include matrix methods for ray optics, fundamentals of wave optics, beam optics, Fourier optics, and electromagnetic optics. The latter part of the course will deal with optical activity in anisotropic media and include polarization and crystal optics, electro-optics, and acousto-optics.
3 credits, ABCF grading

ESE 522 Fiber Optic Systems
This course covers the essential components of a modern optical fiber communication system: (I) wave propagation in optical fiber waveguides, (II) transmitter design, (III) receiver design, (IV) single wavelength fiber-optic networks, and (V) wavelength division multiplexing networks.
Prerequisite: ESE 519
Fall, 3 credits, ABCF grading
ESE 524 Microwave Acoustics
Continuum acoustic field equations. Wave equation, boundary conditions, and Pointing vector. Waves in isotropic elastic media: plane-wave modes, reflection and refraction phenomena, bulk-acoustic wave (BAW) waveguides, surface acoustic waves (SAW). Plane and guided waves in piezoelectric media. BAW transduction and applications: delay-line and resonator structures, the Mason equivalent circuit, monolithic crystal filters, 1M CON dispersive delay lines, acoustic microscopes, SAW transduction and applications: the interdigital transducer, band-pass filters, dispersive filters, convolvers, tapped delay lines, resonators. Prerequisite: ESE 519
Fall, 3 credits, ABCF grading

ESE 526 Silicon Technology for VLSI
This course introduces the basic technologies employed to fabricate advanced integrated circuits. These include epitaxy, diffusion, oxidation, chemical vapor deposition, ion implantation lithography and etching. The significance of the variation of these steps is discussed with respect to its effect on device performance. The electrical and geometric design rules are examined together with the integration of these fabrication techniques to reveal the relationship between circuit design and the fabrication process. Fall, 3 credits, ABCF grading

ESE 527 Circuit Theory and Applications
Foundation of design procedures for electric circuits. Fundamental concepts, graph theory, network equations, network functions, state equations, network synthesis, scattering parameters, nonlinear circuits. Fall, 3 credits, ABCF grading

ESE 528 Communication Systems
This course provides a general overview of communication theory and addresses fundamental concepts in this field. After a review of signals and systems representations, various continuous and digital modulation schemes are analyzed. Spread spectrum systems and their application to multimedia communications are also addressed. Advanced communication systems are described and general concepts of wide and local area networks are introduced. Fall, 3 credits, ABCF grading May be repeated for credit

ESE 529 Electrical Network Theory
Linear and nonlinear electrical networks; graph theory; determination of operating points; transient estimation; interconnection networks; numerical methods; parameter extraction; finite and transfinite networks; discrete potential theory; random walks on networks. Spring, 3 credits, ABCF grading

ESE 530 Computer-Aided Design
The course presents techniques for analyzing linear and nonlinear dynamic electronic circuits using the computer. Some of the topics covered include network graph theory, generalized nodal and hybrid analysis, companion modeling, Newton’s method in n-dimensions and numerical integration. Prerequisite: B.S. in Electrical Engineering Spring, 3 credits, ABCF grading

ESE 531 Detection and Estimation Theory
Hypothesis testing and parameter estimation. Series representation of random processes. Detection and estimation of known signals in white and nonwhite Gaussian noise. Detection of signals with unknown parameters. Prerequisite: ESE 503 or permission of instructor Spring, 3 credits, ABCF grading

ESE 532 Theory of Digital Communication
Optimum receivers, efficient signaling, comparison classes of coding schemes. Channel capacity theorem, bounds on optimum system performance, encoding for error reduction, and the fading channel. Source coding and some coding algorithms. Prerequisite: ESE 503 Fall, 3 credits, ABCF grading

ESE 535 Information Theory and Reliable Communications
Measures of information: entropy, relative entropy, and mutual information. The asymptotic equipartition property. Lossless source coding: Kraft inequality and the source coding theorem. Introduction to error-correcting codes. Continuous and waveform channels. Rate-distortion theory. Prerequisite: ESE 503 or equivalent or permission of instructor Spring, 3 credits, ABCF grading

ESE 536 Switching and Routing in Parallel and Distributed Systems
This course covers various switching and routing issues in parallel and distributed systems. Topics include message switching techniques, design of interconnection networks, permutation, multicast, and all-to-all routing in various networking nonblocking, and rearrangeable capability analysis and performance modeling. Prerequisite: ESE 503 and 515 or CSE 502 and 517, or permission of instructor 3 credits, ABCF grading

ESE 540 Reliability Theory
Theory of reliability engineering. Mathematical and statistical techniques for evaluating the reliability of systems of components. Analytical models for systems analysis, lifetime distributions,repairable systems, warranties, preventive maintenance, and inspection. Software reliability and fault tolerant computer systems. Prerequisite: ESE 503 or permission of instructor 3 credits, ABCF grading

ESE 541 Digital System Design
The course provides an introduction to digital and computer systems. The course follows a top-down approach to presenting design of computer systems, from the architectural-level to the gate-level. VHDL language is used to illustrate the discussed issues. Topics include design hierarchy and top-down design; introduction to hardware description languages; computer-aided design and digital synthesis; basic building blocks like adders, comparators, multipliers, latches, flip-flops, register etc.; static and dynamic random access memory; data and control buses; fundamental techniques for combinational circuit analysis and design; sequential circuit design procedures; and programmable logic devices. Testing of digital designs is addressed throughout the course. A mini-project will complement the course. Cannot be used to fulfill any ESE degree requirements. Prerequisites: B.S. in Engineering, but not EE, CE, or CS. Spring, 3 credits, ABCF grading

ESE 542 Product Design Concept Development and Optimization
This graduate course will concentrate on the design concept development of the product development cycle, from the creative phase of solution development to preliminary concept evaluation and selection. The course will then cover methods for mathematical modeling, computer simulation, and optimization. The concept development component of the course will also cover intellectual property and patent issues. The course will not concentrate on the development of any particular class of products, but the focus will be mainly on mechanical and electromechanical devices and systems. As part of the course, each participant will select an appropriate project to practice the application of the material covered in the course and prepare a final report. Prerequisites: Undergraduate electrical or mechanical engineering and/or science training Fall, 3 credits, ABCF grading

ESE 544 Network Security
An introduction to computer network and telecommunication network security engineering. Special emphasis on building security into hardware and hardware working with software. Topics include encryption, public key cryptography, authentication, intrusion detection, digital rights management, firewalls, trusted computing, encrypted computing, intruders, and viruses. Some projects. Fall, alternate years, 3 credits, ABCF grading

ESE 545 Computer Architecture
The course covers uniprocessor and pipelined vector processors. Topics include: hierarchical organization of a computer system; processor design; control design; memory organization and virtual memory; I/O systems; balancing subsystem bandwidths; RISC processors; principles of designing pipelined processors; vector processing on pipelines; examples of pipelined processors. The course involves a system design project using VHDL. Prerequisite: ESE 318 or equivalent Spring, 4 credits, ABCF grading

ESE 546 Computer Communications Network
An introduction to the quantitative and qualitative aspects of telecommunication networks. Continuous time and discrete time single queue system analysis. Data link, network, and transport protocols layers. Network interconnection. Multiple access techniques. Flow and congestion control. High-speed switching. Prerequisite: ESE 503 or permission of instructor Fall, 3 credits, ABCF grading
ESE 547 Digital Signal Processing
A basic graduate course in digital signal processing. Sampling and reconstruction of signals. Review of Z-Transform theory. Signal flow-graphs. Design of FIR and IIR filters. Discrete and fast Fourier transforms. Introduction to adaptive signal processing. Implementation considerations. Prerequisite: Senior-level course in signals and systems Fall, 3 credits, ABCF grading

ESE 548 Local and Wide Area Networks
Extended coverage of specific network protocols. Protocols covered include IEEE 802 local area network protocols, Asynchronous Transfer Mode (ATM), Synchronous optical Network (SONET), metropolitan area network protocols, backbone packet switching protocols, and transport control protocols Internet protocol (TCP/IP), network security, Web server design, and grid computing. Prerequisite: ESE 546 or permission of instructor Summer, 3 credits, ABCF grading

ESE 549 Advanced VLSI System Testing
This course is designed to acquaint students with fault diagnosis of logic circuits. Both combinatorial and sequential circuits are considered. Concepts of faulty and fault models are presented. Emphasis is given to test generation, test selection, fault detection, fault location, fault location within a module, and fault correction. Prerequisite: B.S. in Electrical Engineering Spring, 3 credits, ABCF grading

ESE 550 Network Management and Planning
This course provides an introduction to telecommunications and computer network management and planning. Network management is concerned with the operation of networks while network planning is concerned with the proper evolution of network installations over time. Network management topics include meeting service requirements, management operations, management interoperation, and specific architectures such as Telecommunications Management Network (TMN), and Simple Network Management Protocol (SNMP). Network planning topics include planning problem modeling, topological planning design, heuristic and formal solution techniques. Fall, 3 credits, ABCF grading

ESE 551 Switching Theory and Sequential Machines
Survey of classical analysis and synthesis of combination and sequential switching circuits, followed by related topics of current interest such as error diagnosis and fail soft circuits, use of large-scale integration, logic arrays, automated local design. Prerequisite: ESE 518 or equivalent Fall, 3 credits, ABCF grading

ESE 552 Interconnection Networks
Formation and analysis of interconnection elements in parallel computing organization. Topics include: SIMD/MIMD computers, multiprocessors, multicomputers, density, symmetry, representations, and routing algorithms. Topologies being discussed include: Benes, Omega, Banyan, mesh, hypercube, cube-connected cycles, generalized chordal rings, chordal rings, DeBruijn, Moebius graphs, Cayley graphs, and Borel Cayley graphs. Prerequisite: ESE 547 or equivalent Fall, 3 credits, ABCF grading

ESE 553 A/D and D/A Integrated Data Converters
This is an advanced course on analog integrated circuit design aspects for data converters. Topics include: continuous and discrete-time signals and systems; sampling theorem; ideal ND and D/A converters; specifications and testing of data converters; basic building blocks in data converters: current sources and mirrors, differential gain stages, voltage references, S/H circuits, comparators: Nyquist D/A and ND converters: principles of data conversion and circuit design techniques; oversampling data converters: low-pass and band-pass delta-sigma modulators, decimation and interpolation for delta-sigma data converters. The attending students must be acquainted with principles of transistor operation, function of simple analysis. Familiarity with SPICE is required. 3 credits, ABCF grading

ESE 554 Computational Models for Computer Engineers
This course covers mathematical techniques and models used in the solution of computer engineering problems. The course heavily emphasizes computer engineering application. Topics covered include set theory, relations, functions, graph theory and graph algorithms, and algebraic structures. Fall, 3 credits, ABCF grading

ESE 555 Advanced VLSI Systems Design
Techniques of VLSI circuit design in the MOS technology are presented. Topics include MOS transistor theory, CMOS processing technology, MOS circuit analysis and design, and various CMOS circuit design techniques. Digital systems are designed and simulated throughout the course using an assortment of VLSI design tools. Prerequisite: B.S. in Electrical Engineering or Computer Science Spring, 3 credits, ABCF grading

ESE 556 VLSI Physical and Logic Design Automation
Areas to be covered are physical design automation and logic design automation. Upon completion of this course, students will be able to develop state-of-the art CAD tools and algorithms for VLSI logic and physical design. Tools will address design tasks such as floor planning, module placement, and signal routing. Also, automated optimization of combinational and sequential circuits will be contemplated. Prerequisite: B.S. in Computer Engineering/ Science or Electrical Engineering Fall, 3 credits, ABCF grading

ESE 557 Digital Signal Processing II: Advanced Topics
A number of different topics in digital signal processing will be covered, depending on class and current research interest. Areas to be covered include the following: parametric signal modeling, spectral estimation, multirate processing, advanced FFT and convolution algorithms, adaptive signal processing, multi-dimensional signal processing, advanced filter design, dedicated signal processing chips, and signal processing for inverse problems. Students will be expected to read and present current research literature. Prerequisite: ESE 547 or permission of instructor Spring, 3 credits, ABCF grading

ESE 558 Digital Image Processing I
Covers digital image fundamentals, mathematical preliminaries of two-dimensional systems, image transforms, human perception, color basics, sampling and quantization, compression techniques, image enhancement, image restoration, image reconstruction from projections, and binary image processing. Prerequisite: B.S. in Engineering or Physical or Mathematical Sciences Fall, 3 credits, ABCF grading

ESE 559 Digital Image Processing II
The course material will proceed directly from DIP-I, starting with image reconstruction from projections. Areas to include forward and inverse random transformations, convolution, back projection, and Fourier reconstruction; nuclear magnetic resonance imaging and positron emission tomography will be similarly covered. Surer resolution concepts will be developed and applied to a variety of remote sensing applications as well as digital image coding for efficient transmission of digital TV imagery. Prerequisite: ESE 558 Spring, 3 credits, ABCF grading

ESE 560 Optical Information Processing
The course is designed to give the student a firm background in the fundamentals of optical information processing techniques. It is assumed that the student is familiar with Fourier transforms and complex algebra, and is conversant with the principles of linear system theory. The course begins with a mathematical introduction to linear system theory and Fourier transformation. The body of the course is concerned with the scalar treatment of diffraction and its application to the study of optical imaging techniques and coherent and incoherent optical processors. Prerequisite: B.S. in Physical Sciences Spring, 3 credits, ABCF grading

ESE 563 Fundamentals of Robotics I
This course covers homogenous transformations of coordinates; kinematic and dynamic equations of robots with their associated solutions; control and programming of robots. Prerequisite: Permission of instructor Fall, 3 credits, ABCF grading

ESE 565 Parallel Processing Architectures
This course provides a comprehensive intro-
duction to parallel processing. Topics include types of parallelism, classification of parallel computers, functional organizations, interconnection networks, memory organizations, control methods, parallel programming, parallel algorithms, performance enhancement techniques and design examples for SIMD array processors, loosely coupled multiprocessors, and tightly coupled multiprocessors. A brief overview of dataflow and reduction machines will also be given.

Prerequisite: ESE 345 or equivalent
Spring, 3 credits, ABCF grading

ESE 566 Hardware-Software Co-Design of Embedded Systems
This course will present state-of-the-art concepts and techniques for design of embedded systems consisting of hardware and software components. Discussed topics include system specification, architectures for embedded systems, performance modeling and evaluation, system synthesis and validation. The course is complemented by three mini-projects focused on designing and implementing various co-design methods.

Prerequisites: ESE 333, ESE 345 or equivalent
Fall, 3 credits, ABCF grading

ESE 568 Computer and Robot Vision
Principles and applications of computer and robot vision are covered. Primary emphasis is on techniques and algorithms for 3-D machine vision. The topics include image sensing of 3-D scenes, a review of 2-D techniques, image segmentation, stereo vision, optical flow, time-varying image analysis, shape from shading, texture, depth from defocus, matching, object recognition, shape representation, interpretation of line drawings, and representation and analysis of 3-D range data. The course includes programming projects on industrial applications of robot vision.

Prerequisite: B.S. in Engineering or Physical or Mathematical Sciences
3 credits, ABCF grading

ESE 570 Bioelectronics
Origin of bioelectric events; ion transport in cells; membrane potentials; neural action potentials and muscular activity; cortical and cardiac potentials. Detection and measurement of bioelectric signals; impedance measurements used to detect endocrine activity, perspiration, and blood flow; impedance cardiography; vector cardiography; characteristics of transducers and tissue interface; special requirements for the amplification of transducer signals.

Fall, 3 credits, ABCF grading

ESE 571 Introduction to Auto ID Technologies
This new introductory course is a series of Auto ID systems, technologies, and applications. The course covers theory and applications of important data-capture technologies, namely, barcodes, biometrics, and RFID. Topics to be covered include: architecture of data-capture/ Auto ID systems, barcodes, overview of 1-D and 2-D barcodes and other LOX technologies; biometrics: fingerprints, iris-scan, voice recognition, and smart-cards; radio frequency identification (RFID); fundamentals, near-field vs. far-field, UHF read range estimation, reader sensitivity limits, tag singulation and multiple access protocols, standards, privacy and security issues in RFID, real-time location systems (RTLS), and wireless sensor networks.

Prerequisites: ESE 372, ESE 218, ESE 305 (ESE 319) 3 credits, ABCF Grading

ESE 575 Advanced VLSI Signal Processing Architecture
This course is concerned with advanced aspects of VLSI architecture in digital signal processing and wireless communications. The first phase of the course covers the derivation of both data transformation and control sequencing from a behavioral description of an algorithm. The next phase reviews the general purpose and dedicated processor for signal processing algorithms. This course focuses on low-complexity high-performance algorithm development and evaluation, system architecture modeling, power-performance tradeoff analysis. The emphasis is on the development of system level VLSI architectures for current and future generation of wireless digital communication systems. An experimental/research project is required.

Prerequisites: ESE 355 or equivalent, ESE 305 or ESE 337 or equivalent, ESE 306 or ESE 340 or equivalent, ESE 260, or equivalent, or ESE 280 or equivalent 3 credits, ABCF grading

ESE 580 Microprocessor-Based Systems Engineering I
This course is a study of methodologies and techniques for the engineering design of microprocessor-based systems. Emphasis is placed on the design of reliable industrial quality systems. Diagnostic features are included in these designs. Steps in the design cycle are considered. Specifically, requirement definitions, systematic design implementation, testing, debugging, documentation, and maintenance are covered. Laboratory demonstrations of design techniques are included in this course. The students also obtain laboratory experience in the use of microprocessors, the development of systems, circuit emulation, and the use of signature and logic analyzers.

Fall, 3 credits, ABCF grading

ESE 581 Microprocessor-Based Systems Engineering II
This course is a study of methodologies and techniques for the engineering design of microprocessor-based systems. Emphasis is placed on the design of reliable industrial quality systems. Diagnostic features are included in these designs. Steps in the design cycle are considered. Specifically, requirement definitions, systematic design implementation, testing, debugging, documentation, and maintenance are covered. Laboratory demonstrations of design techniques are included in this course. The students also obtain laboratory experience in the use of microprocessors, the development of systems, circuit emulation, and the use of signature and logic analyzers.

Fall and spring, 3 credits, ABCF grading

ESE 588 Pattern Recognition
Basic concepts of pattern recognition techniques are introduced, including statistical pattern recognition, syntactic pattern recognition, and graph matching. Topics on Bayes decision theory, parametric and nonparametric techniques, clustering techniques, formal languages, parsing algorithms, and graph-matching algorithms are covered.

Prerequisite: Stochastic processes and data structures
Spring, 3 credits, ABCF grading

ESE 591 Industrial Project in OEMS Engineering
A student carries out a detailed design of an industrial project in OEMS engineering. A comprehensive technical report of the project and an oral presentation are required.

Fall, 3 credits, ABCF grading

ESE 597 Practicum in Engineering Internship
This course is for part-time and full-time graduate students, relating to their current professional activity. Participation is in private corporations, public agencies, or non-profit institutions. Students will be required to have a faculty adviser as well as a contact in the outside organization to participate with them in regular consultations on their project. Students are required to submit a final written report to both. The maximum credit that can be accepted toward the M.S. degree is three.

Fall, spring, and summer, 1-3 credits, SU grading

ESE 599 Research Master’s Students
Fall and spring, 1-12 credits, SU grading
May be repeated for credit

ESE 610 Seminar in Solid-State Electronics
Current research in solid-state devices and circuits and computer-aided network design.
Fall and spring, 3 credits, ABCF grading

ESE 670 Topics in Electrical Sciences
Varying topics selected from current research topics. This course is designed to give the necessary flexibility to students and faculty to introduce new material into the curriculum before it has attracted sufficient interest to be made part of the regular course material. Topics include biomedical engineering, circuit theory, controls, electronics circuits, digital systems and electronics, switching theory and sequential machines, digital signal processing, digital communications, computer architecture, networks, systems theory, solid-state electronics, integrated electronics, quantum electronics and lasers, communication theory, wave propagation, integrated optics, optical communications and information processing, instrumentation, and VLSI computer design and processing.

Fall and spring, 3 credits, ABCF grading

ESE 691 Seminar in Electrical Engineering
This course is designed to expose students to the broadest possible range of the current activities in electrical engineering. Speakers from both on and off campus discuss topics of current interest in electrical engineering.
Fall and spring, 1 credit, S/U grading
May be repeated for credit

ESE 697 Ph.D. Practicum in Teaching
The course provides hands-on experience in classroom teaching. Other activities may include preparation and supervision of laboratory experiments, exams, homework assignments and projects. Final report that summarizes the activities and provides a description of the gained experience and a list of recommendations is required.
Prerequisite: G5 status and permission of graduate program director
Fall and spring, 3 credits, ABCF grading

ESE 698 Practicum in Teaching
This course enables graduate students to gain experience in teaching and interacting with students enrolled in an Electrical and Computer Engineering courses. Students enrolled in ESE 698 are expected to perform various teaching duties required by the course instructor, such as attending lectures, providing office hours, holding review/recitation sessions, assisting in lab sections, grading, etc.
Fall, spring, and summer, 1-3 credits, ABCF grading
May be repeated for credit

ESE 699 Dissertation Research On Campus
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ESE 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ESE 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ESE 800 Full Time Summer Research
0 credits, S/U grading
May be repeated
English (EGL)

Chair: Stephen Spector, Humanities Building Room 2020, (631) 632-9833
Graduate Program Director: Celia Marshik, Humanities Building Room 2089, (631) 632-7784
Graduate Secretary: Janet Meckley, Humanities Building Room 2087, (631) 632-7373

Degrees awarded: M.A. in English; Ph.D. in English

Stony Brook’s Department of English, in the College of Arts and Sciences, is known for scholarship and teaching. Over the past few years, faculty members have published more than 40 books of criticism, fiction, and poetry. Among the many awards individuals have won are the Pulitzer Prize, the National Book Critics’ Circle Award, Guggenheim fellowships, Fulbright research and teaching fellowships, and National Endowment for the Humanities fellowships and grants. Five faculty members have received both the Chancellor’s and the President’s Award for Excellence in Teaching, two have been appointed SUNY Distinguished Teaching Professors, and one has been named SUNY Distinguished Professor. Supplanting the resources of the Department of English's staff are campus institutes with which the Department is affiliated. The Humanities Institute provides a place for interdisciplinary and theoretical work, offers an annual graduate student seminar, and sponsors an ongoing lecture series and annual conferences of international speakers.

Students enrolled in the Master of Arts program pursue a course of study that includes courses in historical periods; literary genres; topics in gender, race, and cultural studies; and various writing workshops. The program offers students the opportunity to broaden as well as deepen their knowledge of literature while also developing their own writing skills. This course of study leads to the Master of Arts degree and requires 30 credits, including a master's thesis, for completion.

Students enrolled in the Ph.D. program pursue a course of study that is designed, in large part, around individual interests and that moves from a broad-based survey to a more narrowly focused specialization. Eleven courses are required of each student. EGL 600, The Discipline of Literary Studies, must be taken during the first fall semester of study, as it introduces students to the variety of approaches to literature represented in current criticism. Students select their remaining courses in consultation with faculty advisors; these courses are intended to strengthen the student's literary background and theoretical knowledge, and further define chosen areas of inquiry. To accommodate the latter goal, students may take courses in other departments with approval from the graduate director. While pursuing the Ph.D. in English, students may also earn an interdisciplinary graduate certificate in women's studies, cultural studies, or composition studies.

Corresponding to the pattern of study that underlies the Ph.D. program are the oral examination and the special field conversation that all students take. The first, a three-hour general examination taken at the end of the fifth semester, enables each student to concentrate on three literary periods or two literary periods and one issue, genre, or theory relevant to the student's interests. The two-hour special field conversation, conducted in the sixth semester, focuses on the student's intended area of research and fosters the bibliographical and methodological skills needed to compose the dissertation proposal.

Ph.D. students receiving financial support teach one course each semester. Teaching assignments are varied and flexible. Teaching assistants teach courses in composition or introductory courses in literature and assist professors in large lecture courses. During their first semester of teaching writing at Stony Brook, students must enroll in the Teaching Practicum, which provides them with pedagogical theory and teaching supervision. All Ph.D. students on financial support must be registered as full-time students.

Admission

Applications for admission to all graduate programs in English should submit all materials by January 15 for fall semester admission. In all cases, admission is determined by the graduate admissions committee of the Department under guidelines established by the Graduate School. Applicants are admitted on the basis of their total records, and there are no predetermined quantitative criteria that by themselves ensure a positive or negative decision. There is midyear admission to the M.A. program but not the Ph.D. program. The deadline for spring M.A. admission is October 1.

About the Graduate Record Examination

All applicants to Stony Brook University are required to take the general aptitude portion of the Graduate Record Examination (GRE). The Department of English does not require applicants to take the subject test.

Our admissions committee will review an applicant’s file when all documents have been received. This includes the GRE score. Therefore, it is to the student’s advantage to take the exam at the earliest opportunity. We do not admit provisionally. Information about testing dates can be obtained by contacting the Educational Testing Service at www.gre.org. While we have no set cutoff score for admission, we pay special attention to the score on the verbal and analytical writing sections of the examination.

Admission to the M.A.T. in English 7 to 12

The M.A.T. in English 7 to 12 is administered by the School of Professional Development. Individuals interested in this program should refer to the School of Professional Development’s section in this bulletin.

Admission to the M.A. Program in English

The following, in addition to the minimum Graduate School requirements, are required for admission to the M.A. program:

A. A bachelor's degree from a recognized institution;
B. An average of at least B in the last two years of undergraduate work;
C. An official transcript of all undergraduate work;
D. Letters of recommendation from three instructors;
E. The applicant’s score on the Graduate Record Examination (GRE) General Test, required of all students by the Graduate School;
F. A sample of recent scholarly or critical writing;
G. Acceptance by both the Department of English and the Graduate School.

Admission to the Ph.D. Program in English
The following, in addition to the minimum Graduate School requirements, are required for admission to the Ph.D. program:

A. A bachelor’s degree from a recognized institution;
B. An average of at least B in the last two years of undergraduate work;
C. An official transcript of all undergraduate work and of any graduate work that may have been done;
D. Letters of recommendation from three instructors;
E. The applicant’s score on the Graduate Record Examination (GRE) General Test, required by the Graduate School of applicants in all departments;
F. A sample of recent scholarly or critical writing;
G. Proficiency in a foreign language equivalent to two years of college work;
H. Acceptance by both the Department of English and the Graduate School.

Faculty
Distinguished Professor
Kaplan, E. Ann,5 Director of the Humanities Institute, Ph.D., 1970, Rutgers University: Literary and film theory; feminist studies; modern American literature; 19th-century American literature; postcolonial British literature; film.

Professors
Huffman, Clifford C.,6 Ph.D., 1969, Columbia University: The Renaissance; Shakespeare.
Kenny, Shirley Strum, President of the University, Ph.D., 1964, University of Chicago: Restoration and 18th-century British drama.
Martinez-Pizarro, Joaquin,7 Ph.D., 1976, Harvard University: Literary history of the Middle Ages; classical and medieval backgrounds; comparative studies.
Manning, Peter J., Ph.D., 1968, Yale University: English Romantic literature, literary theory.

Munich, Adrienne, Ph.D., 1976, City University of New York: Victorian literature, art, and culture; feminist theory and women's studies.
Rosen, Carol, Ph.D., 1975, Columbia University: Dramatic theory and criticism; dramaturgy; comparative modern drama; Renaissance drama and Shakespeare.
Spector, Stephen, Chair, Ph.D., 1973, Yale University: Old and Middle English literature; history of the English language; the Bible; intolerance in medieval literature; Christianity and Judaism; drama through Shakespeare; manuscript study and bibliography; the “other” in medieval literature and society.

Associate Professors
Bashford, Bruce, Ph.D., 1970, Northwestern University: Literary theory and the history of criticism; rhetoric and the teaching of composition; the logic of interpretation and critical argument; humanism.
Dunn, Patricia A., D.A., 1991, University at Albany: Composition and rhetoric; English education; disability studies.
Hutner, Heidi, Ph.D., 1993, University of Washington: Restoration and 18th-century studies; colonial and postcolonial discourse; women writers; women's studies; eco-feminism.
Lindblom, Kenneth, Director of the English Teacher Education Program, Ph.D., 1996, Syracuse University: English education; theory, history and practice of composition-rhetoric; discourse pragmatics.
Marshik, Celia,1 Graduate Program Director, Ph.D., 1999, Northwestern University: British and American modernism, cultural studies, women’s studies.
Robinson, Benedict, Ph.D., 2001, Columbia University: Early modern literature and culture; representations of Islam; religion and literature; Shakespeare; Milton.

Assistant Professors
Choi, Helen Onhoon, Ph.D., 2006, UCLA: 20th-century American literature, race and ethnicity, cultural studies.
Newman, Andrew, Ph.D., 2004, University of California, Irvine: Early American literatures; literary theory; comparative literatures of contact.
Pfeiffer, Douglas, Ph.D., 2005, Columbia University: Renaissance; humanism; history of literary theory and rhetoric; Erasmus; Spenser; Donne.
Phillips, Rowan Ricardo, Ph.D., 2002, Brown University: Poetry; African American literature; Caribbean literature; the writing of poetry.

Ramachandran, Ayesha, Ph.D., anticipated 2008, Yale University: Early modern poetry and prose; continental influences on the English renaissance; history of ideas, especially political theory and aesthetics.

Lecturer
Videbaek, Bente, Ph.D., 1992, Northwestern University: Renaissance drama and theater; Scandinavian literature.

Affiliated Graduate Faculty
(Faculty members from other departments who may serve as “inside” members of English Ph.D. exam committees.)
Mary Jo Bona (European Languages): Italian American studies, ethnic American women writers, theories of race and ethnicity.
Krin Gabbard (Comparative Literary and Cultural Studies): Film; psychoanalysis; jazz.
Fred Gardaphé (European Languages): Italian American studies; theories of race and ethnicity.
Lorenzo Simpson (Philosophy): Critical race theory; Frankfurt school; cosmopolitanism.

Number of teaching, graduate, and research assistants, Fall 2007: 40
1) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1993. Recipient of the President’s Award for Excellence in Teaching, 1993
2) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1991
3) Recipient of the President’s Award for Excellence in Teaching, 1987
4) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1988
5) Joint appointment, Comparative Literature
6) Recipient of the President’s Award for Excellence in Teaching as Part-time Faculty, 2003 and the Students’ Choice Award for Most Influential Professor, 2004
7) Recipient of the Dean’s Award for Excellence in Graduate Teaching, 2007

Degree Requirements
Requirements for the M.A. Degree
In addition to the minimum requirements of the Graduate School, the following are required:

A. Course Requirements
A master’s degree in English requires ten three-credit graduate courses completed with a 3.0 overall grade point average, competence in one foreign language, and submission of a master’s thesis. Of the ten courses, one must be in the history and structure of the English language and one must be in
rhetoric or composition theory (including problems in the teaching of composition); courses previously taken on the undergraduate level and passed with a grade of B or better may be accepted as fulfilling these requirements and replaced with an elective. Students will sign up for three credits of thesis research while writing a master's thesis. The other seven courses must include one course on literature before 1700 and one course after 1700, and four courses in at least two of the following topic areas:

583: Topics in Theory
584: Topics in Genre Studies
585: Topics in Cultural Studies
586: Topics in Gender Studies
587: Topics in Race, Ethnic, or Diaspora Studies
588: Writing Workshop

Note: Topic courses may be repeated as long as content varies. Courses run through the School of Professional Development are not accepted for English M.A. requirements.

B. Independent Studies

Only one course numbered EGL 599, Independent Studies, will be permitted to count toward the total courses required for the degree of Master of Arts in English. EGL 599 cannot be elected during the student's first semester of work toward the master's degree. EGL 599 may be elected during the second semester only if the student has a B+ average in the first semester and has no Incompletes at the time of registering for EGL 599. A proposal for a 599 course should be submitted in writing to the faculty member under whose direction the student plans to study. This proposal must be submitted before the end of the semester previous to that in which the student will register for EGL 599. The proposal must be approved in writing by both the directing faculty member and the graduate program committee of the Department of English before the student registers for EGL 599.

C. Foreign Language Requirement

Competence in one foreign language may be satisfied by having completed the second year of a foreign language at the undergraduate level within the past five years with a grade of B or better, or by examination arranged by the Department of English. The following languages are automatically accepted for fulfilling this requirement: Bengali, French, German, Greek, Hebrew, Hindi, Italian, Latin, Russian, and Spanish. Other languages relevant to a student's graduate program may be approved upon petition to the graduate program committee.

D. Master's Thesis

Students enroll for EGL 598 while writing a master's thesis of 30 to 40 pages under the guidance of a thesis advisor (chosen by the student with approval of the graduate director) and an additional faculty member chosen by the student and the advisor. A final copy of the thesis and written approvals from the advisor and reader must be submitted to the Graduate School by the last day of classes in the semester in which the student graduates. Students must be registered in the semester in which they graduate.

Transfer Credit and Standards of Performance in English at the M.A. Level

The Department permits the transfer of six hours of credit in suitable graduate work done elsewhere that resulted in a grade of B or better. The student must, however, make special application after admission. In all coursework done at Stony Brook, an average grade of B is the minimum required, but no more than two grades below B- will be permitted. The time limit for completion of the M.A. degree is three years for full-time students and five years for part-time students. Any student who plans not to enroll in classes for a semester must apply for an official leave of absence; failure to do so will lead to a lapse in enrollment. To re-apply, the student must pay a $500 readmission fee.

Requirements for the Ph.D. Degree

In addition to the minimum requirements of the Graduate School, the following are required:

A. Course Requirements

The minimum course requirement for students in the doctoral program is 11 courses, including at least seven 600-level seminars. No course with a grade below B- may be used to satisfy course requirements. To continue in the program, students must maintain an average grade of B or better in all coursework, and no more than two grades below B- will be permitted. No transfer credit is accepted at the seminar level.

Dissertation work may be accepted as the Ph.D. program will have studied Chaucer, Milton, Shakespeare, and a variety of literary periods in their B.A. or M.A. programs. However, students with a variety of backgrounds are welcome into the Ph.D. program; those without the kind of broad-based knowledge outlined above will work out a suitable program of study with their advisors.

Students with teaching assistantships must pass the Teaching Practicum in their first semester of teaching in the Writing program.
the literature of another language. This option can be satisfied by passing a half-hour oral examination conducted in the language on the major literary figures or works of the language. Students should consult the graduate program director about setting up such an examination. Passing the reading and/comprehensive examination at the M.A. level shall not be sufficient evidence that the student has met Option II.

The following languages are automatically accepted for fulfilling the language requirement: French, German, Greek, Hebrew, Italian, Latin, Russian, and Spanish. Other languages relevant to a student’s graduate program may be approved upon petition to the graduate program director.

Students will not be permitted to take the Special Field Conversation without first satisfying the foreign language requirement. Students choosing Option I must satisfy one language requirement before taking the General Examination and the second before taking the Special Field Conversation.

C. General Examination

The general examination is a three-part, three-hour oral with three examiners. Two parts of the examination must focus on different literary periods of approximately 100 years each, and the third will either address another literary period or engage a problem or area of special interest (e.g., a genre, issues, or a line of theoretical inquiry).

In consultation with their examiners, students will offer reading lists for this examination that outline the area of inquiry for each part of their exam. Because one of the purposes of the exam is to give students the opportunity to make sense of their lists, the period lists may or may not vary from the traditional literary historical divisions of the anthologies. Whereas one student may follow traditional texts for a literary period, another may choose to study noncanonical texts within a traditional chronological range, while another may redefine the range (e.g., 1750 to 1850 or 1850 to 1945 instead of the 18th century, 19th century, or 20th century).

Taking this examination brings students a step closer to entering a profession in which one writes and publishes scholarship and constructs and teaches courses. To promote this kind of professional development, to facilitate students’ focus, and to enhance the conversations that make up the examinations:

1. For the first part, the student will submit to his or her committee, at least two weeks prior to the exam, a 15–30-page paper related to a particular period or problem area. In most cases, this will be a revised seminar paper, and will include a bibliography. The paper is not intended as additional work, but rather as a way for the student to organize an approach to one of the lists. During the exam, the paper will serve as a springboard for discussion of the entire period or area being examined.

2. For the second part, the student will submit to his or her committee, at least two weeks prior to the exam, a syllabus and bibliography of background reading for an advanced undergraduate course in a particular period or problem area. Questions regarding pedagogical and theoretical approach, as well as inquiries into criteria of selection and content, will help to initiate and focus discussion of the entire period or area being examined.

3. For the third part, the student may simply invite questions without using one of the above devices, or may submit another paper or syllabus (or some other piece of writing agreeable to the committee) as a means of generating and directing discussion of the entire list.

The examination committee will consist of a chair selected by the student and two other faculty members appointed by the graduate program director in consultation with the chair. The committee must be formed no later than the student’s fourth semester in the program (preferably earlier), and the exam must be taken before the end of the fifth semester. In consultation with his or her chair, the student may choose to take this exam in two parts. All three committee members must sign all three of the reading lists at least one month prior to the examination. The student must submit to the graduate director the signed reading lists along with a memo, stating the names of the members on the committee, one month before the exam.

Each of the three parts will be judged separately as either pass or fail. Each failed part may be retaken one additional time, no later than a year after the original examination.

It is the responsibility of the examination committee chair to inform the Graduate Office in writing of the date, time, and place of the examination two weeks before the examination.

D. Special Field Conversation

This conversation will be based on a written rationale and a reading list prepared by the student with the advice and approval of the student’s chosen committee, and approved by the graduate program director at least one month before the conversation. The focus of the conversation will be the topic that the student has chosen for his or her dissertation; thus, the reading list will embrace the various kinds of text that the student must engage to begin writing. All three members of the committee will be chosen by the student. Two members must be from the Department of English.

Students must contact the graduate director six weeks prior to the date they wish to schedule the conversation to fill out the necessary papers. The conversation will be scheduled by the Graduate Office. Within one week following the special field conversation, the student, in consultation with the director, will write a summary of the important issues in the conversation and submit it to the graduate program committee.

All the doctoral requirements described above must be completed before a student is allowed to schedule the special field conversation.

E. Advancement to Candidacy

After successful completion of the Special Field Conversation, the student is recommended to the Dean of the Graduate School for advancement to candidacy.

F. Dissertation

No later than the beginning of the seventh semester, students will prepare a written statement setting out the scope and method of the dissertation and submit it to their dissertation director, two other members of the department who will serve as readers, and a reader from outside the Department. After the student’s director has conferred with the other readers and the dissertation committee has approved the proposal, the student will submit the proposal and the signed dissertation contract to the
graduate director for approval. Students should contact the Graduate Office of the Department for details on how to submit the proposal.

The four readers of the dissertation must recommend acceptance of the dissertation before it can be approved by the Graduate School. Students will present the results of dissertation research at a colloquium convened for that purpose by the Department of English, which will be open to interested faculty and graduate students.

G. The Dissertation Defense

At least eight weeks before the Graduate School's deadline for submitting the completed dissertation, the student will submit to his or her readers what is intended to be the final draft of the dissertation. No more than four weeks after that, if the readers have agreed that the dissertation is ready to be defended, the director will schedule the defense. (This is distinct from the actual acceptance of the dissertation, which can take place only at the defense itself.)

H. Teaching Program

Training in teaching is stressed by the Department, and every student should expect to teach as part of the doctoral program. Teaching assistants instruct in a variety of courses including composition and introductions to poetry, fiction, and drama; tutor in the Writing Center; and assist in large lecture courses. An important part of the teaching experience is the Practicum in Teaching, required of all teaching assistants.

I. Residency Requirement

The Graduate School requires at least two consecutive semesters of full-time graduate study beyond the baccalaureate. Students will be considered in full-time residence during any semester in which they (1) are taking at least one 500-level course or 600-level seminar or are, in the opinion of the graduate program committee, properly preparing for the special field oral examination; (2) are holding no position other than that required under the teaching program; or (3) are registered for EGL 699 Dissertation Research or EGL 690, Directed Reading for Doctoral Candidates, for three, six, nine, or 12 credit hours, depending on the number of other courses being taken, and the teaching assignment. The total of all these credits and teaching hours is to be no more than 12 for G3, nine for G4, and six for G5 students.

J. Advising and Review of Student’s Progress

Each incoming student will meet with an assigned advisor before the start of classes to plan his or her first semester’s coursework. The student will also meet with his or her advisor in November and May before preregistration for each semester’s courses. At the end of the first year, each student will select his or her own advisor and inform the Graduate Office in writing of the advisor’s name. Students will meet at least once each semester with advisors to plan their coursework.

Each spring semester, the graduate program committee will review each student’s progress and determine whether the student may proceed with doctoral studies, may continue if certain requirements are met, or may not continue in the doctoral program because of unsatisfactory work. To retain financial support, teaching assistants must maintain a 3.5 GPA, in addition to satisfying the program requirements described above.

Matters Pertaining to All Advanced Degrees in English

A. Extension of time limits: Extensions of time limits are granted at the discretion of the graduate program director of the Department and the Dean of the Graduate School and are normally for one year at a time.

B. Incompletes: Faculty may choose to grant graduate students an Incomplete. However, the Incomplete must be made up—the work must be submitted to the faculty member—on or before the beginning of the next semester. Students who take Incompletes in the fall must finish their work before the first day of class in January, and those who take Incompletes in the spring must finish their work before the first day of class in September. Students who have special circumstances that justify having more time to make up the Incomplete should meet with the graduate director, then file a written request for an extension. The graduate director will make a decision on each case in consultation with the graduate program committee.

C. Graduate courses in the 500 series are open to all graduate students. Courses in the 600 series are normally open only to students admitted to study for the Ph.D. degree, although M.A. students with adequate preparation and background can sometimes be admitted with the permission of the instructor. All graduate courses normally carry three credits.

Each course in the 500 and 600 series to be offered in a given semester will be described by the instructor in some detail in a special Departmental announcement prepared and distributed toward the end of the semester prior to that in which it is to be offered. None of the courses numbered 690-699 can be taken to satisfy the requirement of seven seminars as stated in the sections outlining course requirements for the Department of English. Courses run through the School of Professional Development are not accepted for the requirements of the degree.

Advising

There are a number of problems that the preceding explanations make no attempt to cover; students are encouraged to raise individual questions about the graduate program with the graduate program director in English.

Courses

EGL 501 Studies in Chaucer
3 credits, ABCF grading

EGL 502 Studies in Shakespeare
3 credits, ABCF grading

EGL 503 Studies in Milton
3 credits, ABCF grading

EGL 505 Studies in Genre
3 credits, ABCF grading
May be repeated for credit

EGL 506 Studies in Literary Theory
Prerequisite: Matriculation in a graduate program or the composition studies certificate. 3 credits, ABCF grading

EGL 509 Studies in Language and Linguistics
3 credits, ABCF grading

EGL 510 Old English Language and Literature
3 credits, ABCF grading

EGL 515 Middle English Language and Literature
3 credits, ABCF grading
EGL 520 Studies in the Renaissance
3 credits, ABCF grading

EGL 525 17th-Century Literature
3 credits, ABCF grading

EGL 530 Studies in Restoration Literature
3 credits, ABCF grading

EGL 535 Studies in Neoclassicism
3 credits, ABCF grading

EGL 540 Studies in Romanticism
3 credits, ABCF grading

EGL 545 Studies in Victorian Literature
3 credits, ABCF grading

EGL 547 Late 19th-Century British Literature
3 credits, ABCF grading

EGL 550 20th-Century British Literature
3 credits, ABCF grading

EGL 555 Studies in Irish Literature
3 credits, ABCF grading

EGL 560 Studies in Early American Literature
3 credits, ABCF grading

EGL 565 19th-Century American Literature
3 credits, ABCF grading

EGL 570 20th-Century American Literature
3 credits, ABCF grading

EGL 575 British and American Literature
3 credits, ABCF grading

EGL 582 Drama Workshop
3 credits, ABCF grading

EGL 584 Topics in Genre Studies
Changing issues in the historical study of particular genres, such as the novel, lyric poetry, film, drama, etc.
Fall, spring, and summer, 3 credits, ABCF grading
May be repeated for credit

EGL 585 Topics in Cultural Studies
Changing issues in the interdisciplinary study of culture, including literature, popular culture, discourse studies, media studies, etc. Focus is on the analysis of historical contexts and on methods derived from contemporary cultural theory.
Fall, spring, and summer, 3 credits, ABCF grading
May be repeated for credit

EGL 586 Topics in Gender Studies
Changing historical or theoretical focus on issues in gender studies, sexuality, queer studies, or women’s writing.
Fall, spring, and summer, 3 credits, ABCF grading
May be repeated for credit

EGL 587 Topics in Race, Ethnic, or Diaspora Studies
Changing historical or theoretical focus on issues of race or ethnicity, on U.S., British, or global ethnic literatures, or on experiences, histories, or theories of colonization, decolonization, empire, globalism, or diaspora.
Fall, spring, and summer, 3 credits, ABCF grading
May be repeated for credit

EGL 588 Writing Workshop
Changing focus on various forms of writing, including poetry, drama, fiction, the essay, etc.
Fall, spring, and summer, 3 credits, ABCF grading
May be repeated for credit

EGL 592 Problems in Teaching Writing or Composition
This course provides an overview of writing pedagogy as applied to tutoring in a Writing Center or in an English classroom. Included in the course is fieldwork in the campus Writing Center.
Fall, 3 credits, ABCF grading

EGL 593 Problems in Teaching Literature
3 to 5 credits, ABCF grading

EGL 594 Contexts of Literary Study
3 credits, ABCF grading

EGL 597 Practicum in Methods of Research
1 to 3 credits, S/U grading

EGL 598 Thesis Research
Research and writing of M.A. thesis supervised by faculty advisor.
Fall, spring, and summer, 1 to 3 credits, S/U grading
May be repeated for credit

EGL 599 Independent Study
3 credits, ABCF grading
May be repeated for credit

EGL 600 Proseminar: The Discipline of Literary Studies
Proseminar: Introduction to critical analysis, including theoretical and methodological approaches, and an orientation to the profession both in the academy and other careers. Faculty members will speak on their own scholarship and professional experiences.
3 credits, ABCF grading

EGL 601 Problems in History and Structure of the English Language
A survey of the English language from its historical beginnings through the present.
3 credits, ABCF grading

EGL 602 Problems in Bibliography, Editing, and Textual Criticism
An introduction to the study of manuscripts and printed books, with special emphasis on editorial and textual problems and decisions.
3 credits, ABCF grading

EGL 603 Problems in Literary Theory and Criticism
A seminar on any of the current theoretical approaches to texts.
3 credits, ABCF grading

EGL 604 Problems in Literary Analysis
An introduction to the explication of texts.
3 credits, ABCF grading
May be repeated for credit

EGL 605 Problems in Convention and Genre
An examination of literary types and categories.
3 credits, ABCF grading
May be repeated for credit

EGL 606 Period and Tradition
An examination of the major issues that pertain to particular historical literary periods.
3 credits, ABCF grading
May be repeated for credit

EGL 607 Individual Authors
In-depth study of specified writers, from Old English to Contemporary World Literatures in English.
3 credits, ABCF grading
May be repeated for credit

EGL 608 Problems in the Relationship of Literature to Other Disciplines
This course will encourage the interdisciplinary focus of our program by examining the intersection between textual studies and other forms of inquiry.
3 credits, ABCF grading
May be repeated for credit

EGL 611 Critical Theory
A seminar on influential theoretical approaches to texts.
3 credits, ABCF grading
May be repeated for credit

EGL 612 Theories in Composition
This course will explore the relationship between reading and writing skills, the differences between speech production and writing production, and the relationship between literacy, culture, and language politics.
Spring, alternate years, 3 credits, ABCF grading

EGL 614 Topics in Composition and Writing
This course will be a directed reading in particular areas of interest for classroom teachers, or a pilot study to prepare for the Ph.D. dissertation in Composition Studies. The shape of the course will be geared to the needs of those enrolled.
3 credits, ABCF grading
May be repeated for credit

EGL 615 Directed Readings
1 to 12 credits, S/U grading
May be repeated for credit

EGL 616 Methods of Teaching English
3 credits, S/U grading

EGL 617 Practicum in Teaching English Literature
Teaching workshop for introductory courses in poetry, fiction, and drama.
3 credits, S/U grading
EGL 698 Practicum in Teaching Writing
Students take the seminar in conjunction with teaching a section of WRT 101. This course provides hands-on experience and instruction in the basics of writing pedagogy, including designing writing assignments, sequencing assignments, motivating writing, writing skill development and evaluating writing. Students will also be given a preliminary overview of the major theories driving composition pedagogy.
Fall, 3 credits, S/U grading

EGL 699 Dissertation Research On Campus
Prerequisites: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1 to 9 credits, S/U grading
May be repeated for credit

EGL 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer
1 to 9 credits, S/U grading
May be repeated for credit

EGL 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1 to 9 credits, S/U grading
May be repeated for credit

EGL 800 Summer Research
0 credit, S/U grading
May be repeated
European Languages, Literatures, and Cultures (GER, RLF, RLI, SLV, DLG, DLF, DLI, DLL, DLR)

Chair: Nicholas Rzhevsky, Humanities Building Room 1055, (631) 632-7440
Graduate Program Director: Andrea Fedi, Humanities Building Room 1148, (631) 632-7449
Graduate Secretary: Mary Wilmarth, Humanities Building Room 1055, (631) 632-7440, 632-7442

Degrees awarded: M.A. in Germanic Languages and Literature; M.A. in Romance Languages and Literature; M.A. in Slavic Languages and Literature; D.A. in Foreign Languages (French, German, Italian, Russian). [M.A. program in German temporarily suspended; D.A. program temporarily suspended.]

The Department, within the College of Arts and Sciences, offers a wide variety of programs emphasizing study of European languages, literatures, and cultures, courses in pedagogical methodology, supervised teaching experience, and advanced training for careers related to international affairs. The Department is committed to providing the best possible graduate education: two of its members have been named Distinguished Professor; four have received the Chancellor's Award for Excellence in Teaching. The proximity of numerous cultural institutions such as the Center for Italian Studies on campus, the Goethe House in New York, the Kosciuszko Foundation, the New York Public Library, and the Harriman Institute of Columbia University, enhance graduate study in the Department.

The programs have been designed with today's career opportunities in mind. Students are encouraged to shape a personal curriculum, drawing on other departments engaged in issues pertinent to pedagogy and European cultural history, such as Comparative Studies, History, Linguistics, Philosophy, Political Science, and Theatre Arts. The Department supports exchange programs with France, Germany, Russia, Poland, and Italy. More detailed information is available from the Department office and on the Internet at www.sunysb.edu/eurolangs. Part-time study is permitted; most graduate courses are offered during the late afternoon or evening. Our advisors work closely with students in designing a program to meet individual needs and interests.

Degree Programs

M.A. Curriculum

The M.A. curriculum for each language program is designed to introduce students to research in European languages, literatures, and cultures leading to the D.A. or Ph.D. degrees, and to prepare students for teaching on the college, university, or secondary school level, as well as for careers involving international expertise. Students specialize in one of the offered languages, literary histories, and cultures, or create a combined program (i.e., two Romance languages) with the help of their advisors. Most courses are conducted in the target language. Experienced teaching assistants are encouraged to design and teach advanced courses on the undergraduate level. A carefully developed advising system enables students to tailor specially structured programs to suit their individual needs and interests.

M.A. Program in Romance Languages

The Department offers an M.A. in Romance Languages with possible interdepartmental concentrations in French and Spanish, Italian and Spanish, and French and Italian. The curriculum is formulated according to the individual student’s needs and interests. It is a flexible program that suits students who wish to go on to doctoral work as well as those who wish to terminate their studies with the master's degree. There are two possible tracks:

Track A, Literature and Culture: Designed for students who wish to follow a traditional M.A. program or intend to proceed toward further study on the D.A. or Ph.D. level. Typically students design a curriculum that includes literature, linguistics, and culture courses in one of the Romance languages or in a combination of two Romance languages. This track gives the students a choice of writing a Master's Thesis or passing a Comprehensive Examination to qualify for the degree.

Track B, Language Pedagogy for Secondary School Teachers: For students who have completed provisional requirements to teach languages in secondary schools and are required by state regulations to complete a master's degree. The track is specifically designed for those students who have completed the Teacher Preparation Program in Foreign Languages at the undergraduate level. It allows secondary school teachers to further concentrate in the target language and culture they teach, or in a combination of two Romance languages. A cornerstone of the program is faculty mentorship. Upon completing 12 hours of graduate work, each student designs a course of study. Upon completing all coursework, the student develops an independent research topic under mentor supervision. All courses are offered no earlier than 5:20 pm to meet the time constraints of secondary school teachers.

M.A. Programs in Germanic and Slavic

See course requirements below. [Program in German temporarily suspended.]

M.A.T. Program in French 7 to 12, German 7 to 12, Italian 7 to 12, Russian 7 to 12

Consult the SPD section in this bulletin.

D.A. Program in Foreign Languages (Program Temporarily Suspended)

The program leading to the Doctor of Arts degree provides pedagogical training in European languages, literatures, and cultures. It is appropriate for those interested in teaching on the secondary school, junior college, college, or university level, as well as for potential specialists in language laboratories, media studies, communications, marketing, and others interested in acquiring an in-depth knowledge of European languages, literatures, and cultures. The
course of study is flexible, competency-based, and whenever possible, tailored to individual needs and interests.

The program consists of coursework, research in the major field, practice in areas of professional preparation, demonstration of successful teaching, Comprehensive Examination, and a doctoral dissertation or project. Students may elect to specialize in French, German, Italian, or Slavic. Admission is granted to full-time and part-time students who have the B.A. or its equivalent.

A more detailed description of the graduate program is available from the Departmental office. This information includes specific distribution requirements, fields of specialization, and material pertaining to the preliminary and qualifying examinations. Interested students should request information and application forms as early as possible, especially if they plan to apply for financial aid.

Facilities

The Language Learning and Research Center offers a variety of tutorial tools in the languages taught at the University and includes two computer laboratories, two audio and video laboratories, and two multimedia classrooms. The Center regularly hosts workshops and courses (see listings of courses under the Doctor of Arts program) relating to the intersections between technology and language, literature, and culture learning.

Students are encouraged to take advantage of the off-campus Humanities Institute. The Institute brings leading national and international specialists in the humanities to speak on current issues and provides Stony Brook students with the latest research in culture studies, literature, and the arts.

The holdings of the Frank Melville Jr. Memorial Library include extensive collections in print and other media pertinent to each of the four major language groups taught by the Department. The Department maintains a high profile in state-of-the-art technologies, including Internet applications of language, literature, and culture pedagogy.

Admission

Admission to the M.A. Programs

For admission to graduate studies in the M.A. programs, the following, in addition to the minimum requirements of the Graduate School, are normally required:

1. A bachelor’s degree or its equivalent from a reputable scholarly institution; for the interdepartmental M.A. curriculum in Romance Languages, a bachelor’s degree or its equivalent with a major in French, Italian, or Spanish, and at least 18 credits in a second language (French, Italian, or Spanish);
2. Three letters of recommendation written by persons qualified to assess the candidate’s preparation;
3. For foreign students, a TOEFL score;
4. A transcript of undergraduate records;
5. Acceptance by both the Department and the Graduate School;
6. Normally a grade average of at least B in the undergraduate major.

Provisional admission may be offered in some exceptional cases.

While it is expected that the applicant demonstrate superior preparation in a European language, an undergraduate major in that language is not required. Students judged to be deficient in language proficiency are required to take remedial courses during the academic year or in the summer.

Foreign students must furnish as much information as possible about their training abroad (official certification degrees, lists of courses taken, and papers submitted, whenever possible), together with letters of recommendation. Each application will be judged individually. Transfer credit for previously taken graduate courses will be assessed by the faculty and approved within the regulations of the Graduate School.

Admission to the D.A. Program in Foreign Languages

In addition to the requirements of the Graduate School, the Department requires:

1. A B.A. degree or its equivalent in coursework and credits;
2. Three letters of recommendation from persons qualified to assess the candidate’s preparation;
3. Results of the Graduate Record Examination (GRE) General Test, and, for foreign students, the TOEFL;
4. Demonstrated proficiency in a European language;
5. Acceptance by both the Department and the Graduate School.

Provisional admission may be given to some students not meeting all of the above requirements.

Faculty

Professors

Caravatt, Peter, Alfonse M. D’Amato Professor, Ph.D., 1983, New York University: Italian and French critical theory; postmodernism; Italian American and migration studies.
Fontanella, Luigi, Ph.D., 1981, Harvard University: Modern Italian literature; 20th-century Italian poetry.
Gardaphe, Fred, Ph.D., 1993, University of Illinois, Chicago: Italian American studies; English literature.
Mignone, Mario B., Distinguished Service Professor and Director of the Center for Italian Studies, Ph.D., 1972, Rutgers University: Contemporary Italian literature and Culture; emigration studies.
Rzehevsky, Nicholas, Chair, Ph.D., 1972, Princeton University: Russian and Soviet literature; Russian theatre; ideology.

Associate Professors

Bloemer, Robert K., Director of Undergraduate Studies and Coordinator of the German Program, Ph.D., 1990, University of Michigan: Germanic linguistics; morphology; etymology.
Bona, Mary Jo, Coordinator of the Italian American Program, Ph.D., 1989, University of Wisconsin at Madison: Italian American studies; English literature.
Fedi, Andrea, Director of Graduate Studies, Ph.D., 1994, University of Toronto: Italian Renaissance literature; historiography.
Franco, Charles, Coordinator of the Italian Program, and Coordinator of the Medieval Studies Program, Ph.D., 1977, Rutgers University: Dante; medieval Italian literature.
Kalimowska-Blackwood, Izabela, Ph.D., 1995, Yale University: Russian and Polish literature, culture, and film.
Kerth, Thomas A., Ph.D., 1977, Yale University: Medieval literature; Middle High German; philology; German poetry.
Reich, Jacqueline, Ph.D., 1994, University of California at Berkeley: Modern Italian literature; Italian film studies.
Westphalen, Timothy, Coordinator of the Slavic Languages Program, Ph.D., 1991, Harvard University: Russian poetry; Russian symbolism; 19th-century Russian literature; Bakhtin.

Assistant Professors

Dalmas, Franck, Ph.D., 2006, University of North Carolina at Chapel Hill: French language and literature.
Jourdain, Sarah, Coordinator of the Teacher Training Program, Ph.D., 1996, Indiana University: Pedagogy and teacher training; French language.

Ledgerwood, Mike, Director of the Language Learning Center, Ph.D., 1985, University of North Carolina at Chapel Hill: Education and technology; semiotics, French civilization, Quebec.

Raynard-Leroy, Sophie, Ph.D., 1999, Columbia University: French; Romance philology.

Sanou, Sini Prosper, Coordinator of the French Program, Ph.D., 1992, University of Minnesota: French language and pedagogy.

Full-Time Lecturers

Baldacci, Gioacchino, Dottore in Lingue e Civiltà Orientali, 1964, Oriental Institute at the University of Naples: Italian cinema and theater.

Marchegiani, Irene, Coordinator of Student Teaching and Field Experience, Dottore in Lettere e Filosofia, 1973, University of Florence: Italian language and literature; pedagogy.

Viola Grosso-Middledorf, Birgit, D.A., 1990, Stony Brook University: German language and culture; business German.

Affiliated Faculty

Bailyn, John F., Department of Linguistics, Associate Professor, Ph.D., 1995, Cornell University: Slavic linguistics; Russian language and linguistics; syntax.

Bethin, Christina Y., Department of Linguistics, Professor, Ph.D., 1978, University of Illinois at Urbana-Champaign: Slavic linguistics; Russian, Polish, and Ukrainian languages; phonology.

Harvey, Robert, Department of Comparative Studies, Professor, Ph.D., 1988, University of California at Berkeley: Contemporary French and Maghrebian Francophone literature; critical theory; film.

Hurley, E. Anthony, Department of Africana Studies, Associate Professor, Ph.D., 1992, Rutgers University: Francophone literature of the Caribbean and Africa; 19th-century French literature.

Petrey, Sandy, Department of Comparative Studies, Professor, Ph.D., 1966, Yale University: 19th-century French literature; comparative literature; literary theory.

Ronceró López, Victoriano, Department of Hispanic Languages, Professor, Ph.D., 1988, University of Illinois at Urbana-Champaign: Golden Age literature; Quevedo studies; Picaresque novel, 16th-century Spanish poetry.

Repetti, Lori, Department of Linguistics, Associate Professor, Ph.D., 1989, University of California, Los Angeles: Romance linguistics; Italian dialectology; history of the Italian language.

Silverman, Hugh J., Department of Philosophy, Professor, Ph.D., 1973, Stanford University: Continental philosophy and criticism; history of aesthetic and literary theory; interdisciplinary studies in European philosophy, literatures, and cultures.

Emertiu Faculty

Brown, Frederick, Emeritus, Ph.D., 1960, Yale University: 19th- and 20th-century French literature.

Brown, Russell E., Emeritus, Ph.D., Harvard University: Modern German literature; expressionist poetry; Trakl; Brecht; Jahn.

Elling, Barbara, Emerita, SUNY Distinguished Teaching Professor, Ph.D., 1971, New York University: Romanticism; German cultural studies.

Weinreb, Ruth Plaut, Emerita, Ph.D., Columbia University: 18th-century French literature.

Zimmermann, Éléonore M., Emerita, Ph.D., 1956, Yale University: 17th- and 20th-century French literature; comparative studies.

Number of teaching, graduate, and research assistants, Fall 2007: 3

1) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1992.

2) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1983.

3) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1996.

4) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1973.

Degree Requirements

Requirements for the M.A. Degree in Romance Languages

Track A: Literature and Culture

The M.A. requires a specializations in French, in Italian, or in a combination of two Romance Languages (French, Italian, and Spanish). It requires at least ten three-credit courses (eight courses for students who opt to write a thesis) to be completed with a grade average of B or better; for a total of 30 credits.

A. Course Requirements

French

1. FRN 501 Contemporary Culture and Civilization (three credits)

2. FRN 507 Stylistics, Syntax, and Composition (three credits)

3. Eight additional courses (six for students who opt to write a thesis) chosen in consultation with the advisor to formulate an area of specialization (18 to 24 credits). These courses may include three courses in related disciplines.

4. Master Thesis (optional) (six credits)

Total: 30 credits

Italian

1. ITL 501 Contemporary Italy (three credits)

2. ITL 508 Syntax and Composition (three credits)

3. One of the following courses: ITL 507, 511, 512, 513 (three credits)

Seven additional courses (five for students who opt to write an M.A. thesis) chosen in consultation with the advisor to formulate an area of specialization (15 to 21 credits). These courses may include three courses in related disciplines.

4. Master Thesis (optional) (six credits)

Total: 30 credits

Romance Languages

1. Syntax and Composition in the two chosen languages (FRN 507, ITL 508, SPN 515) (six credits)

2. One of the following Romance Linguistics courses: ITL 513, FRN 513, SPN 503, SPN 504 (three credits)

3. Seven additional courses in two Romance languages (five for students who opt to write an M.A. thesis), to formulate a major and a minor (15 to 21 credits). These courses are to be chosen in consultations with the advisors and approved by the respective programs to formulate an area of specialization. These courses may include three courses in related disciplines.

4. Master Thesis (optional) (six credits)

Total credits: 30

B. Language Requirement

Competence at the intermediate level in a language other than the language of specialization, preferably in a second modern Romance language or Latin, is required. Students opting for a combination of two Romance languages will automatically satisfy this requirement. This requirement may be fulfilled through a Departmental examination or a suitable language course designed for graduate students.
C. M.A. Thesis or Examination

(Choice of Option 1 or 2)

1. M.A. Thesis: Students write a master's thesis under the supervision of a faculty advisor, along with a second faculty member in his or her major program, and a third faculty member in a related field. Upon completion of the thesis, the student prepares a formal presentation of the thesis.

2. M.A. Examination: Students who opt not to write a master's thesis must complete a four-hour written examination and a one-hour oral examination. The examination is based on a comprehensive reading list in the student's area of specialization. Three faculty members will serve as examiners.

Track B: Language Pedagogy for Secondary School Teachers

The M.A. in Romance Languages for Secondary School Teachers consists of a total of 30 credits. Students will take three core courses (nine credits) and seven courses (21 credits) in their target language(s). Students must maintain a B average and receive at least a B in their language courses (FRN 507, ITL 508, SPN 515).

A. Course Requirements

Core Courses (nine credits)

1. FLA 540 Foreign Language Acquisition Research (three credits)
2. DLL/FLA 571 Foreign Language Technology and Education (three credits)
3. FLA 581 Foreign Language Teaching Independent Project (three credits)
4. Competence in a foreign language other than the target language

Note: Courses of study for areas of specialization are available for French, Italian, and Romance languages (21 credits):

Courses of Study for Areas of Specialization (21 credits)

French

1. FRN 501 Contemporary Culture and Civilization (three credits)
2. FRN 502 French Civilization in its Historical Perspective (three credits)
3. FRN 507 Stylistics, Syntax, and Composition (three credits)
4. FRN 510 French Phonetics and Diction (three credits)

Italian

1. ITL 501 Contemporary Italy (three credits)
2. ITL 502 Special Topics in Italian Cinema (three credits)
3. ITL 508 Syntax and Composition (three credits)
4. ITL 511 History of the Italian language or ITL 507 Italian Linguistics (three credits)
5. One course in literature in Italian (three credits)
6. Two elective courses relevant to the program chosen in consultation with the advisor (six credits)

Total credits: 21

Romance Languages

Students may choose two of the three Romance languages taught at Stony Brook, with one as major and one as minor. Configuration of courses will be developed on an individual basis according to each student's needs and interests. The following courses are required:

1. ITL 513 or FRN 513, or SPN 503 or SPN 504 (Romance Linguistics) (three credits)
2. Two of the following: FRN 507, ITL 508, SPN 515 Syntax and Composition (six credits)
3. Two of the following: FRN 501, ITL 501, SPN 510 Culture (six credits)
4. Two elective courses relevant to the program chosen in consultation with the advisor (six credits)

Total credits: 21

5. One course in literature in French (three credits)
6. Two elective courses relevant to the program chosen in consultation with the advisor (six credits)

Total credits: 21

Italian

1. ITL 501 Contemporary Italy (three credits)
2. ITL 502 Special Topics in Italian Cinema (three credits)
3. ITL 508 Syntax and Composition (three credits)
4. ITL 511 History of the Italian language or ITL 507 Italian Linguistics (three credits)
5. One course in literature in Italian (three credits)
6. Two elective courses relevant to the program chosen in consultation with the advisor (six credits)

Total credits: 21

C. Research Project

Students must complete a Research Project under the supervision of a faculty advisor and subject to approval by a second faculty member in his or her major program and by a third faculty member in a related field. Upon completion, the student prepares a formal presentation of his or her research.

Requirements for the M.A. Degree in German (Temporarily Suspended)

Track A

A. Course Requirements

1. One 19th-century German literature course (three credits); one 20th-century German literature course (three credits); GER 545 or GER 546 (three credits); GER 539 Contrastive Structures or GER 557 History of the German Language (three credits); GER 599 Thesis (six credits).
2. Four additional offerings at the graduate level from courses within the Department or, upon prior approval by the Department, from those of other departments within the Graduate School (12 credits).

Total credits: 30

B. Performance

Average of B or higher in all graduate courses taken at Stony Brook.

C. M.A. Thesis

Submission of a scholarly essay on a topic and of a standard acceptable to the Department is required.

Track B

A. Course Requirements

There is no thesis required. All 30 credits can be fulfilled by coursework as follows:

1. GER 504 German Cultural History (three credits); GER 539 Contrastive Structures or GER 557 History of the German Language (three credits); one course in older Germanic languages, e.g., GER 558, GER 562, or GER 563 (three credits); one course in
20th-century German literature, e.g., GER 545 or GER 546 (three credits).

2. Six additional offerings at the graduate level from courses within the Department or, upon prior approval by the Department, from those of other departments within the Graduate School (18 credits).

Total credits: 30

B. Performance
Average of B or higher in all graduate courses taken at Stony Brook.

Requirements for the M.A. Degree in Slavic (Temporarily Suspended)

A. Course Requirements
1. Three courses in advanced language and/or linguistics (nine credits)
2. One course in culture (three credits)
3. Two courses in Russian literature (six credits)
4. Four electives in the student’s major area with approval of the Department (12 credits)

Total credits: 30

B. Language Proficiency in Russian
The Russian language proficiency requirement may be satisfied by one of the following:
1. Passing an examination;
2. Appropriate coursework in Russian (RUS 311, 312, or equivalent);
3. One semester of study abroad in the Commonwealth of Independent States (C.I.S.) in an approved program such as the SUNY-Albany/MGU Exchange.

C. Second Slavic Language Requirement
This requirement may be satisfied by one of the following:
1. A proficiency examination;
2. Appropriate coursework in the language (e.g., SLV 580, 581);
3. Study abroad in an approved program in Eastern Europe or the C.I.S.

With the approval of the program, a non-Slavic language of Eastern Europe or the C.I.S. may be substituted for the second Slavic language.

D. Thesis or Comprehensive Examination
A master’s thesis or Comprehensive Examination based on a reading list and coursework is required.

Requirements for the D.A. Degree in Foreign Languages (Temporarily Suspended)

A. Language Proficiency
Upon completion of 24 credits, all candidates will be expected to demonstrate proficiency in the language of specialization. Proficiency may be satisfied by one of the following:
1. A written recommendation of a faculty member from the Department;
2. A formal written examination, when the major advisor and D.A. committee deem it necessary. Students who do not pass the examination may request a second testing during the following semester.

B. Practical Experience
All candidates are required to fulfill the following teaching and research assignments during the program:
1. Practicum: The student is given charge of a three-hour section in a beginning or intermediate course. The practicum takes place after the student has successfully completed training in language, literature, or culture instruction that covers objectives, grading, and testing.
2. Internship or externship: For the internship, the student is apprenticed to a professor in charge of a literature, language, or culture course for at least one semester. For the externship, the student teaches independently but under faculty supervision in a qualified secondary school, college, or university. The internship or externship may not precede the practicum.
3. Dissertation or project: The student explores a research area developed in consultation with his or her advisor.

C. Final Evaluation
The final evaluation is based on the program of study that the candidate has completed. The student is expected to demonstrate mastery of the individual curriculum requirements, and a thorough understanding of the components of the program. Final examinations are scheduled twice a year, in November and April.

1. The final evaluation includes both a written and an oral Comprehensive Examination covering topics from all areas in the program. The examination is scheduled after the candidate has demonstrated competence in the area of specialization, and pedagogical and methodological issues. It is the responsibility of the candidate to prepare, with his/her advisor, a reading list that includes the student’s area of specialization.

2. Dissertation or project: Upon successful completion of the Comprehensive Examination, the candidate, in consultation with his/her advisor, submits a proposal. After the proposal is approved, a committee is appointed, in consultation with the program director. This committee includes a supervisor and at least two advisors. At least two faculty members must be from the Department and, subject to availability, one may be from outside the Department.

Transfer Credit
The D.A. committee may accept six post-M.A. transfer credits earned within the past five years from non-SUNY institutions. Nine credits may be accepted from all SUNY institutions. Under special circumstances, and with approval of the Department, additional cross-listed credits may be counted toward the D.A. requirements.

Courses

French Courses

FRN 500 Techniques of Reading for Graduate Research
Through intensive study of language structures and idiomatic usage, with extensive practice in written translation of literary and scholarly texts, candidates for advanced degrees are able to attain the proficiency level of the graduate French reading requirement. Several departments grant exemption from further examination for successful completion of this course. (Not for graduate students in French.)

Fall or spring, 3 credits, ABCF grading
FRN 501 Contemporary Culture and Civilization
Analysis of contemporary French civilization through the study of its historical, cultural, political, and social characteristics. Designed for potential teachers of French at the college level as well as in secondary schools, this course will emphasize and trace the evolution of the character and institutions of contemporary France and French-speaking countries.
Fall or spring, 3 credits, ABCF grading
FRN 502 French Civilization in Its Historical Perspective
In this course, students study historical French civilization concentrating on those features which have created France today and its current culture. Political and social developments are considered as well as major trends in the arts.
Spring, alternate years, 3 credits, ABCF grading
FRN 507 Stylistics (Syntax and Composition)
Stylistic theory and analysis. Problems of syntax and structure. Translations from English to French and English to French of texts from different modes and levels of discourse. Designed to develop and refine written expression in French and analysis of literary texts.
Fall or spring, 3 credits, ABCF grading
FRN 508 Explication de Texte or Introduction to Literary Criticism
This course is designed to develop sensitivity to literary texts. Emphasis will be placed upon weekly explication de texte, beginning with Renaissance literature and proceeding to the modern period, in which analysis will be made of those effects that, taken together, constitute a given author’s stylistic pattern.
Fall or spring, 3 credits, ABCF grading
FRN 509 Bibliography and Research Methods
Students learn about the effective use of the library and its resources (reference sources and materials, online catalog, use of CD-ROMs, and database searching). They are introduced to specialized bibliographies and other tools essential to their research. A bibliography on a topic related to a special field of interest is required at the end of the course.
Spring, 1 credit, ABCF grading
FRN 510 French Phonetics and Diction
The pronunciation of French with emphasis on intonation and articulation. Theory and practice of linguistic and phonetic factors of the sound system. Coursework includes phonetic transcriptions, recordings, and diagnostic texts. Language laboratory required.
Fall or spring, 3 credits, ABCF grading
FRN 511 Business French
A course designed to provide efficiency in spoken and written business French with an emphasis on bilingual translation. This course will also familiarize students with French business domestically, in the context of the European Union, and in contrast to America. Issues of current importance as well as institutions will be studied. Students will also carry on individual projects such as comparing marketing strategies of an American company in the U.S. and in France or profiling a major French company.
Fall or spring, 3 credits, ABCF grading
FRN 513 Romance Linguistics
This course examines the linguistic evolution of the Romance languages from the classical period through modern times. The synchronic grammars of Italian, French, and Spanish are examined.
Fall or spring, 3 credits, ABCF grading
FRN 531 Studies in the Classical Theatre
Analysis of classical dramaturgy and some of the major themes of 17th-century tragedy and comedy. Close reading of selected plays by Corneille, Racine, and Moliere.
Fall or spring, 3 credits, ABCF grading
FRN 532 Pensoeurs, Moralistes, et Monstres
Intensive reading and analysis of selected texts by authors such as Descartes, Pascal, La Fontaine, La Rochefoucauld, La Bruyere, Mme. de Sevigne, and Mme. de Lafayette. Changing topic.
Fall or spring, 3 credits, ABCF grading
FRN 541 Studies in 18th-Century French Literature
A study of the major texts in the 18th-century struggle between absolutism and the emerging forces of Enlightenment, as well as readings in preromanticism. In addition to the works of Montesquieu, Voltaire, Diderot, Rousseau, Beaumarchais, and LaFlos, other types of writing, such as Bayle’s dictionary and the Encyclopedie, are examined.
Fall or spring, 3 credits, ABCF grading
FRN 542 Seminar in 18th-Century French Literature
A study of the major texts in the 18th-century struggle between absolutism and the emerging forces of Enlightenment, as well as readings in preromanticism. In addition to the works of Montesquieu, Voltaire, Diderot, Rousseau, Beaumarchais, and LaFlos, other types of writing, such as Bayle’s dictionary and the Encyclopedie, are examined.
Fall or spring, 3 credits, ABCF grading
FRN 544 Seminar in 19th-Century French Literature
Special topics in 19th-century literature, such as “Representative of the French Revolution,” “Dialoges in Diderot and Rousseau,” “The Concept of the Individual,” and “Femmes, Cloture, Ecriture,” are studied through the works of major writers of the period as well as those of lesser-known figures such as Mme. de Graffigny, Mme. Riccoboni, Mme. d’Epiney, Olympe de Gouges, and other revolutionaries such as Mirabeau, Saint-Just, Condorcet, and Robespierres.
Fall or spring, 3 credits, ABCF grading
FRN 552 Studies in 19th-Century French Literature
Close reading of selected works by major novelists of the period, such as Balzac, Stendhal, Flaubert, Zola; themes such as Paris versus the provinces, money and decadence; or 19th-century poetry by Baudelaire, Mallarme, Verlaine, and Rimbaud, with an introduction to some important critical approaches to these texts.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit as topic changes
FRN 561 Seminar in 20th-Century French Literature
Broad samplings of texts from throughout the century are critically investigated while the period’s literary history is reviewed.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit as topic changes
FRN 562 Studies in Contemporary Literature
Focused examinations of French literary texts since 1968 and recent francophone writings. How has the novel survived the ceaseless testing of its limits? What is the status of contemporary poetry? Sample authors: Le Clezio, Ben Jelloun, Mallet-Joris, Alexis, Duras, Reguy, Roche, Bonnaf, Tournier.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit as topic changes
FRN 564 Seminar in Francophone Literature
Close examination of the literatures written in French of the Francophone world outside of France, with special emphasis on the literatures written in the Caribbean and Africa. This course will pose and explore questions such as: What is Francophone literature? What is the function of writing in French in a Francophone context? Attention is paid to the issue of critical approaches to these texts. Topics vary from year to year and may include texts from any of the French-speaking territories outside of France. Sample authors: Mariama Ba, Chauvet, Cesaire, Conde, Glissant, Roumain, Schwartz-Bart, Senghor, Werevere-Liking.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit as topic changes
FRN 570 Special Topics in French Literature
Courses given in the past have covered a single author, French women writers, French poetry of 1664-1674, and other topics.
3 credits, ABCF grading
FRN 571 Free Seminars
Courses given in the past have covered a single author, genre, and other topics.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit as topic changes
FRN 581 Independent Individual Studies
Prerequisite: Must be enrolled in a graduate program
Fall, spring, and summer, 1-6 credits, ABCF grading
May be repeated for credit as topic changes
FRN 595 Practicum in Teaching
Fall and spring, 1-3 credits, S/U grading
May be repeated for credit
FRN 599 Thesis Research
Fall and spring, 1-3 credits, S/U grading
May be repeated for credit
FRN 800 Summer Research
1-6 credits, S/U Grading
May be repeated for credit
German Courses
GER 500 Intensive Reading German
Intensive introductory German for graduate students in other programs. Practice in read-
ing and translation; German prose; use of dictionaries and reference materials; as much attention as possible to special problems of various disciplines.
Fall and spring, 3 credits, ABCF grading

GER 506 Advanced Stylistics
Advanced stylistics and discourse analysis. Designed to deepen the advanced student's knowledge of the syntax, structure, and stylistic versatility of the German language.
Spring, 3 credits, ABCF grading

GER 539 Contrastive Structures: German-English
Contrastive study of the phonological, morphological, syntactic, and semantic structures of German and English.
Fall, 3 credits, ABCF grading

GER 541 Literature of the Goethe Period
A study of the literature and culture of Germany during Goethe's lifetime, 1749-1832.
Spring, 3 credits, ABCF grading

GER 544 20th-Century German Prose
Major authors of modern German fiction are read and discussed. Texts may include works by Kafka, Mann, Boll, Grass, Wolf, and Handke. The course may also focus on works by a single author.
Fall, 3 credits, ABCF grading

GER 545 20th-Century German Poetry
Intensive reading and discussion of 20th-century German poetry, including works by Kille, Trakl, Brecht, Benn, and Kirsch. The course may also focus on works by a single poet or movement in the 20th century.
Spring, 3 credits, ABCF grading

GER 546 20th-Century German Drama
A survey of representative plays of the 20th century, including works by Hauptmann, Hofmannsthal, Kaiser, Sternheim, Toller, Fleiser, Horvath, and Brecht. The course may also focus on the works of a single dramatist.
Fall, 3 credits, ABCF grading

GER 547 Special Author Studies Tutorial
Fall and spring, 3 credits, ABCF grading
May be repeated for credit

GER 548 Special Period Studies Tutorial
Fall and spring, 3 credits, ABCF grading
May be repeated for credit

GER 557 History of the German Language
The development of the German language from Indo-European to modern High German: a representative selection of texts from different periods will be examined.
Fall, 3 credits, ABCF grading

GER 558 Middle High German
An introduction to Middle High German grammar with representative reading from the Middle High German classics.
Fall, 3 credits, ABCF grading

GER 562 Historical Germanic Linguistics
An introduction to the principles and methods of historical linguistics as applied to problems in the Germanic branch of Indo-European (early tribal movements, attempts at dialect grouping, dialect geography, etc.). Part of the course will be devoted to readings in Gothic, Old Norse, and Old High German with a comparison of the morphologies of these languages.
Spring, 3 credits, ABCF grading

GER 581 Independent Study
1-6 credits, ABCF grading
May be repeated for credit

GER 595 Practicum in Teaching
Fall and spring, 1-3 credits, S/U grading
May be repeated for credit

GER 599 Thesis Research
1-6 credits, S/U grading
May be repeated for credit

GER 601 Special Author
Tutorial to be arranged with appropriate staff member.
Fall and spring, 3 credits, ABCF grading
May be repeated for credit

GER 602 Special Period
Tutorial to be arranged with appropriate staff member.
Fall and spring, 3 credits, ABCF grading
May be repeated for credit as topic changes

GER 800 Summer Research
0 credit, S/U grading

ITAL 500 Reading Italian
Designed to prepare graduate students to read contemporary research in their respective disciplines published in Italian, the course presents systematic instruction in the fundamentals of reading comprehension and in specialized subject-oriented vocabulary.
Fall or spring, 3 credits, ABCF grading

ITAL 501 Contemporary Italy
Analysis of contemporary Italy and its civilization through the study of the development of its historical, cultural, political, and social characteristics. Designed for potential teachers of Italian at the college as well as secondary school levels, this course emphasizes and traces the evolution of the character and institutions of contemporary Italy.
3 credits, ABCF grading

ITAL 502 Special Topics in Italian Cinema
A topics course given in Italian on Italian cinema. Topics may include films of a particular actor, director, genre, theme, or historical period. Semester supplements to the Bulletin contain specific description when course is offered.
Prerequisite: Advanced oral and written proficiency in Italian
3 credits, ABCF grading

ITAL 507 Italian Linguistics: Diachronic Development and Synchronic Structures
An examination of the linguistic evolution and the synchronic structures (phonology, morphology, syntax) of standard Italian and some Italo-Romance dialects.
Fall or spring, 3 credits, ABCF grading

ITAL 508 Syntax and Composition
This course analyzes and discusses finer points of Italian grammar and investigates diverse writing styles. Students will develop grammatical drills from elementary through advanced levels. Literary masterpieces are translated to demonstrate types of style and possible alternatives in writing.
Fall or spring, 3 credits, ABCF grading

ITAL 510 Advanced Conversation and Composition
An examination of Italian in the context of contemporary Italy, with an eye to the effects of globalization and localism on language and culture. Class readings and conversations focus on today's multifaceted Italy, steering clear of stereotyped images and misconceptions.
Prerequisite: Graduate status
Spring, 3 credits, ABCF grading

ITAL 511 History of the Italian Language
A study of the development of the Italian language beginning with its Latin origins, and continuing through modern times.
Spring, alternate years, 3 credits, ABCF grading

ITAL 512 Italian Dialects
The linguistic structures of the many languages (i.e., “dialects”) spoken in Italy are analyzed. Consideration is also given to the sociolinguistic situation.
Spring, alternate years, 3 credits, ABCF grading

ITAL 513 Romance Linguistics
This course examines the linguistic evolution of the Romance languages from the classical period through modern times. The synchronic grammars of Italian, French, and Spanish are examined.
Fall or spring, 3 credits, ABCF grading

ITAL 516 Seminar on Dante
The Vita Nuova, the Opere Minori, and the Inferno are studied based on the historical, social, and moral contexts of 13th- and 14th-century Italy. Offered as ITL 516 and CEI 526.
3 credits, ABCF grading

ITAL 517 Seminar on Dante
The Purgatorio and Paradiso are studied based on the historical, social, and moral contexts of 13th- and 14th-century Italy.
Fall or spring, 3 credits, ABCF grading

ITAL 518 Boccaccio: Seminar
The course emphasizes the origin of Italian prose fiction as seen through the first attempts at the short story, such as the Novellino, but it deals mainly with Boccaccio’s Decameron as the perfection of the genre.
Fall or spring, 3 credits, ABCF grading
ITAL 522 Seminar in Italian Humanism and Renaissance Literature
Analysis of the works of such writers as Petrarch, Boccaccio, Ariosto, Machiavelli, Castiglione, Aretino, Tasso, and Michelangelo. Study of the relation of the individual works of these writers to broader historical, cultural, and intellectual developments of the period. Fall or spring, 3 credits, ABCF grading May be repeated for credit

ITAL 541 Studies in 17th- and 18th-Century Italian Literature
A study of baroque and Enlightenment literatures in Italy, which also takes into consideration the development of other, peripheral genres such as opera, philosophy, and scientific prose. Authors examined include Galileo, Marino, Metastasio, Vico, Goldoni, Alferi, and others. The topics vary from semester to semester, depending on the authors selected. Fall or spring, 3 credits, ABCF grading May be repeated for credit

ITAL 551 Studies in Italian Romanticism
Italian romanticism is compared with the movement as it took place in other countries, such as England, Germany, and France. The works of Foscolo, Leopardi, and Manzoni are studied in the philosophical and sociological contexts of the period. Fall or spring, 3 credits, ABCF grading

ITAL 552 Studies in the Modern Novel
A study of the development of the Italian novel from Verga to the latest trends. Stress is placed on the major shifts in sensibility occurring at the beginning of the 19th century and after World War II. Fall or spring, 3 credits, ABCF grading May be repeated for credit

ITAL 556 Studies in Contemporary Italian Literature: The Quest for Meaning
Studies in 20th-century literature. Fall or spring, 3 credits, ABCF grading May be repeated for credit

ITAL 571 Free Seminar
Courses given in the past have covered a single author, genre, and other topics. Fall or spring, 3 credits, ABCF grading May be repeated for credit

ITAL 581 Independent Individual Studies
Fall and spring, alternate years, 1-6 credits, ABCF grading May be repeated for credit

ITAL 595 Practicum in Teaching
Fall and spring, 1-3 credits, S/U grading May be repeated for credit

ITAL 599 Thesis Research
1-6 credits, S/U grading May be repeated for credit

ITAL 800 Summer Research
0 credit, S/U grading May be repeated for credit

Russian and Slavic Courses

RUS 500 Reading Russian
Intensive introductory Russian for graduate students in other programs. Practice in reading and translation; Russian prose; use of dictionaries and reference materials; as much attention as possible to special problems of various disciplines. Spring, 3 credits, ABCF grading

RUS 504 Introduction to Cultural History
Russian cultural history focusing on recurrent values and ideas. Topics explored include issues of cultural identity, responses to the West and Asia (in such movements as Slavophilism, pan-Slavism, and Eurasian theory), gender, and ethnicity. Spring, 3 credits, ABCF grading

RUS 508 Russian Authors
A seminar in selected Russian authors, focusing on one or two of the following: Pushkin, Gogol, Dostoevsky, Turgenev, Tolstoy. Fall, 3 credits, ABCF grading May be repeated for credit

RUS 509 Dostoevsky and the West
Dostoevsky's major texts viewed in cross-cultural perspective with particular emphasis on literary and philosophical traditions common to Russia and Europe. Fall, alternate years, 3 credits, ABCF grading

RUS 511 Studies in Literary Genres
A seminar devoted to a specific genre (poetry, novel, short fiction) in Russian literature. Spring, 3 credits, ABCF grading May be repeated for credit

RUS 513 19th-Century Russian Literature
A seminar on 19th-century Russian literature. The course deals with prose, poetry, and drama in the context of literary movements and traditions. Fall, 3 credits, ABCF grading

RUS 514 20th-Century Russian Literature
A seminar in turn-of-the-century, Soviet post revolutionary, and emigre Russian literature. The course deals with prose, poetry, and drama in the context of literary movements and traditions. Fall, 3 credits, ABCF grading

RUS 520 Russian Syntax
A course in Russian syntax and advanced grammar from various theoretical frameworks. Fall, alternate years, 3 credits, ABCF grading

RUS 595 Practicum in Teaching
Fall and spring, 1-3 credits, S/U grading May be repeated for credit

RUS 599 Thesis Research
1-6 credits, S/U grading May be repeated for credit

RUS 601 Studies in Cultural Genres
Explorations in different forms of Russian cultural representation offered by written texts, the arts, architecture, and popular media such as puppet theatres, the bard tradition, and cinema. Interaction among aesthetic genres will be explored with particular emphasis on the roles of literature in the other arts. Fall, 3 credits, ABCF grading

RUS 602 Literature and Theatre
The relationship of literature and theatre with specific examples taken from Russian cultural history. The stage adaptations of Stanislavsky, Meyerhold, and contemporary directors will be studied as forms of aesthetic conjunction and as responses to the social-ideological context. Spring, 3 credits, ABCF grading

RUS 603 Seminar in Cultural Theory
Studies in cultural theory with particular reference to the works of formalism, structuralism, the Tartu school of semiotics, and Balanchinian theory. Fall, 3 credits, ABCF grading

RUS 800 Summer Research
0 credit, S/U grading May be repeated for credit

SLV 501 Special Topics in Slavic Literature
Special topics in Slavic literature investigating an author, period, genre, or theoretical issue. Designed to provide a forum for advanced research in critical methodology. Spring, 3 credits, ABCF grading

SLV 502 Problems of Literary Translation
The course addresses theoretical and practical problems of translation from the Slavic languages. Published translations of literary texts as well as translations prepared by participants of the seminar will be compared and analyzed. Prerequisite: Advanced knowledge of Slavic languages. Spring, alternate years, 3 credits, ABCF grading

SLV 571 Comparative Slavic Linguistics
An investigation of the major West, East, and South Slavic languages with particular attention to their historical development. The course includes comparative and contrastive studies in the areas of phonology, morphology, and syntax. Fall, 3 credits, ABCF grading

SLV 578 Directed Independent Studies
Fall, 1-6 credits, ABCF grading May be repeated for credit

SLV 579 Directed Independent Studies II
Spring, 1-6 credits, ABCF grading May be repeated for credit

SLV 580 Special Topic in Slavic Languages I
The study of the phonology, morphology, and syntax of a Slavic language other than Russian, e.g., Polish, Czech, Ukrainian, Serbo-Croatian, or Bulgarian. Fall, 3 credits, ABCF grading May be repeated if different language studied

SLV 581 Special Topic in Slavic Languages II
A continuation of the study of a Slavic
language other than Russian. Spring, 3 credits, ABCF grading
May be repeated if different language studied

Language Learning and Research Center Courses

DLF, DLG, DLI, DLR 601 Internship in Foreign Languages

Students in the Doctor of Arts program assist an instructor as an aide in a literature, culture, or language course on the undergraduate level. Fall and spring, 1-3 credits, S/U grading

DLF, DLG, DLI, DLR 602 Externship in Foreign Languages

Students in the Doctor of Arts program teach one to three courses at the high school, junior college, or college level under the supervision of a master teacher. Prerequisite: All other coursework completed. Fall and spring, 1-3 credits, S/U grading

DLF, DLG, DLI, DLR 603 Independent Readings in Foreign Languages

Independent readings on a selected topic in French language or literature. Fall and spring, 1-6 credits, S/U grading May be repeated for credit

DLF, DLG, DLI, DLR 699 Dissertation Research On Campus

Independent research in French, German, Italian, or Russian for the Doctor of Arts degree. Open only to candidates for the Doctor of Arts who have passed the preliminary examination. Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

DLF, DLG, DLI, DLR 700 Dissertation Research Off Campus—Domestic

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor. Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

DLF, DLG, DLI, DLR 701 Dissertation Research Off Campus—International

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

DLL 570 Introduction to Media for Language Teaching

Course open to non-D.A. graduate students. Gives students an introduction to all of the technology used in teaching languages: audio, video, computer, and Internet. Emphasis is on hands-on use and practical applications. Offered as DLL 570 and FLL 570. Prerequisites: DLL 505 and DLL 506 Fall or spring, 3 credits, ABCF grading

DLL 571 Foreign Language Technology and Education

Course open to non-D.A. graduate students. Assumes knowledge of material taught in DLL/FLL 570. Addresses more globally and more theoretically the intersection between technology and languages. Issues of cognitive learning theory and educational psychology addressed. Offered as DLL 571 and FLL 571. Prerequisites: DLL 505 and DLL 506 Fall or spring, 3 credits, ABCF grading

M.A. in Teaching Foreign Languages

FLA 505 Methods: Foreign Language

An in-depth exploration of the methods and materials for the teaching of foreign languages, literatures, and cultures. Special attention is given to the theories of first and second language acquisition and to the techniques for teaching listening, speaking, reading, and writing skills. This course gives students the opportunity to conduct observations/field experiences in grade-level (7-12) settings. 3 credits, ABCF grading

FLA 506 Curriculum Development

Drawing on theories of first and second language acquisition and research into the best practices of language teaching, this course trains future language teachers in the development of well-articulated language programs. Students have the opportunity to enjoy clinical experiences in school settings. Special attention is given to the development of a professional teaching portfolio including lesson plans, assessment instruments, and technology-based activities. 3 credits, ABCF grading

FLA 507 Critical Pedagogy

This graduate seminar is intended to introduce the ideas, theories, and practices that together constitute the field known as critical pedagogy. Critical pedagogy interprets numerous forms of academic approaches to teaching and curriculum that are informed by critical social theory. As the educational arm of critical social theory, critical pedagogy engages educators in understanding the relationships among knowledge, ideology, and power. We will read works from several critical pedagogy theorists (Freire, Shor, Giroux, McLaren, Apple, hooks) to explore some of the key themes within critical pedagogy (relationship of education to power; issues of difference and pluralism; transformative education; the social construction of knowledge; dialogic relations in the classroom; teaching for social justice). Learning through collaborative inquiry, we will translate the theories in these readings into practice and will test ideas and concepts unique to teaching and learning critical (second/foreign) language in a school setting. 3 credits, ABCF grading

FLA 549 Field Experience

Observation, inquiry, and practice in foreign language education at the secondary level including 50 hours of documented visitsations and observations at approved sites. Field experience writing logs are the basis of group discussion. Corequisite for FLA 549: FLL 505 Corequisite for FLA 550: FLL 506 1 credit, S/U grading

FLA 550 Field Experience

Observation, inquiry, and practice in foreign language education at the secondary level including 50 hours of documented visitsations and observations at approved sites. Field experience writing logs are the basis of group discussion. Corequisite for FLA 549: FLL 505 Corequisite for FLA 550: FLL 506 1 credit, S/U grading

FLA 551 Supervised Student Teaching 7-9

3 credits, S/U grading

FLA 552 Supervised Student Teaching 10-12

3 credits, S/U grading

FLA 554 Student Teaching Seminar

3 credits, ABCF grading

FLA 570 Introduction to Media for Language Teaching

Course open to non-D.A. graduate students. Gives students an introduction to all of the technology used in teaching languages: audio, video, computer, and Internet. Emphasis is on hands-on use and practical applications. Offered as DLL 570 and FLL 570. Prerequisites: DLL 505 and DLL 506 Fall or spring, 3 credits, ABCF grading

FLA 571 Foreign Language Technology and Education

Course open to non-D.A. graduate students. Assumes knowledge of material taught in DLL/FLL 570. Addresses more globally and more theoretically the intersection between technology and languages. Issues of cognitive learning theory and educational psychology addressed. Offered as DLL 571 and FLL 571. Prerequisites: DLL 505 and DLL 506 Fall or spring, 3 credits, ABCF grading
FLA 581 Foreign Language Teaching
Independent Project

Students enrolled in Track B of the M.A. program in European Languages (French, German, Italian, or Russian) or the M.A. in Hispanic Languages complete an independent project in the area of Foreign Language Teaching. The content and scope of this project must be approved by the Director of Foreign Language Pedagogy. Possible projects include a fully developed professional teaching portfolio (in print and/or electronic version), an action research study, or a classroom-based research study culminating in a publishable paper.

Prerequisites: FLA 540; matriculation in M.A. or M.A.T. in Foreign Languages
Fall and spring, 3 credits, ABCF grading
The Graduate Program in Genetics, an inter-institutional curriculum in the College of Arts and Sciences, is designed to provide training in a broad area of genetics. It offers graduate training in developmental genetics, evolutionary genetics, genomics and bioinformatics, human genetics, and molecular genetics. All students, no matter what their particular interest, are exposed to all areas of specialization offered within the curriculum. This experience ensures that the student will be prepared to take maximum advantage of the broad range of challenges that may be encountered after graduation. The breadth of the Graduate Program in Genetics makes it likely that the entering predoctoral trainees will come from many varied backgrounds. This enriches the Genetics Program as a whole and enhances student peer interactions.

The first-year student experience includes laboratory rotations during which the student works in the laboratories of three or four different faculty members. These rotations allow the student to gain firsthand knowledge of the methods and approaches taken by each laboratory and provide a basis for selecting a thesis research advisor. Students are expected to join a laboratory within their first year.

Students have the opportunity to further broaden their knowledge by participating in journal clubs on thematic topics that are offered by faculty, and by taking elective courses from offerings both within and outside the Genetics Program. The specific elective course or courses taken by a student are determined in conjunction with a faculty advisor to best meet the student’s particular needs. Trainees participate in two ongoing research seminar series. A student research seminar provides each trainee with a regular opportunity to present his or her work to colleagues and to faculty. Students also attend research seminars given by internal and visiting faculty to keep abreast of the latest developments and potential areas of future excitement in the field of genetics.

Facilities
The primary training facilities are Stony Brook University, Cold Spring Harbor Laboratory, and Brookhaven National Laboratory. Program faculty at Stony Brook are drawn primarily from departments within the College of Arts and Sciences or the School of Medicine. The Life Sciences Building, which houses the Genetics Program office, is home to the Departments of Biochemistry and Cell Biology, Ecology and Evolution, Molecular Genetics and Microbiology, and Neurobiology and Behavior, all of which are represented in the Genetics Program. The Health Sciences Center, located across the street from the Life Sciences Building, is the primary home for departments in the School of Medicine, including faculty in the Departments of Medicine, Molecular Pathology and Immunology, Pharmacological Sciences, and Physiology and Biophysics. In addition to these departments, the program also includes faculty in the Departments of Applied Mathematics and Statistics, Biomedical Engineering, and Computer Science. An important new facility at Stony Brook is the Centers for Molecular Medicine, a state-of-the-art research building adjacent to the Life Sciences Building. This building houses four interdepartmental thematic research centers: The Centers for Brain and Spinal Cord Research, Developmental Genetics, Infectious Diseases, and Structural Biology. Each of these centers harbors Genetics Program faculty. The Centers for Molecular Medicine provide both an intellectual and a physical catalyst for facilitating interactions between Stony Brook scientists with common interest in these areas of modern biology, irrespective of their departmental affiliation.

Cold Spring Harbor Laboratory is a modern, world-renowned research institute that provides numerous unique opportunities for trainees. Although the faculty at Cold Spring Harbor are not organized into departments, there is internationally recognized strength in the areas of Bioinformatics, Cancer Biology, Neurobiology, Plant Genetics, and Structural Biology. The world-class facilities that are available at Brookhaven National Laboratory provide additional unique resources for trainees in the Genetics Program, including the National Synchrotron Light Source, one of the most unique instruments in the world for probing biological phenomenon. Research faculty at Brookhaven have widely recognized programs in the molecular biology of microbial, plant, and animal systems, and have a leading role in the emerging field of proteomics.

Admission
The Graduate Program in Genetics requires the following in addition to the minimum Graduate School admission requirements:

A. Superior undergraduate performance, which should include some formal training in genetics;

B. Report of Graduate Record Examination (GRE) General Test scores. Note that subject-specific tests (i.e., biology) are not required, but are helpful additional information when available;

C. Three letters of recommendation;

D. Acceptance by the Graduate Program in Genetics and by the Graduate School.

The program does not require, but prefers to see, evidence of research activity as an undergraduate. Whenever possible, prospective students are encouraged to visit for interviews with program faculty.

All students who are accepted into the program are accepted with full support. The support package for the 2008-2009 academic year includes an annual stipend of $26,000, a tuition scholarship, and health insurance benefits. Students who remain in good standing with both the Genetics Program and the Graduate School receive tuition scholarships, health insurance benefits, and stipend support throughout their graduate careers.
Faculty

Distinguished Professors

Grollman, Arthur, M.D., Johns Hopkins University: Mechanisms of DNA repair and mutagenesis in mammalian cells.

Lennarz, William J., Ph.D., 1959, University of Illinois: Biosynthesis and function of cell surface glycoproteins.

Rubin, Clinton, Ph.D., 1983, Bristol University: Physical factors influencing bone cell, cartilage, and tissue kinetics; treatments.

Sternglanz, Rolf, Ph.D., 1967, Harvard University: Yeast molecular genetics.

Wimmer, Eckard, Dr.rer.nat., 1962, Göttingen, Germany: Poliovirus replication and picornaviral pathogenesis.

Professors

Bahou, Wadie, M.D., 1980, Massachusetts Medical Center: Human genetics; gene therapy.

Bell, Michael, Ph.D., 1976, University of California, Los Angeles: Evolutionary genetics.

Benach, Jorge, Ph.D., 1971, Rutgers University: Infectious disease immunology.

Bliska, James B., Ph.D., 1988, University of California, Berkeley: Molecular and cellular basis of bacterial-host cell interactions.

Carter, Carol A., Ph.D., 1972, Yale University: Retroviral viral assembly and post-assembly events.

Chen, Wen-Tien, Ph.D., 1979, Yale University: Cancer invasion and angiogenesis.

Citovsky, Vitaly, Ph.D., 1987, Hebrew University, Jerusalem: Nuclear transport and intercellular communication in plants.

Deutsch, Dale G., Ph.D., 1972, Purdue University: Molecular neurobiology of anandamide 2-AG (endogenous marijuana).

Eanes, Walter, Ph.D., 1976, Stony Brook University: Genetic variation in natural populations.

Frohman, Michael, M.D., Ph.D., 1985, University of Pennsylvania: Early mammalian development.

Furie, Martha B., Ph.D., 1980, Rockefeller University: Molecular basis of cell-cell and cell-substrate interactions.

Futcher, A. Bruce, D.Phil., 1981, University of Oxford: Control of cell division in eukaryotic cells.

Gergen, J. Peter, Ph.D., 1982, Brandeis University: Regulation of transcription and the genetic control of development.

Ghebrehiwet, Bethane, D.V.M./D.Sc., 1974, University of Paris, France: Biochemistry; role of complement C1q receptors during infection and inflammation.

Konopka, James, Ph.D., 1985, University of California, Los Angeles: Cell growth and development in yeast; pheromone signal transduction.

Malbon, Craig, Ph.D., 1976, Case Western Reserve University: Signal transduction and gene regulation in differentiation and development.

Marcu, Kenneth B., Ph.D., 1975, Stony Brook University: Immunoglobulin gene expression and recombination.

Moll, Ute, M.D., 1985, University of Ulm: Tumor suppressor genes; role of p53 in human cancer.

Reich, Nancy, Ph.D., 1983, Stony Brook University: Signal transduction and activation of gene expression by cytokines; cellular defense responses to viral infection.

Reinitz, John, Ph.D., 1988, Yale University: Computational biology; modeling of gene regulatory networks.

Smith, Steven, Ph.D., 1985, University of California, Berkeley: Structural biology.

Associate Professors

Bingham, Paul, Ph.D., 1979, Harvard University: Regulation of differentiation; transposable elements; regulation of splicing.

Dean, Neta, Ph.D., 1988, University of California, Los Angeles: Protein trafficking in yeast.

Hadjajrgou, Michael, Ph.D., 1992, City University of New York: Human molecular genetics; functional genomics.

Hatchwell, Eli, M.D., 1985 University of Cambridge; Ph.D., 1995 Oxford University: Sporadic human genetic disease.

Holdener, Bernadette, Ph.D., 1990, University of Illinois: Genetics of mammalian development.

Kernan, Maurice, Ph.D., 1990, University of Wisconsin: Molecular basis of mechanical senses.

Leatherwood, Janet, Ph.D., 1993, Johns Hopkins University: Cell cycle control of DNA replication.

McKee, Eri, Ph.D., Temple University: Rotavirus and hantavirus pathogenesis; virus directed cell signaling and transcriptional responses.

Mackow, Erich, Ph.D., 1985 University of Cambridge; Ph.D., 1995 Oxford University: Sporadic human genetic disease.

Neiman, Aaron, Ph.D., 1994, University of California, San Francisco: Developmental regulation of the secretory pathway.

Thomson, Gerald, Ph.D., 1995, University of California, Berkeley: Biogenesis of bacterial adhesion organelles.

Thomsen, Gerald, Graduate Program Director, Ph.D., 1988, Rockefeller University: Vertebrate embryo development.

Tsirka, Stella, Ph.D., 1989, Aristotle University of Thessaloniki, Greece: Tissue plasminogen activator in the mammalian hippocampus; neuronal-microglial interactions.

White, Thomas, Ph.D., 1994, Harvard Medical School: Gap junction functions defined by genetic diseases and gene knockouts.

Assistant Professors

Canli, Turhan, Ph.D., 1993, Yale University: Biopsychology; neural and genetic basis of emotion and cognition.

Carpino, Nicholas, Ph.D., 1997, Stony Brook University: Positive and negative regulation of T cell receptor signaling.

Cohen, J. Craig, Ph.D., 1976, University of Mississippi Medical Center: Molecular genetics and physiology; gene therapy.

Colognato, Holly, Ph.D., 1999, Rutgers University: Extracellular matrix in the brain; roles during development and neurodegeneration.

Crawford, Howard, Ph.D., 1993, University of Texas Southwestern Medical Center at Dallas: Pancreatic cancer.

Hsieh, Jen-Chih, Ph.D., 1994, Duke University: The molecular mechanism of Wnt signaling.

Karzai, Wali, Ph.D., 1995, Johns Hopkins University: Structure and function of RNA-binding proteins and biochemical studies of the Sm2B-SsoA quality control system.

Maletic-Savatic, Mirjana, M.D., Ph.D., 1995, University of Belgrade, Yugoslavia: Neural stem cell differentiation.

Sirotkin, Howard, Ph.D., 1996, Albert Einstein: Specification and patterning of the neural plate; vertebrate developmental genetics.

Takemaru, Ken-Ichi, Ph.D., Graduate University for Advanced Studies, Japan: Wnt signaling in development and disease.

True, John R., Ph.D., 1995, Duke University: Drosophila melanin patterning; developmental genetics and natural selection.

Zong, Wei-Xing, Ph.D., 1999, UMDNJ-Robert Wood Johnson Medical School: Molecular regulation of apoptotic and necrotic cell death.

Adjunct Faculty at Cold Spring Harbor Lab

Cline, Hollis, Professor, Ph.D., 1985, University of California, Berkeley: Neuronal development and plasticity.

Dubnau, Josh, Assistant Professor, Ph.D., 1995 Columbia University: Learning; memory; genetics; behavior.

Hannon, Greg, Professor, Ph.D., 1992, Case Western Reserve University: Growth control in mammalian cells.

Hirano, Tatsuya, Professor, Ph.D., 1989, Kyoto, Japan: Higher order chromosome structure and function.

Huang, Z. Josh, Associate Professor, Ph.D., 1994, Brandeis University: Neuroscience;
experience-dependent development of the neocortex; mouse genetics; neurotrophins.

Jackson, David, Professor, Ph.D., 1991, East Anglia, England: Plant development; genetics, cell-to-cell mRNA, and protein trafficking.

Joshua-Tor, Leemor, Professor, Ph.D., 1990, Weizmann: Structural biology and molecular recognition.

Krainer, Adrian R., Professor, Ph.D., 1986, Harvard University: Mammalian mRNA splicing; regulation of alternative splicing; biochemistry of spliceosome assembly and RNA cleavage-ligation; origin and evolution of introns.

Laebnik, Yuri, Professor, Ph.D., 1986, St. Petersburg State University: Apoptosis; caspases; cancer chemotherapy; proteases.

Lowe, Scott, Professor, Ph.D., 1994, Massachusetts Institute of Technology: Apoptosis; anti-cancer therapy resistance.

Martienssen, Robert, Professor, Ph.D., 1986, University of Cambridge: Plant developmental genetics; transposable elements; chloroplast biogenesis.

McCombie, Richard, Professor, Ph.D., 1982, University of Michigan: Computational molecular biology.

Mills, Aia, Professor, Ph.D., 1997, University of California, Irvine: Functional genomics; tumorigenesis; development.

Mittal, Vivek, Associate Professor, Ph.D., 1994, Jawaharlal Nehru University: Tumor-mediated neovascularization; ligation of transcription factors; transcription profiling; RNA interference; dendritic cells.

Muthuswamy, Senthil, Associate Professor, Ph.D., 1995, McMaster University: Understanding cancer initiation using 3-D epithelial structures.

Powers, Scott, Associate Professor, Ph.D., 1983, Columbia University: Cancer gene discovery; cancer diagnostics and therapeutics; cancer biology.

Sebat, Jonathan, Assistant Professor, Ph.D., 2002, University of Idaho: Copy number variation; segmental duplication; genetics; neurogenetics; ROMA; microarray.

Skowronski, Jacek, Associate Professor, M.D., Ph.D., 1981, Lodz, Poland: HIV genes and signal transduction in T cells.

Spector, David, Professor, Ph.D., 1980, Rutgers University: Functional organization of the mammalian cell nucleus.

Stenlund, Arne, Associate Professor, Ph.D., 1984, Uppsala, Sweden: DNA replication of bovine papillomavirus.

Stillman, Bruce, Professor, Ph.D., 1979, Australian National: Eukaryotic DNA replication and its control.

Tansey, William, Professor, Ph.D., 1991, University of Sydney: Cell cycle; gene regulation.

Timmermans, Marja, Associate Professor, Ph.D., 1996, Rutgers University: Plant development.

VanAelst, Linda, Professor, Ph.D., 1991, Leuven, Belgium: Role of Ras in mammalian cell transformation.

Zhang, Michael, Professor, Ph.D., 1987, Rutgers University: Computational biology and genome informatics.

Zhong, Yi, Professor, Ph.D., 1991, University of Iowa: Neurophysiology; drosophila; learning and memory; neurofibromatosis; signal transduction.

Research Faculty at Brookhaven National Laboratory

Dunn, John J., Senior Microbiologist, Ph.D., 1970, Rutgers University: Transcription, processing, and translation of RNA.

Freimuth, Paul, Scientist, Ph.D., 1986, Columbia University: Mechanism of adenovirus entry into cells; role of cell adhesion molecules.

Fu, Dax, Biochemist, Ph.D., 1996, Mayo Graduate School of Medicine: Structures of representative channel and transporter proteins.

Number of teaching, graduate, and research assistants, Fall 2007: 59

1) Department of Neurobiology and Behavior
2) Department of Biochemistry and Cell Biology
3) Department of Molecular Genetics and Microbiology
4) Department of Ecology and Evolution
5) Department of Medicine
6) Department of Pharmacological Sciences
7) Department of Oral Biology and Pathology
8) Department of Pathology
9) Department of Orthopaedics
10) Department of Computer Sciences
11) Department of Applied Mathematics and Statistics
12) Department of Biophysics and Physiology
13) Department of Psychology
14) Department of Pediatrics, Neonatology

Requirements for the Ph.D. Degree

In addition to the requirements of the Graduate School, the following are required:

A. Course Requirements

1. HBM 503/BMO 503/MCB 503 Molecular Genetics
2. BGE 510 Graduate Genetics
3. MCB 520 Graduate Biochemistry
4. MCB 656 Cell Biology
5. BGE 531 Graduate Student Seminar in Genetics must be taken each semester.

6. Three semesters of BGE 691 Journal Club typically taken during the first and second years of study. Students select from thematic journal club topics that are organized each semester by faculty at the different institutions. This exercise provides important training in critical analysis of the literature while also allowing students to broaden their knowledge base on selected topics of interest.

7. An elective course approved by the program director. Typically these courses are in the Biological Sciences (e.g., MCB 657 Developmental Biology; HBP 533 Immunology; HBM 640 Microbiology; or BEE 565 Molecular Evolution), but courses may also be taken in other relevant areas (e.g., Computer Sciences, Bioengineering).

8. Two semesters of BGE 530 Laboratory Rotation in Genetics. Students will generally work in the laboratories of three or four different faculty members during the first year. The particular laboratories are determined by students based on their interactions with individual faculty and must be approved by the graduate program director.

9. GRD 500 Integrity in Science. This required one-semester course on ethics is typically taken in the spring semester of the student’s first year.

10. Requirements for any specific student, in addition to those enumerated above, that will be beneficial due to a student’s prior training and/or area of specialization will be determined by the program director and executive committee in conjunction with the student and appropriate advisory committee.
B. Comprehensive (Preliminary) Examination

At the beginning of the fourth semester, students will take a written comprehensive (preliminary) examination covering all areas of genetics.

C. Thesis Proposal Examination

After successful completion of the comprehensive (preliminary) examination, the student prepares a written proposal for the thesis research project. This proposal has a format of a grant application, including information of the background and significance of the project, a detailed research plan, and any preliminary results that the student has generated that indicate the feasibility of the project. This written proposal is orally defended before a thesis proposal examination committee. This committee does not include the student’s thesis advisor, but is selected by the student in conjunction with his or her advisor and program director. The thesis proposal defense should occur during the fifth semester of graduate study. Generally, the faculty who participate in a student’s thesis proposal examination committee then join with the thesis advisor to form the student’s thesis advisory committee.

D. Advancement to Candidacy

After successful completion of all required and elective courses, the comprehensive (preliminary) examination, and the thesis proposal examination, the student will be recommended to the Graduate School for advancement to candidacy.

E. Ph.D. Dissertation

The research for the Ph.D. dissertation is conducted under the supervision of the thesis advisory committee. Upon approval of the completed dissertation by this committee, a formal public oral defense of the dissertation is scheduled, at which the student presents his or her findings and is questioned by members of the examining committee and by other members of the audience.

F. Teaching Requirement

It is expected that each graduate student completing a doctoral degree will have functioned as a teaching assistant during at least two semesters of his or her graduate career (BIO 600).

G. Residence Requirement

The University requires at least two consecutive semesters of full-time graduate study. The demands of the course of study necessitate a longer period of residence.

Courses

BGE 510 Graduate Genetics
This course investigates fundamental aspects of the transmission and expression of genetic information in prokaryotic and eukaryotic systems. The course is organized in a way that allows the students to appreciate the breadth of genetics research, while also gaining an in-depth understanding of selected important topics. Students explore the use of both classical and molecular genetic approaches to understand biological processes in genetics model systems including yeast, flies, worms, mouse, and man.

Spring, 3 credits, ABCF grading

BGE 530 Laboratory Rotation
The student rotates through laboratories of four different genetics program faculty members during the first year. The selection of the laboratories is made by the student, in conjunction with individual faculty, and with the approval of the program director. By taking part in ongoing projects, the student will learn experimental procedures and techniques and become acquainted with research opportunities in the participating programs. Prerequisite: Permission of instructor

Fall and spring, 1-8 credits, S/U grading

May be repeated once for up to eight credits

BGE 531 Graduate Student Seminar in Genetics
Students have the opportunity to present their research to other students and faculty on an annual basis. Students in the first or second year will present brief seminars as part of a one-day symposium with all of their classmates. Advanced students present research seminars as part of a weekly research seminar series that is attended by faculty and students. Although the first- and second-year students do not present in this weekly seminar series, they should attend these seminars as it provides an excellent mechanism for learning about current areas of research interest.

Fall and spring, 0-1 credits, S/U grading

May be repeated for credit

BGE 550 Genetics Outside Seminar
Outside seminars and special topics courses in areas relating to genetic studies.

1-4 credits, ABCF grading

May be repeated for credit

BGE 599 Graduate Research
Original investigation undertaken with the supervision of a member of the program.

Fall and spring, 1-9 credits, S/U grading

May be repeated for credit

BGE 691 Readings in Genetics
Journal Club on thematic topics in different areas of current genetics research. Prerequisite: Permission of instructor

May be repeated for credit

BGE 699 Dissertation Research On Campus
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

BGE 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and the Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

BGE 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

BGE 800 Summer Research
0 credit, S/U grading

May be repeated for credit
As the core discipline examining Earth’s natural processes and materials, Geosciences boasts unparalleled diversity. Spurred by urgent scientific and social questions, ranging from environmental concerns to the origin and evolution of the planet itself, the Geosciences are experiencing remarkable growth, with excellent career opportunities. The Geosciences encompass many disciplines including geochemistry, geology, and geophysics, and its interdisciplinary nature fosters natural links not only with chemistry and physics, but also with biology, engineering, environmental science, health fields, and materials science. Developments in technology and new innovative approaches have transformed graduate study in many areas within Geosciences, and students participate in research utilizing state-of-the-art instrumentation and facilities.

Graduate students may choose among degree programs with emphasis in different areas in Geosciences. Ph.D. and M.S. thesis-based programs are offered with concentrations in areas including crystal chemistry, geochemistry, mineral and rock physics, petrology, sedimentary geology, and seismology and tectonics (described in more detail below). There is also a non-thesis M.S. program in hydrogeology focused primarily on training professionals in environmentally related fields. Also offered is an M.A. in Teaching Earth Science, which leads to provisional certification for teaching earth science in secondary schools of New York State.

The Department of Geosciences occupies a modern, well-equipped building that houses extensive experimental and analytical labs, faculty and graduate student offices, numerous computer workstations, a machine shop, an electronics support group, and the Geosciences Resource Room. The Long Island Groundwater Research Institute (LIGRI), the Marine Sciences Research Center (MSRC), the Mineral Physics Institute, and nearby Brookhaven National Laboratory offer additional support and laboratory facilities for graduate student research. In particular, the National Synchrotron Light Source (NSLS) at Brookhaven offers unparalleled opportunities for faculty and graduate students to perform unique experiments requiring high-intensity X-rays and is only 20 miles away.

Areas of Emphasis in Graduate Study and Research

The Department’s philosophy has been to pursue excellence by concentrating its research initiatives in specific areas of the Geosciences. Graduate students benefit from greater focus and also enjoy close interaction with faculty members. A distinctive aspect of graduate study in the Department of Geosciences is the opportunity for collaborative research, often involving several faculty members. The Department’s extensive state-of-the-art computers, laboratory facilities, and modern instrumentation have helped to foster a well-earned reputation for observational, experimental, and multifaceted approaches to Geosciences research. Cooperative programs with other departments, nearby institutions, and national laboratories provide access to unique facilities (e.g., NSLS).

Seismology, Tectonics, and Shallow Surface Geophysics

A primary focus in seismology and tectonics is the determination of detailed three-dimensional earth structure, from the core to the surface, and related studies on the dynamics that drives mantle convection, deformation of the lithosphere, and plate tectonics in general. Particular emphasis is placed on interdisciplinary research and collaboration, where inferences made from geodetic, geodynamic, and seismological investigations are integrated with findings from the fields of geochronology, mineral and rock physics, and petrology. Areas of specific focus in seismology include anisotropy and attenuation, core-mantle boundary structure, earthquake source parameters, core structure, strong ground motion studies, theoretical studies on seismic wave propagation, and upper mantle structure. Investigations in tectono-physics include the coupling between mantle convection and lithospheric dynamics; the development of the kinematics, mechanics, and seismicity within plate boundary deformation zones; and the inference of mantle flow beneath the lithosphere. Current projects involve using earthquake and space geodetic data to infer the deformation fields and employing analog, analytical, and numerical modeling to understand surface geodynamical observations, ranging from geoid, topography, plate motions, and surface deformations in the global and regional scales to the partitioning of strain and tectonic implications at geometrically complex plate margins. All of these projects emphasize the use of integrated geodetic, seismic, structural, and field data to understand the composition, dynamics, and structure of the Earth’s interior, as well as the driving forces for plate movements and deformations. The topics in shallow surface geophysics include field geophysical surveys of glaciological deformation of Long Island sediments using electrical resistance, ground-penetrating radar, seismic reflection, and refraction as well as borehole geophysics.

Mineral and Rock Physics

Research in these fields focuses on the investigation of the structure and composition of the Earth, geophysical properties of Earth materials, and the mechanical behavior of the crust and mantle. An important emphasis is the study of high-pressure and high-temperature phases and assemblages, particularly those of relevance to the mantle. In situ measurement of elastic properties, compressibility, and determination of crystal structure complement studies of high-pressure phase relations for constraining models for Earth’s mantle and equations of state for mantle phases. Specific projects include determination of ultrasonic wave velocities of minerals and rheological determination of the strength of minerals at the pressure and temperature...
conditions of the Earth’s mantle to depths greater than 500 km. Research initiatives in these areas are closely linked to the activities of the Mineral Physics Institute at Stony Brook and the NSF Consortium for Materials Properties Research in Earth Sciences (COMPRES). Facilities available in the Department of Geosciences and the Mineral Physics Institute include equipment for ultrasonic interferometry, Brillouin spectroscopy, and multi-anvil apparatus for experiments at high pressure and temperature; these are all integrated with synchrotron X-ray sources at the NSLS. Complete single-crystal and powder X-ray diffraction facilities and transmission electron microscopy and electron diffraction are available. Another important area of study is rock physics, fluid flow, and earthquake mechanics. Experimentally and theoretically based, this program focuses on brittle fracture, frictional instability, hydromechanical behavior, mechanical compaction of porous rock, and strain localization. The rock mechanics laboratory includes a triaxial press, an acoustic emission system, and permeameters.

Crystal Chemistry and Crystallography

The Department has a strong background in the study of Earth materials at the atomic and molecular level, and in using the results of these studies to interpret the properties of materials constituting Earth from crust to core. Two centers of excellence, the Center for Environmental Molecular Sciences (CEMS) and the Mineral Physics Institute (MPI), concentrate on the behavior of upper crustal and Earth’s interior, respectively. Both employ a wide range of structural probes, some located in the Department and others located at national and international synchrotron X-ray and neutron facilities. Within the Department, extensive facilities for single-crystal and powder X-ray diffraction, with capabilities for in situ high-temperature and high-pressure studies exist. Projects emphasize crystal structure studies on carbonates, hydroxides, oxides, silicates, and sulfides, including characterization of phase transitions, ordering phenomena, and ion exchange. Convenient access to the Brookhaven National Laboratory and the National Synchrotron Light Source provides opportunities for unique experiments requiring a high-intensity X-ray source. Other projects utilize X-ray absorption spectroscopy to examine local structure in minerals and neutron diffraction for studies of hydrous phases. Many of the Department’s faculty are actively engaged in the design and construction of the next generation of beamlines required for high pressure and environmental investigations. These facilities are being designed with the requirements of the Stony Brook and wider national and international user base in mind. This work is complemented by electron diffraction using the Department’s transmission electron microscope.

Geochemistry

There are broad opportunities for graduate study and research in many areas of geochemistry. Major initiatives exist in aqueous and hydrothermal geochemistry, geochemistry of mineral-fluid interfaces, isotope and trace-element geochemistry, and theoretical and experimental geochemistry of mineral-melt systems. All programs have a strong experimental foundation, and many integrate experimental work with field studies. Specific areas of research utilizing trace elements and radiogenic isotopes include evolution of Archean and Phanerozoic crust and geochronology of lithologic assemblages. These integrate with petrologic studies of sedimentary, metamorphic, and igneous terranes throughout the world. Research involving the chemistry and structure of sulfide and carbonate mineral surfaces are among the programs in low-temperature aqueous geochemistry; these include emphasis on geocatalysis, crystallization, and trace element incorporation mechanisms, as well as the role of sulfides in the origin of life. Field-related studies focus on fluid chemistry in active hydrothermal systems. Research on silicic melts combines theoretical and experimental approaches for characterizing speciation and crystal-melt equilibria, and also for examining nucleation and growth. Closely related experimental studies focus on phase equilibria, solid-solution models, and the development of geothermometers and geobarometers, including applications in field studies.

Experimental and analytical work makes use of the Department’s electron microprobe, transmission electron microscope, thermal ionization mass spectrometers, FT-IR, Mössbauer lab, DCP and ion chromatography labs, X-ray diffraction facilities, and three synthesis and experimental petrology labs. Additional work uses facilities in other Stony Brook departments, including NMR spectrometers located in the Department of Chemistry, as well as facilities at nearby Brookhaven National Laboratory, including the NSLS.

Petrology

Opportunities for graduate study and research in petrology range from atomic-scale investigations, for example, dealing with the structure of glasses, to global questions regarding the relationships of magmatic suites to large-scale mantle and crustal processes. Projects include spectroscopic and quantum chemical approaches for examining mechanisms of volatile dissolution and crystal nucleation in melts and experimental investigations of the effects of pressure, temperature, and volatile composition on stabilities of minerals and melts, with corresponding development of thermodynamic models. Field and laboratory work are integrated in some studies. Experiments are being applied to Martian meteorites.

This work is supported by experimental facilities that contain controlled-atmosphere gas-mixing furnaces, cold-seal bombs, piston-cylinder apparatus, internally heated pressure vessels, as well as multi-anvil apparatus for experiments at high temperature and pressure conditions. Analytical facilities include an electron microprobe, a transmission electron microscope, thermal ionization mass spectrometers, a Mössbauer lab, and X-ray diffraction facilities.

Sedimentary Geology

Research initiatives in sedimentary geology at Stony Brook integrate geochemistry with field, petrologic, and stratigraphic studies. Trace element and isotopic studies of terrigenous sedimentary rocks provide information on their provenance, age, and composition, which yield insight to broader issues of crustal evolution, including sediment subduction, growth of continental crust and the sedimentary mass, and recycling of sedimentary rocks. Carbonate rocks and their diagenesis are another important area of research that utilizes a wide range of approaches. Petrography is combined with microanalytical techniques for trace elements and both stable and radiogenic isotopes to reconstruct
the diagenetic environments and the physicochemical characteristics of paleohydrologic systems. Emphasis is also placed on the quantitative modeling of rock-water interaction. A strong component of fieldwork is common for studies of both clastics and carbonates. Analytical facilities include the Department’s electron microprobe, optical and cathodoluminescence petrography and electron microscopy facilities, a mass spectrometry lab, a Mössbauer lab, DCP and ion chromatography labs, X-ray diffraction facilities, and a variety of facilities at the NSLS.

Planetary Science

Graduate research opportunities are available in the field of planetary science, including planetary geochemistry and petrology, planetary spectroscopy, planetary geophysics, and astrobiology with current focus on Mars and the Earth’s moon. Several faculty and students have been actively involved in planetary missions, including Mars Global Surveyor, Mars Exploration Rovers, and Mars Odyssey. Projects are available to evaluate geological, chemical, spectroscopic, and geophysical data that have been returned from these and other missions. Planetary science research is also supported by an assortment of experimental and analytical facilities. A recently installed infrared spectroscopy laboratory supports experimental and analytical studies in emission and reflectance spectroscopy of Mars and lunar analog materials as well as investigations of the fundamental infrared spectral properties of a wide variety of minerals. High-pressure-high temperature experimental laboratories (see details under Petrology and Mineral and Rock Physics) may be used for evaluating the origin and history of igneous rocks from terrestrial planets and rocky satellites. Low-temperature and hydrothermal experimental laboratories are available for the study of Martian near-surface aqueous processes and for investigating issues related to astrobiology. Experimental laboratories are also supported by a broad array of analytical facilities (see details under Crystal Chemistry and Crystallography, Geochemistry and Sedimentary Geology).

Hydrogeology

The non-thesis M.S. program with a concentration in hydrogeology is designed to give those with a B.S. degree in physical sciences a solid foundation of theoretical and practical graduate training emphasizing the physical and geochemical aspects of hydrogeology. Coursework and a final research project totaling 30 graduate credits are arranged to accommodate working professionals, with most courses taught in the evenings. This is a part-time degree program. A formal thesis is not required. Coursework includes groundwater hydrology, aqueous geochemistry, rock and soil physics, numerical hydrology, statistics and probability, and organic contaminant hydrology. Final research projects are arranged individually with faculty supervisors and are designed to give students experience in field, laboratory, or theoretical approaches.

Admission

For admission to the Graduate Program in Geosciences, the following, in addition to the Graduate School requirements, are required:

A. A bachelor’s degree in one of the earth or space sciences or in biology, chemistry, physics, mathematics, or engineering;

B. A minimum average of B for all undergraduate coursework and a B average for courses in the sciences;

C. Results of the Graduate Record Examination (GRE) General Test;

D. Acceptance by both the Department and the Graduate School.

In special cases, a student not meeting requirements A and B may be admitted on a conditional basis. Upon admission, the student will be informed of the requirements that must be satisfied for termination of this status.

Distinguished Professors

Lindsley, Donald H., Emeritus, Ph.D., 1961, Johns Hopkins University: Application of phase equilibrium studies of silicate and oxide minerals to metamorphic and igneous petrology.

Weidner, Donald J., Ph.D., 1972, Massachusetts Institute of Technology: Structure of the Earth’s interior as revealed by seismic waves and laboratory determinations of physical properties.

Distinguished Service Professors

Hanson, Gilbert N., Ph.D., 1964, University of Minnesota: Application of radiometric and geochronological methods to petrologic and tectonic problems.

Liebermann, Robert C., Ph.D., 1969, Columbia University: Mineral physics; elastic and anelastic properties of rocks and minerals and their applications to the Earth’s interior.

Professors

Davis, Daniel M., Graduate Program Director, Ph.D., 1983, Massachusetts Institute of Technology: Quantitative geophysical modeling of fold and thrust belts; geodynamic modeling of the state of stress in the lithosphere.

Holt, William E., Ph.D., 1989, University of Arizona: Seismotectonics; kinematics and dynamics of crust and mantle deformation; earthquake source parameter studies.

McLennan, Scott M., Ph.D., 1981, Australian National University: Geochemistry of sedimentary rocks; sedimentary petrology.

Parise, John, Ph.D., 1980, James Cook University of North Queensland: Synthesis and characterization of zeolites for use as selective catalysts; characterization using normal X-ray and neutron diffraction techniques; investigation of crystallizing gels using small-angle neutron scattering; structural modeling of silicates.

Reeder, Richard J., Ph.D., 1980, University of California, Berkeley: Low-temperature geochemistry; mineralogy; crystal chemistry.

Schoonen, Martin A.A., Interim Dean of Stony Brook Southampton, Ph.D., 1989, Pennsylvania State University: Kinetics and thermodynamics of low-temperature and hydrothermal water-rock interaction; theoretical geochemical modeling; geochemistry of natural waters.

Wong, Teng-fong, Ph.D., 1980, Massachusetts Institute of Technology: Experimental rock physics; fault mechanics.

Associate Professors

Phillips, Brian, Ph.D., 1990, University of Illinois at Urbana-Champaign: Aqueous geochemistry; NMR spectroscopy; mineralogy and structural chemistry of silicates and other oxides.

Rasbury, E. Troy, Undergraduate Program Director, Ph.D., 1998, Stony Brook University: Sedimentary geochemistry; geochronology; chronostatigraphy.

Wen, Lianxing, Ph.D., 1998, California Institute of Technology: Mantle rheology and dynamics; seismic structures of the Earth’s mantle; new techniques for calculating viscous flow and seismic wave propagation.

Assistant Professor

Research Assistant Professor

Rogers, Andrea Deanne, Ph.D., 2005, Arizona State University: Remote sensing, planetary surface processes, GIS.
Degree Requirements

The Department of Geosciences offers programs leading to the M.A.T., M.S., and Ph.D. degrees in the Geosciences. The Master of Arts in Teaching degree in Earth Science is a non-thesis degree for which all requirements can be completed in three semesters.

The M.S. degree with concentration in Hydrogeology is a non-thesis M.S. with most courses offered at times appropriate for working professionals.

The M.S. degree in Geosciences with thesis is typically not a terminal degree. Many students seeking Ph.D. candidacy first earn an M.S. degree.

Students become candidates for the Ph.D. in Geosciences by completing preparatory work leading to successful completion of the Ph.D. preliminary examination. Students are urged to obtain a more detailed description of procedures from the Geosciences Graduate Handbook.

Final responsibility for adhering to degree requirements and meeting all deadlines rests solely with the student.

Requirements for the Ph.D. Degree in Geosciences

Advancement to Ph.D. candidacy is gained after the successful completion of the Ph.D. preliminary examination. The examination is the culmination of an evaluative process that begins when the student arrives at Stony Brook. In particular, the faculty seek evidence of scientific creativity, originality, vigor, and flexibility, along with the basic background knowledge, skills, and critical faculties needed to carry out advanced independent research in the student's chosen field. The minimum residence requirement is two consecutive semesters of graduate study. There is no language requirement.

A. Course Requirements

Course requirements are flexible and are determined in consultation with the student's academic advisory committee at the beginning of studies. Academic advisory committees are assigned to students at the time of their arrival at Stony Brook, and the composition of the committee may be changed at the student's request, with the approval of the graduate program director. During their first two years in the program, students generally take one to three courses per semester. In addition, they participate in appropriate formal and informal seminars. During their first fall semester, all students must take GEO 500, Geosciences Research Seminar. In addition, all students must register for GEO 696, Geoscience Colloquium, and GEO 697, Geoscience Seminar, each semester, and GEO 600, Practicum in Teaching, at least once.

Among the courses offered are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 503</td>
<td>Mineral Equilibria</td>
</tr>
<tr>
<td>GEO 507</td>
<td>Petrogenesis</td>
</tr>
<tr>
<td>GEO 514</td>
<td>Physical Hydrogeology</td>
</tr>
<tr>
<td>GEO 515</td>
<td>Geohydrology</td>
</tr>
<tr>
<td>GEO 517</td>
<td>Crystal Chemistry</td>
</tr>
<tr>
<td>GEO 518</td>
<td>Carbonate Sediments</td>
</tr>
<tr>
<td>GEO 519</td>
<td>Geochemistry of Natural Waters</td>
</tr>
<tr>
<td>GEO 521</td>
<td>Isotope and Trace Element Geology</td>
</tr>
<tr>
<td>GEO 524/MAR 524</td>
<td>Organic Contaminant Hydrogeology</td>
</tr>
<tr>
<td>GEO 526</td>
<td>Low-Temperature Geochemistry</td>
</tr>
<tr>
<td>GEO 533</td>
<td>Geochemistry of the Solid Earth</td>
</tr>
<tr>
<td>GEO 550</td>
<td>Global Tectonics</td>
</tr>
<tr>
<td>GEO 551</td>
<td>Physics of the Earth I</td>
</tr>
<tr>
<td>GEO 552</td>
<td>Physics of the Earth II</td>
</tr>
<tr>
<td>GEO 556</td>
<td>Solid-State Geophysics</td>
</tr>
<tr>
<td>GEO 564/AMS 562</td>
<td>Numerical Hydrogeology</td>
</tr>
<tr>
<td>GEO 573</td>
<td>Hydromechanical Behavior of Geomaterials</td>
</tr>
</tbody>
</table>

A number of other courses are offered periodically according to student demand, either in a formal classroom setting or as Directed Studies (GEO 585). These include the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 505</td>
<td>Experimental Petrology Laboratory</td>
</tr>
<tr>
<td>GEO 506</td>
<td>Theoretical Petrology</td>
</tr>
<tr>
<td>GEO 508</td>
<td>Rock-Forming Minerals</td>
</tr>
<tr>
<td>GEO 522</td>
<td>Planetary Sciences</td>
</tr>
<tr>
<td>GEO 528</td>
<td>Carbonate Geochemistry</td>
</tr>
<tr>
<td>GEO 531</td>
<td>Crystalline Solids</td>
</tr>
<tr>
<td>GEO 532</td>
<td>Solid-State Geochemistry</td>
</tr>
<tr>
<td>GEO 535</td>
<td>Regional Structure and Tectonics</td>
</tr>
<tr>
<td>GEO 542</td>
<td>Inverse Theory</td>
</tr>
<tr>
<td>GEO 562/MAR 562</td>
<td>Early Diagenesis of Marine Sediments</td>
</tr>
<tr>
<td>GEO 567</td>
<td>Sedimentary Rocks and Crustal Evolution</td>
</tr>
<tr>
<td>GEO 570</td>
<td>Earthquake Mechanics</td>
</tr>
<tr>
<td>GEO 571</td>
<td>Mechanics of Geologic Materials</td>
</tr>
<tr>
<td>GEO 572</td>
<td>Advanced Seismology</td>
</tr>
</tbody>
</table>
Specialized, advanced seminars are offered periodically by various faculty members. These include the following courses:

GEO 603 Topics in Petrology
GEO 605 Topics in Sedimentary Geology-Paleontology
GEO 607 Topics in Geophysics
GEO 609 Topics in Mineralogy and Crystallography

B. Research Projects
Each student must complete two individual research projects with separate faculty members as part of the requirements leading up to the Ph.D. qualifying exam. One of these projects can be an M.S. thesis. The requirements for each of these papers are determined by the individual professors with whom the research is carried out. When working on such a project, students register for either GEO 590 or 599 Research, after consultation with the appropriate professor. A research paper or M.S. thesis completed before arriving at Stony Brook may substitute for one of the two research papers required before orals, if it is approved for that purpose by the graduate committee.

C. Ph.D. Preliminary Examination
The preliminary examination consists of the preparation and oral defense of a thesis proposal. There are three separate steps in this procedure: (1) submission of a proposal abstract to the graduate committee, who then selects an examining committee, (2) submission of the thesis proposal to the examining committee, and (3) oral defense of the proposal.

D. Thesis Proposal Abstract
A one-page document stating the most essential aspects of the student’s proposed thesis, the thesis proposal abstract must be signed by three faculty members before being given to the graduate committee. One of the three faculty members must be identified as a potential sponsor, meaning that he or she is tentatively willing to be the student’s thesis advisor. This implies no commitment, either on the part of the professor or the student.

Upon receipt of the abstract, the graduate committee selects the members of the student’s Ph.D. preliminary examination committee and sets a deadline (usually six weeks) for the submission of the thesis proposal to the examination committee. This committee is to consist of five scientists holding Ph.D. degrees who are experts in fields related to the proposal, at least four of whom must be members of the Department.

E. Thesis Proposal
The Ph.D. thesis proposal specifies the scientific rationale for the proposed thesis work, the relevant work done thus far, and the techniques and effort required to reach the research objective. When the thesis proposal is completed, copies are given to each member of the examination committee. Within a week of receiving the proposal, the examination committee will meet to determine whether or not the thesis proposal is defensible. If it is not deemed defensible, the student is informed as to whether a resubmittal will be permitted. If the thesis proposal is deemed acceptable, the examination committee sets a date for the Ph.D. preliminary examination.

F. Oral Preliminary Examination
The student gives a short public presentation of the thesis proposal, after which there is a closed oral examination. Although much of the questioning inevitably focuses on the proposed thesis work, any topic in the geosciences and related fields may be covered in the questioning. At the end of the examination, the student and any others present who are not part of the preliminary examination committee are excused. The committee will then judge whether the student has demonstrated the ability to conceive, plan, and carry out original research.

The examination committee has a range of options open to it. It may vote to deny Ph.D. candidacy, either with or without a second opportunity to pass the Ph.D. preliminary examination. It may vote to accept the proposal, but fail the student on other grounds. In doing so, the examination committee may either bar a second opportunity to take the exam, require specific remedial actions, or schedule a second opportunity to take the examination. The committee has the option to vote to reconvene to re-evaluate its decision, based upon actions the student has taken in response to the examination committee’s recommendations.

The examination committee may also vote to pass the student contingent upon changes in or rewriting of the proposal. It is free to establish any mechanism it deems necessary to affirm whether or not its requirements have been met. All decisions must be agreed to by a majority vote and must be conveyed in writing to the graduate program director and to the student.

When the graduate program director has been informed by the chair of the examination committee that the student has passed the Ph.D. preliminary examination, the Department recommends to the Graduate School that the student be advanced to Ph.D. candidacy.

G. Teaching Requirement
All graduate students must register for GEO 600, Practicum in Teaching, at least once, as outlined in Course Requirements on the preceding page.

H. Dissertation
The Ph.D. dissertation is the document summarizing the original scientific research in recognition of which the Ph.D. candidate seeks the doctoral degree. The University has very specific rules about the format of the thesis, but the nature of its scientific content is at the discretion of the student, his or her advisor(s), and the Ph.D. thesis defense committee. In many cases, the thesis consists of a linked set of published or soon-to-be-published scientific papers.

When informed by the student’s advisor that the thesis is ready to be defended, the graduate committee selects a Ph.D. thesis defense committee. The defense committee consists of five or six members, a majority of whom must be members of the Department. One defense committee member, other than the thesis advisor, is appointed as committee chair by the graduate committee. Within two weeks of receiving the thesis, the defense committee chair polls the committee members to ascertain that the thesis is actually defensible. If it is, the defense committee chair formally schedules the oral defense.

I. Ph.D. Thesis Oral Defense
The student makes a public presentation of the major results of the thesis. There is then a closed session, during which the student is examined primarily, but not exclusively, on the dissertation topic. The committee has the option of voting to accept the thesis, reject it,
or accept it with revisions. If the thesis is accepted with required revisions, the committee will decide the mechanism for determining compliance with its requirements. Voting is by majority.

Requirements for the M.S. Degree in Geosciences with Thesis

The M.S. in Geosciences with thesis is typically a nonterminal degree completed by some students before seeking Ph.D. candidacy. All requirements for the M.S. degree must be completed within a period of three years after entry. There are no residence or language requirements.

A. Course Requirements

Students must successfully complete a program of 30 graduate credits, including a minimum of 18 credits in approved academic courses. A student must achieve a 3.0 overall grade point average in all graduate courses taken at Stony Brook to receive a degree.

B. M.S. Thesis

An M.S. thesis proposal of no more than two pages must be submitted to the graduate committee at the end of the first year. The proposal must be signed by two faculty members, one of whom must be designated as a potential sponsor of the research and research advisor. After the proposal has been accepted, the student may proceed with the preparation of the M.S. thesis.

When the M.S. thesis is nearing completion, the student's advisor asks the graduate committee to appoint a defense committee. This committee consists of three experts in the field who hold Ph.D.s, at least two of whom must be members of the program faculty. Within two weeks of receiving the thesis, the defense committee decides whether the thesis is defensible. If it is, then an oral thesis defense is scheduled.

The M.S. thesis defense consists of a short public presentation of the major results of the thesis. This is followed by a closed examination that may cover any topic within the student’s general field of study, but generally concentrates upon the thesis topic. The thesis defense committee may vote to accept the thesis, return it to the student for revisions, or reject it outright.

Requirements for the M.S. Degree with Concentration in Hydrogeology

The non-thesis M.S. with a concentration in Hydrogeology requires a total of 30 credits. Of these 30 credits, at least 21 credits must be in the required and approved courses and at least six credits must be in approved research. A minimum overall grade point average of B is required. Students are required to complete the four core courses in category A; one course from category B (if a student is deficient in either writing or communication skills, computer programming, or statistics); and one, two, or three courses from category C. There are no residence or language requirements.

Category A

GEO 515 Geohydrology
GEO 564/AMS 562 Numerical Hydrology
GEO 528 Low-Temperature Geochemistry
GEO 519 Geochemistry of Natural Waters

Category B

AMS 576 Statistical Methods for Social Scientists
EST 588 Technical Communication for Management and Engineering

Category C

GEO 573 Hydromechanical Behavior of Geomaterials
GEO 521 Isotope and Trace Element Geology
GEO 524/MAR 524 Organic Contaminant Hydrology
EST 593 Risk Assessment
EST 595 Principles of Environmental Systems Analysis
EST 596 Simulation Models for Environmental Waste Management
EST 597 Waste Management: Systems and Principles
CEY 503 Environmental Law
CEY 509 Man, Environment, and Health

Research

In addition to formal coursework, the curriculum for the M.S. with concentra-

Requirements for the M.A.T. Degree in Earth Science

The Master of Arts in Teaching Earth Science leads to provisional certification for teaching earth science in secondary schools in New York State. It also prepares the student for the examination for permanent certification. There is no residence requirement. Students must complete at least one year of college-level study of a foreign language.

Students in the M.A.T. program must register through the School of Professional Development.

A. Formal Coursework

Students are required to complete with an average grade of B or higher 15 credits in earth science courses and 27 credits in pedagogical courses and teaching experience. The Departmental M.A.T. advisor, in consultation with the student, will determine a set of earth science courses for the M.A.T. degree in Earth Science.

B. Recommendation of the Department for the M.A.T.

When all program requirements are completed, the Departmental M.A.T. advisor will consult with the director of the Science Education Program to determine whether all state-mandated education courses have been completed. If they conclude that all requirements have been met, they will inform the Associate Dean of the School of Professional Development that the requirements for provisional certification have been fulfilled and recommend to the Dean of the Graduate School that the M.A.T. degree should be granted.

C. Time Limit

Although full-time students can complete all requirements for the
M.A.T. degree within three semesters, part-time students will require additional time to complete the degree requirements.

Courses

ESS 501 Foundations of Earth Science
We consider in depth the scientific concepts that are included in the Earth Science curriculum taught in New York State. This course is team-taught by an experienced Earth Science teacher and University faculty with expertise in astronomy, meteorology, and the geosciences.
Prerequisite: Earth Science teacher; Earth Science education student, or permission of instructor.
Fall, every year, 3 credits, ABCF grading

ESS 502 An Earth Systems Perspective on Long Island’s Future
Each time this course is offered we will study in great detail the reasons for given Earth system constraint and the consequences for Long Island’s natural and developed areas. Such a constraint might be peak production of oil, groundwater pollution, global climate change, etc. This evening seminar course is repeatable by permission only.
3 credits, ABCF grading
May be repeated for credit

ESS 511 Pine Barrens Sustainability
The ecologically diverse Long Island Pine Barrens region provides a habitat for a large number of rare and endangered species, but faces challenges associated with protection of a natural ecosystem that lies in close proximity to an economically vibrant urban area that exerts intense development pressure. In this course we will consider the interaction of the ecological, developmental, and economic factors that impact the Pine Barrens and the effectiveness of decision support systems in promoting sustainability of the Pine Barrens.
3 credits, ABCF grading

ESS 600 Practicum in Teaching
For M.A.T. Earth Science students.
Fall, spring, or summer; 0-3 credits, S/U grading

GEO 500 Geosciences Research Seminar
Meetings in which first-year graduate students and undergraduates with senior standing learn about the research activities of the Geosciences faculty.
Fall, 0 credit, S/U grading

GEO 502 GIS for Geologists
A practical introduction to geographic information system software. Participants learn to use direct measurement and mathematical techniques to compute the location of features and gain practical experience in rendering imagery and tabular geographic data as layers on maps. The course consists of two three-hour sessions per week for the first five weeks of semester, which include fieldwork, laboratory, demonstrations, and software-based analysis of data. This course meets with GEO 588 (Geological Field Methods for Earth Science Teachers) for the first five weeks of the semester. Students may not take GEO 502 and GEO 588 for credit.
Fall, every year, 1 credit, ABCF grading

GEO 503 Mineral Equilibria
Covers the basics of the application of the principles of chemical thermodynamics to the resolution of geochemical and petrological problems. Begins with the first law and continues through phase transitions, properties of fluids, definitions of fugacity, and activity of major and trace elements in fluids and molten solutions; configurational entropies; models quantifying nonideal mixing in solid solutions. Additional topics include interpretation of calorimetric studies and/or solubilities of minerals in aqueous solutions.
Prerequisites: Physical chemistry and thermodynamics, or permission of instructor.
Fall, alternate years, 3 credits, ABCF grading

GEO 505 Experimental Petrology Laboratory
The course is designed to give the student experience in some or all of the following techniques of experimental petrology: evacuated silica-glass tube experiments, one-atmosphere quenching experiments (with and without controlled atmospheres), 1- to 5-kbar hydrothermal systems (using oxygen buffers where necessary), gas-media experiments up to 7 kbar, and solid-media, piston-cylinder experimental.
Requirements: Completion of a project involving several of the above techniques; written report
Prerequisite: Permission of instructor.
Spring, alternate years, 1 credit, ABCF grading

GEO 506 Theoretical Petrology
Theory of phase diagrams, Schreinemaker’s rules, heterogeneous equilibria, experimental systems of petrologic interest, and properties of solutions.
Prerequisites: Metamorphic and igneous petrology and physical chemistry or thermodynamics, or permission of instructor.
Spring, 3 credits, ABCF grading

GEO 507 Petrogenesis
Discussion of the origin and evolutionary history of selected types of igneous and metamorphic rocks by integrating the principles of heterogeneous phase equilibria, trace-element and isotopic geochemistry, crystal chemistry, and geologic occurrence.
Fall, 3 credits, ABCF grading

GEO 508 The Rock-Forming Minerals
Study of the crystal chemistry, intracrystalline cation distribution (homogeneous equilibria) stability, and paragenesis of the rock-forming minerals. Special emphasis is placed on amphiboles, feldspars, micas, and pyroxenes.
Fall, 3 credits, ABCF grading

GEO 511 Computer Programming for the Geosciences
An introduction to object-oriented programming in Java for geoscience students. Participants are required to develop interactive programs to serve as educational or research tools pertaining to topics within the geosciences. These programs, or applets, include a graphical user interface that enables users to control parameters and observe results. The applets are posted on the Web.
Prerequisite: Geosciences graduate standing
Spring, 3 credits, ABCF grading

GEO 514 Introduction to Physical Hydrogeology
Spring, 3 credits, ABCF grading

GEO 515 Geohydrology
Spring, 3 credits, ABCF grading

GEO 517 Crystal Chemistry
The structure/property/composition relationships in solids. An introduction to the common structure types and how they illustrate principles useful in understanding more complex solid-state materials. Applications of modern scattering techniques to the study of solids, particularly earth materials, are also included.
Fall, 3 credits, ABCF grading

GEO 518 Carbonate Sediments
An intensive study of the formation, deposition, lithification, and diagenesis of carbonate sediments. Lectures and seminars emphasize principles of carbonate deposition, facies relationships, and chemistry. Laboratories emphasize binocular and petrographic analysis of recent and ancient carbonates.
Spring, alternate years, 3 credits, ABCF grading

GEO 519 Geochemistry of Natural Waters
A comprehensive quantitative treatment of the processes controlling the chemistry of polluted and unpolluted surface and groundwaters. Topics covered include thermodynamics and kinetics of water-rock interaction; mineral solubility; chemical speciation; redox reactions; adsorptions; carbonate chemistry; and speciation, mobility, and toxicity of metal ions. Based on a knowledge of these processes, the chemical composition of a wide variety of surface and groundwaters is interpreted. Water-quality criteria and their application are also discussed.
Spring, 3 credits, ABCF grading

GEO 520 Glacial Geology
History of glaciation on earth, formation and dynamics of glaciers and ice sheets; processes of glacial erosion and deposition; and the nature of glacial sediments and landforms particularly relating to the development of Long Island.
Prerequisite: Physical geology
Spring, 3 credits, ABCF grading

GEO 521 Isotope and Trace Element Geology
Application of radiogenic isotopes and trace elements to the petrogenesis of igneous,
metamorphic, and sedimentary systems including water-rock interaction in diageneric and hydrothermal systems. Evaluation of radiometric techniques for determining the ages of rocks and minerals.

Spring, alternate years, 3 credits, ABCF grading

GEO 522 Planetary Sciences
The chemical, physical, and petrologic properties of meteorites are reviewed. These data and data for the moon and the terrestrial planets are used to form a picture of the origin, chemical evolution, and accretion of planetary material.

Fall, 3 credits, ABCF grading

GEO 524 Organic Contaminant Hydrology
There are a host of chemical, biological, and physical processes that affect the transport and fate of organic chemicals in natural waters. This course concerns understanding these processes and the structure-activity relationships chemical bonding for predicting their rates. The major focus of this class is on contaminant hydrology of soil and aquifer environments, and includes the principles behind remediation and contamination technologies. This course is offered as both MAR 524 and GEO 524.

Prerequisite: GEO 526 or MAR 538 or permission of instructor

Spring, even years, 3 credits, ABCF grading

GEO 532 Solid-State Geochemistry
An introduction to mineralogy and petrology, including crystallography, crystal chemistry, mineral identification, and the processes that govern the formation of igneous and metamorphic rocks. Two three-hour laboratories per week. Laboratory work emphasizes practical techniques in stratigraphy.

Prerequisite: GEO 516 or undergraduate mineralogy and petrology

Fall, 3 credits, ABCF grading

GEO 546 Mineralogy and Petrology
An introduction to mineralogy and petrology, including crystallography, crystal chemistry, mineral identification, and the processes that govern the formation of igneous and metamorphic rocks. Two three-hour laboratories per week.

Prerequisite: Undergraduate physical geology and one year of undergraduate chemistry

Spring, 4 credits, ABCF grading

GEO 549 Structural Geology
The history and practice of defining units of layered rocks and interpreting their spatial relationships. Topics include the basis for the geologic time scale, lithostratigraphic versus chronostratigraphic units, biostratigraphy, magnetostratigraphy, facies patterns and Walther's law, subsurface stratigraphy, and the application of stratigraphy to geological problems. One three-hour laboratory per week. Laboratory work emphasizes practical techniques in stratigraphy.

Prerequisite: GEO 516 or undergraduate mineralogy and petrology

Fall, 3 credits, ABCF grading

GEO 550 Global Tectonics

Spring, 3 credits, ABCF grading

GEO 551 Physics of the Earth I
Study of the internal structure and properties of the Earth as revealed by field and laboratory investigations. Topics include the rotation and figure of the Earth, gravity anomalies, solid-earth tides, geomagnetism and paleomagnetism, electromagnetic induction, and heat flow and the Earth's present and past thermal states. May be taken independently of GEO 552.

Fall, 3 credits, ABCF grading

GEO 552 Physics of the Earth II
Study of the Earth's structure and properties based on evidence from seismology and high-pressure geophysics. Topics include fundamental principles of elastic wave theory, body and surface wave propagation in layered media, earthquake source mechanisms, free oscillations of the Earth, and rheological properties of the Earth's interior. May be taken independently of GEO 551.

Fall, alternate years, 3 credits, ABCF grading

GEO 556 Solid-State Geophysics
Application of lattice dynamics and equations of state of solids to studies in high-pressure, high-temperature geophysics. Reviews experimental data from physical acoustics, static and shock wave compression, and theoretical results from finite strain and atomistic models.

Prerequisites: GEO 551 and 552 or permission of instructor

Spring, 3 credits, ABCF grading

GEO 562 Early Diagenesis of Marine Sediments
The course treats qualitative and quantitative aspects of the early diagenesis of sediments. Topics include diffusion and adsorption of dissolved species; organic matter decomposition and storage; and diagenesis of clay materials, sulfur compounds, and calcium carbonates. The effects of bioturbation on sediment diagenesis are also discussed. This course is offered as both MAR 562 and GEO 562.

Prerequisite: Permission of instructor

Fall, alternate years, 3 credits, ABCF grading

GEO 564 Numerical Hydrology
Numerical solution methods for the equations of incompressible flow in porous media with special emphasis on groundwater flow. Finite difference and finite element methods for steady-state and transient flows-boundary conditions, range of validity and stability of the numerical schemes, and numerical artifacts. The approach is hands-on, with example problems being computed. This course is offered as both GEO 564 and AMS 562.

Prerequisite: AMS 526 or permission of instructor

Fall, alternate years, 3 credits, ABCF grading
GEO 567 Sedimentary Rocks and Crustal Evolution
An examination of major and trace elements and isotopic composition of terrigenous sedimentary rocks within a framework of tracing the composition and evolution of the continental crust. Emphasis is placed on interpreting sedimentary compositions in terms of provenance and sedimentary history (e.g., weathering, diagenesis, recycling). Relationships between sediment composition and tectonic setting is also examined.
Spring, 3 credits, ABCF grading

GEO 570 Earthquake Mechanics
A survey of fundamental mechanics aspects of earthquake rupture; reviews concepts of fracture mechanics, elastodynamics, and experimental rock mechanics. Topics include state of stress in the lithosphere, theoretical models of earthquake instability, energetics of faulting, representation of dynamic elastic field generated by earthquakes, and relation of seismic signals to the kinematics and dynamics of seismic source.
Prerequisite: GEO 552 or permission of instructor
Fall, alternate years, 3 credits, ABCF grading

GEO 571 Mechanics of Geologic Materials
Elastic, thermal, and anelastic properties of geological materials. The course emphasizes a thermodynamic characterization of these properties including irreversible thermodynamics and nonhydrostatic thermodynamics. Specific applications to the Earth's environment are discussed.
Prerequisites: GEO 551, 552, or permission of instructor
Fall, alternate years, 3 credits, ABCF grading

GEO 572 Advanced Seismology
Course is intended to expose the student to topics that are at the forefront of current seismological research. Examples include wave propagation in heterogeneous media, earthquake source studies, tsunami generation, and seismic network data analysis.
Prerequisite: GEO 552
Fall, alternate years, 3 credits, ABCF grading

GEO 573 Physics of Rocks
Fundamentals of the physical properties of rock in relation to seismology, hydrogeology, geophysical prospecting and geotechnical engineering. Topics include: composition, porosity structure and fabric of rocks; elasticity, anelasticity and plasticity; seismic velocity and anisotropy; poroelasticity; electrical, magnetic, and hydraulic transport properties.
Fall, alternate years, 3 credits, ABCF grading

GEO 581 Coastal Engineering Geology
Concepts of the mechanics of earth materials and their physics of surficial processes with applications to the coastal environment and engineering. This course is also offered as MAR 581.
Prerequisites: Enrollment in MESP or OEN program, or permission of instructor
Fall, 3 credits, ABCF grading

GEO 585 Directed Studies
Special studies directed by various faculty members.
Fall, spring, and summer, 1-3 credits, ABCF grading

GEO 588 Geological Field Methods for Earth Science Teachers
Geologic mapping techniques, geochemical analytical approach, and hydrological methodologies applied in the field to examples on Long Island. These approaches are designed for developing research projects for secondary students in earth science.
Prerequisite: Permission of instructor
Summer, 3 credits, ABCF grading

GEO 589 Research for Earth Science Teachers
This course is intended to provide earth science teachers or students in the M.A.T in Earth Science program an opportunity to obtain research experience. A written report is required.
Prerequisite: Permission of instructor
Summer, 1-3 credits, ABCF grading

GEO 590 Research Project
Independent research
Fall, spring, and summer, 1-12 credits, ABCF grading
May be repeated for credit

GEO 599 Research
Independent research for those students established in a research group.
1-12 credits, S/U grading
May be repeated for credit

GEO 600 Practicum in Teaching
Fall and spring, 0-3 credits, S/U grading
May be repeated for credit

GEO 603 Topics in Petrology
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

GEO 604 Topics in Planetary Science
1-3 credits, ABCF grading
May be repeated for credit

GEO 605 Topics in Sedimentary Geology–Paleontology
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

GEO 607 Topics in Geophysics
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

GEO 609 Topics in Mineralogy and Crystallography
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

GEO 696 Geoscience Colloquium
A weekly series of research seminars presented by visiting scientists and faculty. Required every semester of all geoscience graduate students.
Fall and spring, S/U grading
May be repeated for credit

GEO 697 Geoscience Seminar
Presentation of preliminary research results and current research problems by students and faculty. Required every semester of all geoscience graduate students.
Fall and spring, 0 credit, S/U grading
May be repeated for credit

GEO 698 Geoscience Special Seminar
A weekly series of specialized seminars in which graduate students and faculty discuss specific topics within the subgroups of geology. Research is reviewed; theses are discussed.
Fall and spring, 0 credit, S/U grading
May be repeated for credit

GEO 699 Dissertation Research On Campus
Independent research for Ph.D. degree. Open only to candidates for the Ph.D. who have passed the preliminary examination.
Prerequisite: Advancement to candidacy (G5); major portion of research will take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

GEO 700 Dissertation Research Off Campus–Domestic
Independent dissertation research for Ph.D. degree. Open only to candidates for the Ph.D. who have passed the preliminary examination.
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (excluding Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

GEO 701 Dissertation Research Off Campus–International
Independent dissertation research for Ph.D. degree. Open only to candidates for the Ph.D. who have passed the preliminary examination (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are not in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are not covered for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

GEO 800 Summer Research
0 credit, S/U grading
May be repeated for credit
American demographics, economics, and technological advances in diagnostics, treatment, and therapy have combined to create an environment in the 21st century in which patients are diagnosed earlier; are more likely to survive disease or trauma; live longer; participate in ambulatory-based treatment; and assume a more participatory role in their own health care. The School of Health Technology and Management is dedicated to providing students with the necessary knowledge and skills to practice their profession and competently meet the diverse and complex needs of individuals within a variety of health-care settings.

The School offers baccalaureate, master's, and doctoral degrees in clinical and non-clinical areas that include athletic training, clinical laboratory sciences, cytotechnology, health science, occupational therapy, physician assistant, physical therapy, respiratory care, and health-care policy and management. Health care is ever changing and the School is constantly reviewing and expanding program offerings to meet the demands of the population and health-care market. The School's primary focus is to educate the future workforce of New York State and the region, as well as develop national and international leaders in health care.

Additional program and admissions information can be found in the Health Sciences Center Bulletin and online at www.hsc.stonybrook.edu/shtm/
Hispanic Languages and Literature (SPN)

Graduate Program Director: Kathleen Vernon, Frank Melville Jr. Memorial Library Room N3022, (631) 632-9668
Graduate Program Coordinator: Betty Desimone, Frank Melville Jr. Memorial Library Room N3017, (631) 632-6935

Degrees awarded: M.A. in Hispanic Languages and Literature; M.A. in Teaching Spanish; M.A. in Romance Languages and Literature (Spanish); Ph.D. in Hispanic Languages and Literature.

The Department of Hispanic Languages and Literature, in the College of Arts and Sciences, offers different curricula leading to the degrees of Doctor of Philosophy and Master of Arts. A candidate for the Ph.D. degree engages in research leading to a dissertation. The M.A. degree may emphasize either literary or linguistic research or language teaching. Part-time study is permitted with graduate courses usually offered during the late afternoon.

Admission Requirements

Besides filing the official graduate application forms, the prospective student must provide transcripts covering all previous college-level studies. This usually includes a bachelor’s degree with a major in Spanish, three letters of reference, and a sample of written work (an essay or term paper). GRE scores, while not required, are taken into consideration. The Department urges students to take it, but students with strong academic records who do not will be considered for admission.

International applicants must score at least 550 on the Test of English as a Foreign Language (TOEFL) (213 computer-based, 90 Internet-based) and must show that they have the necessary funds to finance their education (living expenses plus tuition). It is strongly recommended that applicants take the TOEFL exam in their country of origin. An applicant whose qualifications seem deficient may be admitted on a part-time basis as a Graduate School special student (GSP) through the School of Professional Development.

All students who do not speak English as a native language, any new or transfer Ph.D. students, supported master’s students, and students for whom the TOEFL has been waived as a requirement for admissions must take the English proficiency exam or SPEAK (Speaking Proficiency English Assessment Kit) test. SPEAK scores lower than 55 may require a student to take an ESL class(es) or be ineligible to teach. A recent TSE or IELTS exam can be substituted for the SPEAK test. The ESL Program from the Department of Linguistics gives this exam, which is administered by appointment only. Students must score at least 55 points or higher to satisfy Stony Brook’s English proficiency requirements.

Teaching Assistantships (TAs)

The Department of Hispanic Languages and Literature has a yearly allocation of teaching assistantships for its graduate students. Each year, the assistantships are awarded to the most promising applicants.

Teaching assistants are assigned to teach one section of a course each semester. During the first semester of their assistantship, they are required to attend an orientation session and a practicum given by the Department to provide instruction in the methodology of language teaching. In the performance of their teaching duties, teaching assistants must conform to the program and University regulations regarding class attendance, examinations, grading systems, office hours, syllabi, and textbooks. Meetings with a supervisor and a coordinator of language courses are regularly scheduled and attendance is mandatory. Written evaluations of each TA’s teaching performance are done periodically by the Department. Renewal of assistantships will depend upon compliance with the regulations listed above.

Teaching assistantships are renewable for a maximum of three years for Ph.D. students entering with an M.A. or equivalent, or four years for Ph.D. students entering with a B.A. or equivalent. Students who are ABD (all but dissertation) may be eligible for a fifth year in certain circumstances. Renewal is subject to passing the qualifying examination and satisfactory course grades and teaching. There is a limited opportunity for summer teaching at an appropriate stipend. Other fellowships, loans, and work-study programs are available.

Several W. Burghardt Turner fellowships are awarded each year to promising minority students who hold American citizenship.

Faculty

Professors

Charnon-Deutsch, Lou, Ph.D., 1978, University of Chicago: 18th- and 19th-century Peninsular literature; feminist theory; women writers.

De la Campa, Román, Emeritus, Ph.D., 1976, University of Minnesota: Latin American and Caribbean literature; contemporary critical theory.

Read, Malcolm K., Ph.D., 1978, University of Wales: Sociology of literature; literary theory; Marxism and psychoanalysis.

Roncero-López, Victoriano, Chair, Ph.D., 1988, University of Illinois, Champaign; 1987, Universidad Complutense de Madrid: 15th- to 18th-century Spanish literature; historiography; European humanism; modern theory.

Lastra, Pedro, Emeritus, Ph.D., 1967, Universidad de Chile: Modern and contemporary Spanish-American literature.

Vasvari, Louise, Emeritus, Ph.D., 1969, University of California, Berkeley: Medieval literature; translation theory; literature and linguistics; romance philology.

Associate Professors

Flesler, Daniela, Ph.D., 2001, Tulane University: Contemporary Spanish literature; postcolonial theory; cultural studies.

Klein-Andreu, Flora, Emeritus, Ph.D., 1972, Columbia University: Linguistic meaning; language evolution and variation; relation between theory and research methods.

McKenna, James B., Emeritus, Ph.D., 1965, Harvard University: 20th-century Hispanic culture and literature.

Orozco, Francisc, Ph.D., 1997, Graduate Center, CUNY: Syntax; morphology; dialectology.

Assistant Professors

Elias-Ullas, José, Ph.D., 2005, Rutgers University: Phonology and contact of indigenous languages and Latin American Spanish.

Pérez-Melgos, Adrián, Ph.D., 1995, University of Rochester: Film and literature in the Americas, cultural studies, film studies.
According to University requirements, a minimum of a B average must be maintained in all graduate coursework. After taking the practicum (SPN 691), students may choose to enroll in SPN 693 as part of a required 12-credit load until they reach the point where their full-time credit load is nine credits. Equivalent courses taken at other universities may be certified as fulfilling specific required courses in this Department, but only six graduate course credits of any kind may be transferred.

M.A. in Hispanic Languages and Literature

The curriculum leading to the Master of Arts degree may be terminal or may be combined with the Doctor of Philosophy program. In addition to proficiency in Spanish and English, reading knowledge in a third language is required. There is a general requirement of 36 graduate credit hours. At least 30 of these credits must consist of the following courses: (1) a minimum of one course in linguistics, (2) SPN 691, Practicum in the Teaching of Spanish Language, (3) SPN 509, Literary Theory (or another theory course), (4) a minimum of two courses in Peninsular literature at the 500 level, and (5) a minimum of two courses in Latin American literature at the 500 level. After completion of 30 graduate credit hours, a student must either take a basic comprehensive examination or complete a thesis/project. Each of these options is equivalent to six graduate credit hours. Students working on a part-time basis should complete all requirements within five years after their first regular graduate registration.

The M.A. comprehensive examination is based on a reading list consisting of 75 titles: 50 in the field of major emphasis (Spanish Peninsular or Spanish-American) and 25 in the minor field. The student, with the advice of the graduate program director, will choose three members of the graduate faculty to form the examining committee, with one of them to act as chair. The examination consists of five hours of written work: three on the field of major emphasis and two on the minor field. The M.A. thesis is written under the supervision of a member of the graduate faculty with the advice of a second reader.

The M.A. thesis does not require an oral defense. The recommended length for an M.A. thesis is between 70 and 100 pages, including notes and bibliography. Regulations regarding the writing of the M.A. thesis are the same as those applicable to the Ph.D. dissertation. These regulations are contained in the book Guide to the Preparation of Theses and Dissertations, available on the Graduate School Web site.

M.A. in Romance Languages and Literature with a Concentration in Hispanic Linguistics

Students must complete 36 credits, consisting of (1) at least 30 credits of coursework (see list of required courses); (2) a comprehensive examination (three credits); and (3) either a research project and report (three credits) or an additional three credits of coursework. Students must demonstrate proficiency in English, Spanish, and another language and must achieve a grade point average of B or higher in all graduate courses taken. The student’s program must be arranged in consultation with the advisor in Hispanic linguistics.

Required Courses

A. LIN 530 Introduction to Linguistics
 LIN 522 Phonetics
 LIN 521 Syntax or LIN 527 Structure of English
 An additional course in linguistics

B. SPN 583 Contrastive Phonology
 SPN 503 Semantics of Spanish Grammar or SPN 504 Contrastive Analysis
 SPN 501 History of the Spanish Language
 SPN 505 Spanish Dialectology and Sociolinguistics

C. SPN 512 Medieval Spanish Literature

M.A. in Romance Languages

The M.A. in Romance Languages allows students to design a curriculum that includes studies in literature, linguistics, or cultural studies in a combination of two Romance languages. This M.A. gives the students a choice of writing a master’s thesis or passing a Comprehensive Examination to qualify for the degree. For further information contact the Department of European Languages.
M.A. in Teaching Spanish

The Master of Arts in Teaching Spanish is offered in conjunction with the School of Professional Development (SPD) and the Professional Education Program (PEP). This degree is designed as a course of study leading to New York State certification for teaching Spanish in secondary schools, grades 7 to 12. The M.A.T. normally entails a minimum of three semesters of study including courses on literature, linguistics, and culture; professional education courses; and a supervised student teaching experience. To be eligible for admission to the M.A.T. in Spanish program, students must have completed an academic major in Spanish or its equivalent with a minimum cumulative GPA of 3.0 overall in a bachelor's degree program.

The program consists of 44 required credits of coursework: a minimum of 29 credits of education coursework and 15 credits in the Spanish content area. Teacher candidates are also required to participate in 100 hours of field experience prior to their student teaching placement. A full description of the education courses and field experience may be found in this Bulletin under the School of Professional Development.

Students select their five Spanish content area courses in consultation with the Graduate Director. Upon approval of the Graduate Director, additional courses may become part of the students content area but those listed below are the most suitable for the M.A.T. program:

- SPN 501 Spanish Historical Linguistics
- SPN 502 Methods in Linguistics Research
- SPN 503 Spanish Linguistics
- SPN 504 Contrastive Analysis
- SPN 505 Spanish Dialectology and Sociolinguistics
- SPN 510 Hispanic Culture (a repeatable topics course)
- SPN 515 Spanish Composition and Stylistics
- Other SPN 500-level courses in literature (in consultation with the Graduate Director)
- SPN 691 Practicum in Teaching Spanish

Doctor of Philosophy

The Ph.D. degree is the highest teaching and research degree offered by the University. The Ph.D. prepares the recipient for an academic career at the level of the four-year college and/or research university, or for other careers in humanistic study, research, and writing. The entering graduate student who is considering working toward a Ph.D. should immediately consult with the graduate director to plan a broad program of reading and coursework in all areas offered by the Department.

The total number of required credits for the Ph.D. degree is usually 48 (16 courses). These 16 courses include the 12 general requirements specified below and four courses of the student's choosing. Each student is also required to take at least one graduate-level course outside of the Department (this course may, upon consultation with the graduate program director, be used to satisfy one of the general requirements). While this sets a general standard for Ph.D. coursework, each student's actual plan of study will continue to be developed on an individual basis. The exact number and type of required courses will be determined based on the student's transcript and performance during his or her first semester(s) at Stony Brook. For example, exemptions from particular subareas may be granted depending on the student's prior study, while in cases of less-than-adequate preparation in any period of Peninsular or Latin American literature (which will vary in the cases of students coming from Spanish, Latin American, or North American universities) the student will be required to take additional coursework.

Required Courses

A. Linguistics/Pedagogy
 (a minimum of two courses)
 - Applied Linguistics
 - History of the Spanish Language
 - Translation Practicum

B. Theory/Applied Theory
 (a minimum of three courses)
 - SPN 509 Literary Theory
 - Applied Theory (two courses)

Note: Courses qualify as applied theory if approximately 50 percent of the course material is drawn from critical and/or theoretical texts.

C. General Literary Corpus
 (six courses)

Note: A minimum of one course from each subarea to be tested in the comprehensive examination. Courses from area B (above) may be included, depending on content, but no one course may be used to satisfy both requirements B and C.

D. Special Field (two seminars)

These courses may be taken as independent studies, but generally only after the student has fulfilled requirements A, B, and C. The goal of these courses is to prepare papers for presentation and publication that may also serve as the basis for part of the thesis.

Sample of a four-year study plan for the Ph.D.:

1st year: Fall, 12 credits (including SPN 691) Spring, 12 credits (including SPN 693)
2nd year: Fall, 9 credits Spring, 9 credits
3rd year: Fall, 6 credits Spring, comprehensive exam
4th year: Fall and Spring, thesis

Language Requirements

In addition to proficiency in Spanish and English, the Ph.D. student must demonstrate a reading knowledge of two languages among Basque, Catalán, French, German, Italian, Latin, Portuguese, and another language if related to the field chosen for the dissertation. The student is urged to demonstrate a reading knowledge of this language by the beginning of his or her second year of full-time study; he or she is required to fulfill both language requirements prior to being advanced to candidacy. A language requirement may be fulfilled by (1) passing the Princeton Graduate School Foreign Language Test (GSFLT), (2) successful completion (grade of B or higher) of a graduate reading course or regular graduate course in the foreign language, or (3) passing a special reading examination administered under the supervision of the Department of Hispanic Languages and Literature. If option three is chosen, the student should consult with the graduate program director, who, along with the
Department chair, will designate an appropriate examiner. Texts will be assigned for the examination, during which a dictionary may be used for the translation of sight passages.

Qualifying Examination

The qualifying examination is an instrument designed to give the entire faculty of the Department an opportunity to evaluate the student’s academic abilities and promise. The exam seeks to assess the student’s sensitivity to literature, capacity to deal critically with the text, and ability to express himself or herself cogently. Elaborate bibliographical information regarding the texts, while not discouraged, is not required.

The qualifying examination is only offered once a year, at the beginning of the fall semester. Students who wish to be confirmed as Ph.D. students must take and pass the qualifying examination (1) at the beginning of their third semester if they enter the program with a B.A. or M.A. in Spanish in the fall; (2) at the beginning of their fourth semester if they enter with a B.A. in the spring; (3) at the beginning of their second semester if they enter with an M.A. or its equivalent in the spring.

The Department selects six texts and submits the list to the student not later than four months before the exam. It consists of (1) six hours of written work; the student answers four of six questions, omitting the one that he or she has selected for the oral presentation; each response is expected to be a minimum of four typed, double spaced pages; at least two of the responses must be written in Spanish; and (2) an oral presentation of some 20 minutes on the selected text; notes may be used, but the student should not read from a text. The oral presentation must be given in Spanish. Following the presentation, the faculty will ask questions.

Students who pass the qualifying exam are automatically admitted to the Ph.D. program. Students who do not pass the exam will be allowed to finish their master’s degree but will not be permitted to advance to the Ph.D. program. Students are informed of the results of the exam only after all students have finished the oral portion of the exam. Traditionally, the chair or the graduate program director informs students privately about the exam results, and later meets with each student to discuss the results.

Procedure for Renewing Teaching Assistantships

All teaching assistants (M.A., Ph.D.) are evaluated by the Department as a whole to determine whether their teaching assistantships will be continued during the second year. This evaluation will be conducted according to the following criteria, which include but go beyond the strict grade point average: (1) previous intellectual experience, both general and in the area of Hispanicism: breadth of courses taken in related fields, and other features that can help to determine the quality of each student. If the recent experience (i.e., the work done while at Stony Brook) is significantly better or worse than the student’s previous experience, this shall be taken into consideration; (2) serious research capacity of each student as demonstrated by papers written for courses; (3) theoretical capacity of each student, as demonstrated by papers written for courses; (4) writing and speaking ability in the Spanish language; and (5) quality of each student as a teaching assistant.

The graduate committee receives evaluations from each faculty member who has worked with the student. The committee may also reread term papers written for courses. Students holding Incompletes will inevitably find themselves at a disadvantage in the process of evaluation.

Third-year support for all students will be automatic provided that students remain in good academic standing and have received adequate written reviews of their teaching.

Comprehensive Examination

The student, with the advice of the graduate program director, will choose four members of the Department of Hispanic Languages and Literature faculty, one of whom will act as chair of the committee for his or her comprehensive examination. The comprehensive examination is an oral exam based on a list of texts chosen by the student in conjunction with all members of his or her committee who must formally approve the lists. The total (minimum) number of texts for the exam will be 60. The Spanish portion will include six books in each of four categories and a minimum of six theoretical texts; the Latin American section will include eight books in each of three categories and a minimum of six theoretical texts. In selecting the lists, students should strive for balance among genres. After obtaining the written approval of each member of his or her exam committee, the student will submit his or her list to the graduate director, who will then approve the list or suggest modifications if necessary. This process must be completed one month before the proposed date for the exam.

Categories for Comprehensive Exam

I. **Peninsular**
 - a. Medieval to Early Renaissance
 - b. Renaissance and Baroque
 - c. 18th and 19th centuries (up to the Generation of ’98)
 - d. 20th and 21st centuries

II. **Latin America**
 - a. Colonial
 - b. 19th century and Modernism
 - c. Contemporary

The oral comprehensive exam will last a total of three hours, with approximately an hour and a half devoted to each section with a brief break between the two sections. The exam will be conducted in Spanish or English. Upon satisfactory completion of both sections of the exam, the student will be granted ABD status.

Dissertation Proposal

During the comprehensive exam, students will be expected to announce the topic of their dissertation and their dissertation advisor. The dissertation proposal will be presented to each member of the dissertation committee within three months following successful completion of the comprehensive exam. The proposal should be composed of three parts: (1) an introduction and description of the project consisting of approximately 10 to 20 pages; (2) a table of contents listing proposed chapters; and (3) a detailed bibliography of primary and critical sources. A copy of the proposal containing the signatures of the dissertation committee should also be forwarded to the graduate director.

Dissertation Committee

The student forms a dissertation committee with the advice of the graduate program director. This committee reviews the prospectus, the open draft, and the final draft of the dissertation.
There will normally be five members: a dissertation director, who will be the first reader; a second reader; and three others (one of whom must be from outside the Department). The dissertation director and student will arrange a date and a time for the defense with the committee and will take care of all necessary paperwork. A faculty member other than the dissertation director will preside as chair at the oral defense.

Dissertation
The initial draft of the dissertation is given first to the director of the dissertation (or the director and codirector as the case may be). After the approval of the director(s), each member of the dissertation committee should be provided with his or her own corrected draft of the dissertation and given at least one month to read it and make comments. The length of the dissertation should be a minimum of 225 pages, including notes and bibliography.

When the dissertation is nearing completion, the director of the dissertation and the student will jointly agree on a date for the defense. The candidate and/or the director will inform in writing the members of the defense committee, the graduate program director, and the graduate secretary of the defense date. Candidates should be aware that the Department will not ordinarily reimburse outside readers for their travel to the defense or the cost of postage and other expenses related to the defense. In cases where the outside reader cannot attend the defense, arrangements must be made for the reader to participate in a teleconference the day of the defense.

The defense will consist of two parts. The first part, lasting normally about 30 minutes, consists of an oral presentation of the dissertation. The public is welcome to this portion of the defense. Following the presentation, each member of the examining committee will have an opportunity to ask questions and make final suggestions regarding the dissertation. The candidate shall bring a final draft of the dissertation to the defense, not the final copy to be carried subsequently to the Graduate School, in case the committee suggests last minute changes. The candidate should also submit a rough draft of the dissertation abstract to the director of graduate studies; it must be submitted to the Graduate School three weeks prior to the defense. The abstract is to be written in English and should not exceed 350 words. The abstract should consist of a short statement of the student’s research, a brief exposition of the methods and procedures employed in gathering data, and a condensed summary of the dissertation’s conclusion.

Following the dissertation period, the candidate and any others not on the dissertation committee will be asked to leave the room while deliberations are made. If all members agree to accept the dissertation, they will sign the final version of the sign-off sheet or signature sheet, which the candidate will bring to the defense (together with the appropriate pen, which must use black permanent ink). This document must also be shown to the graduate secretary of the Department so that the “ Clearance for Graduation” form may be typed and forwarded to the Graduate School.

All members of the Department, including graduate students, should be notified at least three weeks prior to the date and time of the public defense.

Courses

Spanish Courses
Courses described as repetitive are topic courses that may be taken an indefinite number of times as long as the topic varies.

SPN 500 Reading Spanish
Through an intensive study of language structures and idiomatic usage, with extensive practice in written translation of literary and scholarly texts, candidates for advanced degrees are able to obtain the proficiency level of the graduate Spanish reading requirement. Several programs grant exemption from further examination for successful completion of this course (not for M.A. or Ph.D. candidates in Spanish).
Fall or spring, 3 credits, ABCF grading

SPN 501 Historical Linguistics
General processes of language change, as exemplified by the development of the Romance languages, with particular reference to Spanish.
Fall or spring, 3 credits, ABCF grading

SPN 502 Methods in Linguistics Research
Methods for elicitation and collection of linguistic data and their analysis. Relation between theory and research design, and between qualitative and quantitative analysis. Introduction to commonly used tests of statistical significance, and to reasoning and argumentation from limited data.
Prerequisite: Permission of instructor
Fall or spring, 3 credits, ABCF grading

SPN 503 Spanish Linguistics
Major issues related to the general structure of the Spanish language (phonetics, phonology, morphosyntax, semantics, etc.).
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

SPN 504 Contrastive Analysis: Spanish and English
Topics vary, and may include linguistic interference and its basis and manifestations, in-depth discussion of specific syntactic/semantic areas with reference to possible Spanish/English interference, major phonological differences between Spanish and English and consequent learning difficulties, and non-linguistic factors that may affect learning in different groups in different situations.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

SPN 505 Hispanic Dialectology and Sociolinguistics
Major theoretical issues involved in analysis of geographical and social variation and with the principal methods used in its investigation, as applied to varieties of Spanish, Portuguese, Catalan, and Galician.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

SPN 510 Hispanic Culture
An introduction to the essential aspects of Peninsular and/or Latin American cultures and civilizations, designed to provide incoming graduate students with sufficient background to undertake the advanced study of Hispanic languages and literature.
Fall or spring, 3 credits, ABCF grading

SPN 515 Spanish Composition and Stylistics
Theory and practice of problems in composition and translation with revision of difficult points in advanced Spanish grammar. Classroom analysis and discussion. Required for Doctor of Arts (DLS) students; also useful for M.A. and Ph.D. students.
Fall or spring, 3 credits, ABCF grading

SPN 523 Golden Age Literature
Major literary works within the Renaissance and/or Baroque periods are read and analyzed in depth, and their interrelation with the cultural context is discussed.
Fall or spring, 3 credits, ABCF grading

SPN 582 The Hispanic Tradition in the United States
A general historical analysis of the influence of Hispanic culture in the United States as a consequence of the continuous interaction between Spanish- and English-speaking people. Special attention is given to cultural manifestation in a bicultural setting.
Fall or spring, 3 credits, ABCF grading

SPN 585 Caribbean Literature
A course devoted to major writers and works of the Caribbean area. Readings will be analyzed in relation to cultural contexts.
Fall or spring, 3 credits, ABCF grading

May be repeated for credit
SPN 588 Directed Master's Research
For work toward the M.A. thesis or preparation for the M.A. comprehensive examination only. This course is mainly intended for students who are not continuing toward the Ph.D.
Prerequisite: Permission of graduate program director, M.A. thesis director, and/or director of the M.A. comprehensive examination committee.
Fall and spring, 1-6 credits, ABCF grading. May be repeated for credit.

SPN 595 Directed Independent Individual Studies
For M.A. and Ph.D. candidates only. Requires a written proposal signed by the faculty member involved and the approval of the graduate program director and the Departmental chair. No more than a total of nine credits may be applied toward a Spanish graduate degree or combination of degrees.
Prerequisite: Permissions mentioned above.
Fall and spring, 1-6 credits, ABCF grading. May be repeated for credit.

SPN 609 Literary Theory
A study of the most outstanding methods of analysis and literary research, and a survey of major works pertaining to the study of literature. A required course for students in the Spanish Ph.D. program.
Fall or spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 612 Topics Seminar
A seminar course designed primarily for doctoral students. The topic will be chosen by the professor from any of the major areas of Hispanic literature and linguistics required of all Ph.D. students. Ph.D. students must take from two to four of these seminars depending on their previous preparation.
Prerequisite: Admission to the Spanish Ph.D. program or permission of instructor.
Fall and spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 613 Medieval Literature
Major literary works of the medieval period will be read and discussed in depth, and their interrelation with the cultural context analyzed.
Fall or spring, 3 credits, ABCF grading. May be repeated up to nine times for credit.

SPN 628 Cervantes
Miguel de Cervantes’ works are read, analyzed, and discussed in depth. A required course for Ph.D. students. Advanced D.A. and M.A. students are accepted. A bilingual course; readings and discussions in both Spanish and English.
Prerequisite: M.A. degree or permission of instructor.
Fall or spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 641 19th-Century Spanish Literature until the Generation of 1898
Major literary works of the period are read and analyzed in depth, and their interrelation with the cultural context is discussed.
Fall or spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 643 20th-Century Spanish Literature
Major literary works of the period will be read, analyzed, and discussed in depth, and their interrelation with the cultural context will be discussed.
Fall or spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 652 Colonial Spanish American Literature
Major authors and literary works of the period. Readings will be analyzed and discussed, and their interrelation with the cultural context explored.
Fall or spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 669 Spanish American Modernism
A course devoted to major authors and literary works of the modernistic period (1880 to 1916) in Spanish America. Readings are analyzed and discussed. A required course for Ph.D. students. Advanced D.A. and M.A. students are accepted.
Fall or spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 671 20th-Century Spanish American Literature
A course devoted to major authors and literary works of the period. Readings will be analyzed and discussed in depth, and their interrelation with the cultural context discussed.
Fall or spring, 3 credits, ABCF grading. May be repeated for credit.

SPN 677 19th-Century Spanish American Literature
A course devoted to major authors and literary works of the period. Readings will be analyzed and discussed in depth, and their interrelation with the cultural context discussed.
Fall or spring, 3 credits, SU grading. May be repeated for credit.

SPN 681 Directed Readings
For students who have completed all doctoral requirements and wish to dedicate themselves to full-time or part-time preparation for the comprehensive examination.
Prerequisite: Courses toward the Ph.D. must be completed; permission of the dissertation director, graduate studies director, or Department chair.
Fall and spring, 1-9 credits, SU grading. May be repeated for credit.

SPN 691 Practicum in the Teaching of Spanish Language
Prerequisite: Permission of instructor, Department chair, or graduate program director.
Fall, 3 credits, ABCF grading.

SPN 693 Practicum in the Teaching of Spanish Language
This course is to be taken in conjunction with the student’s teaching assignment. Each week's discussion centers on problems of applied linguistics or grammar. Discussion will also be focused on methodology (audio-lingual method, pattern drills, language laboratory, and preparation of examinations).
Fall and spring, 3 credits, SU grading. May be repeated for credit.

SPN 699 Dissertation Research On Campus
For students who have already passed the Ph.D. comprehensive examination and need to devote their time to preparation of their dissertation.
Prerequisites: Ph.D. comprehensive examination completed and advanced to candidacy (G5); permission of the dissertation director, graduate program director, or Department chair; major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab.
Fall, spring, and summer, 1-9 credits, SU grading. May be repeated for credit.

SPN 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.
Fall, spring, and summer, 1-9 credits, SU grading. May be repeated for credit.

SPN 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor.
Fall, spring, and summer, 1-9 credits, SU grading. May be repeated for credit.

SPN 800 Summer Research
0 credit, SU grading. May be repeated for credit.
The Department of History has a faculty of 32 distinguished researchers and teachers. Each year 12 to 15 students are admitted into the doctoral program and four to six students into the terminal master's program. The Department has 118 full- and part-time graduate students. The Department of History also offers an M.A.T. Program in Social Studies Education in conjunction with the School of Professional Development.

While the Department has strength in a number of traditional areas of historical study, it also has a long tradition of comparative, interdisciplinary, and theoretically informed research. The graduate program has been structured around four areas of thematic inquiry—1) Women, Gender, Sexuality, and Reproduction; 2) Nation–State and Civil Society; 3) Empire, Modernity, and Globalization; and 4) Environment, Science, and Health—to bring these theoretical issues to the fore and ensure that students learn how to apply such concepts as class, gender, race, culture, power, religion, and environment in an explicit and sophisticated manner to the study of the past. To further these interests, the Department maintains close connections with the Stony Brook Humanities Institute, the doctoral program in Comparative Literature and Cultural Studies, the Women's Studies Program, Africana Studies, the Latin American and Caribbean Studies Program, and the Center for Global History, as well as the departments from which these programs draw their core faculty.

The master's program, which requires students to complete 30 credits of graduate study with a grade of B or higher, allows students to explore the history and historiography of their chosen area of concentration. Students in the master's program follow the same basic course of study as that followed by doctoral students during their first year, and the oral examination serves as the capstone experience for the master’s program.

The Ph.D. program is designed to prepare students to carry out original research and to ultimately pursue a career at the university level. Doctoral students may choose to focus their study on a particular region and period or they may concentrate in one of the thematic areas of study described above, and all students are encouraged to work with faculty in other departments. Full-time students in the doctoral program typically take courses for their first six semesters in the program and take their qualifying examinations at the end of their third year.

Admission to the M.A. and Ph.D. Programs

In addition to the requirements of the Graduate School, the minimum requirements for admission to the graduate program in history are:

A. A bachelor's degree in history or its equivalent with a minimum grade point average of 2.75 (B-) in all undergraduate coursework and 3.00 (B) in history courses.

B. Three letters of recommendation that address the applicant's potential to succeed in a rigorous course of graduate study.

C. Submission of scores from the Graduate Record Examination (GRE) General Test. The subject area test in history is not required.

D. Students whose first language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). Students must score at least a 550 on the test.

With the approval of the Dean of the Graduate School and the Department of History, a student holding an M.A. degree from another accredited institution may be admitted directly to the Ph.D. program at Stony Brook. In special cases, students who do not have a bachelor's degree in history or whose GPA does not meet the requirements stated above may be admitted on a provisional basis for M.A. study only. After completing the master’s program, such students may apply for admission to the doctoral program.

Please note that students are only admitted to the M.A. and Ph.D. programs for study beginning in the fall semester.

Admission to the M.A.T. Program

Applicants to the M.A.T. Program are required to have either a) a bachelor's degree in history, b) a bachelor's degree in one of the social sciences (excluding psychology, linguistics, and communications) and have at least 18 credits in history, or c) completed a course of study equivalent to an undergraduate degree in history. Applicants are expected to have the intellectual skills to successfully complete advanced study in history and have the dispositions necessary to become an effective secondary school teacher. Individuals who already have certification and who are either seeking a master's degree for professional certification or who are seeking a second certification in social studies may not apply to the M.A.T. programs.

Applications can be obtained from the School of Professional Development. Applicants must submit:

A. Official transcripts of undergraduate study.

B. Three letters of recommendation testifying to the applicant's ability to succeed in graduate-level coursework and his or her dispositions to work successfully with children.

C. Submission of scores on the Graduate Record Examination (GRE) General Test.

For more information regarding the M.A.T. in Social Studies, see the SPD section of this bulletin.

Faculty

Professors

Goldenberg, Robert, Ph.D., 1974, Brown University: Jewish history and religion in late antiquity; rabbinic literature and exegesis; history of Jewish thought; rabbinic hermeneutics; ancient history.
Gootenberg, Paul, Ph.D., 1985, University of Chicago: Modern Latin America (Andes and Mexico); economic history; state-formation; commodities; drugs.

Landsman, Ned, Ph.D., 1979, University of Pennsylvania: Early American history and Scotland.

Larson, Brooke, Ph.D., 1978, Columbia University: Colonial and modern Latin America; Andean rural societies; race, ethnicity, and nation-making.

Lebovics, Herman, Ph.D., 1965, Yale University: Modern Europe; intellectual and cultural history; Germany and France.

Marker, Gary J., Ph.D., 1977, University of California, Berkeley: Russian social and intellectual history; history of printing; European labor history.

Miller, Wilbur R., Ph.D., 1973, Columbia University: U.S. social and political history; Civil War and Reconstruction; crime and criminal justice history.

Roxborough, Ian, Ph.D., 1977, University of Wisconsin: Social history of Latin America; modern Mexico; war and the military.

Schäfer, Wolf, Dr. Phil., 1983, University of Bremen, Germany: History of technoscience; social history; global history.

Tomes, Nancy J., Chair, Ph.D., 1978, University of Pennsylvania: American social and cultural history; medicine, nursing, and psychiatry; women and the family.

Wilson, Kathleen, Ph.D., 1985, Yale University: British social, cultural, and political, 17th to 19th centuries; cultures of imperialism; gender studies; cultural, feminist, and postcolonial theory.

Zimansky, Paul, Ph.D., 1980, University of Chicago: Near Eastern languages and civilizations; Near Eastern archaeology; ancient history.

Associate Professors

Cash, Floris B., Ph.D., 1986, Stony Brook University: African American history; African American women's studies.

Cooper, Mary Alix, Ph.D., 1998, Harvard University: Early Modern Europe/World; history of science, medicine and technology; environmental history; cross-cultural encounters.

Hong, Young-Sun, Ph.D., 1989, University of Michigan: Modern Germany; social theory; culture and politics in Germany; culture and politics in modern Europe; gender history.

Lipton, Sara, Ph.D., 1991, Yale University: Medieval cultural and religious history; Jewish-Christian relations; gender.

Man-Cheong, Iona, Ph.D., 1991, Yale University: Modern China; late imperial China; women and gender; Chinese diaspora.

Masten, April, Ph.D., 1999, Rutgers University: U.S. cultural history, 19th century.

Owens, Leslie H., Ph.D., 1972, University of California, Riverside: African American history; U.S. southern history.

Sellers, Christopher, Ph.D., 1992, Yale University: M.D., University of North Carolina, Chapel Hill, 1992: U.S. environmental, industrial, and cultural history; history of medicine and the body.

Assistant Professors

Beverley, Eric, Ph.D., 2007, Harvard University: South Asia, colonial and postcolonial studies, Muslim world.

Chronopoulos, Themis, Ph.D., 2004, Brown University: U.S. urban history, race, and ethnicity; popular culture; public policy; world cities.

Frohman, Larry, Ph.D., 1992, University of California, Berkeley: European intellectual history; history of welfare and social policy; social studies education.

Mimura, Janis, Ph.D., 2002, University of California, Berkeley: Japan.

Ritscherle, Alice, Ph.D., 2005, University of Michigan: Modern British social and cultural colonialism and imperialism; modern Ireland.

Lecturers

Nutter, Kathleen, Ph.D., 1998, University of Massachusetts at Amherst: U.S. 19th and 20th centuries, women, labor, culture.

Emeriti Faculty

Bottgheimer, Karl S., Ph.D., 1965, University of California, Berkeley: Tudor-Stuart England and Ireland; early modern Europe; modern Ireland.

Cowan, Ruth Schwarz, Ph.D. 1969, Johns Hopkins University: Modern science, technology, and medicine.

Garber, Elizabeth, Ph.D., 1966, Case Western Reserve University: Social and intellectual history of science; 19th- and 20th-century physics; European intellectual and social history.

Lemay, Helen R., Ph.D., 1972, Columbia University: Medieval and Renaissance intellectual history; paleography; history of science and medicine; women's history.

Rosenthal, Joel T., Ph.D., 1963, University of Chicago: Medieval history; medieval England; social history.

Weinstein, Fred, Ph.D., 1962, University of California, Berkeley: Theory in history; Russian and European history.

Williams, John A., Ph.D., 1963, University of Wisconsin: British Empire; Africa; the Commonwealth; expansion of Europe.

Wishnia, Judith, Ph.D., 1978, Stony Brook University: Modern Europe; France; labor history; women's history.

Number of teaching, graduate, and research assistants, Fall 2007: 29

1. Recipient of the President's Award for Excellence in Teaching
2. Recipient of the State University Chancellor's Award for Excellence in Teaching
3. Recipient of the Teaching Mentor Award
4. Recipient of the President's Award for Excellence in Teaching
5. Joint appointment, Africana Studies
6. Joint appointment, Women's Studies
7. Joint appointment, Sociology
8. Distinguished Teaching Professor
9. Joint appointment, Economics
10. Joint appointment, Anthropology

Degree Requirements

Requirements for the M.A. Degree

In addition to the requirements imposed by the Graduate School, the following are required:

A. Coursework

1. Core Seminar (HIS 525/526, three credits each semester): This course provides an intensive, year-long introduction to historical theory and research and familiarizes students with the thematic organization of the Stony Brook graduate program. All full-time students in the master's and doctoral programs are required to take this course, which is offered only as a fall/spring sequence, during their first year.

2. Two Field Seminars (three credits each): The Department offers a number of field seminars designed to familiarize students with the history and historiography of specific regions. These courses include HIS 501/502, 521/522, 541/542, 561, and 562. These courses are offered—at minimum—on a two-year
cycle, though many of these are offered each year. Students choosing to concentrate in the history of a specific region are encouraged, but not required, to complete both parts of the field seminar sequence where available.

3. Two Theme Seminars (three credits each): The theme seminars are the heart of the Department's commitment to the theoretically informed, interdisciplinary study of history. Theme seminars are offered in the following areas: 1) Women, Gender, Sexuality, and Reproduction; 2) Nation-State and Civil Society; 3) Empire, Modernity, and Globalization; and 4) Environment, Science, and Health. A minimum of two theme seminars are offered each semester. Topics change regularly, and students are free to choose among the theme seminars being offered.

4. Four Electives (three credits each): The remaining 12 credits can be selected from field seminars, theme seminars, the graduate courses offered in conjunction with other departments (e.g., Africana Studies, Comparative Literary and Cultural Studies, and Sociology), and workshops.

B. Language Requirement

Master's students with a concentration in European history must pass a written exam in an appropriate foreign language, and master's students in Latin American history must pass a written exam in Spanish or Portuguese. The other areas of concentration do not require a foreign language for the master's degree.

C. Oral Examination

By the second semester in the program, the student, in consultation with her/his advisor, should name two other members of the Department as her/his examination committee. The committee will help the student define her/his examination field based on her/his coursework and reading in the program.

The oral examination is taken at the end of the student's course of study. By the end of the semester that precedes the examination, the student shall present a list of books read to each member of the examining committee. At that time the committee shall advise the student of any additional reading to be completed before the examination.

This reading may be completed as part of an Orals Workshop during the semester of the examination. The student should see the graduate program coordinator to set the time and date of the examination. The examination will be based on the student's examination field. The committee will grade the examination “pass with distinction,” “pass,” or “fail.”

Requirements for the Master of Arts in Teaching (M.A.T.) in Social Studies

The Master of Arts in Teaching in Social Studies Program, offered in conjunction with the School of Professional Education, leads to New York State initial certification for teaching social studies in secondary schools. Completion of the M.A.T. requires at least three semesters of work for full-time students.

A. Courses

History Courses
HIS 500 Historiography (three credits) and 12 credits from the following:
CEG 532 U.S. History to Civil War
CEG 534 U.S. History since Civil War
CEG 516 Early Modern Europe
CEG 524 Late Modern Europe
HIS 541 Colonial Latin America
CEG 517 Modern Latin America
CEG 534 Topics Seminar: Africa
CEG 534 Topics Seminar: Asia
CEJ 501 Traditional China: Culture and Society
CEJ 502 Modern China: Culture and Society
CEQ 581 Supervised Student Teaching Grades 10 to 12

Pedagogy Courses
CEE 505 Education: Theory and Practice (three credits)
CEE 565 Human Development (three credits)
LIN 544 Language Acquisition and Literacy Development
CEE 577 Teaching Social Studies (fall only) (three credits)
CEF 548 Field Experience I Grades 7 to 9 (one credit, S/U, must be taken concurrently with CEE 577)
CEE 578 Social Studies Strategies (spring only) (three credits)
CEF 549 Field Experience II Grades 10 to 12 (one credit, S/U, must be taken concurrently with CEE 578)
CEE 580 Student Teaching Seminar
CEQ 581 Supervised Student Teaching Grades 7 to 9

Requirements for the Ph.D. Degree

The Ph.D. is the highest professional degree granted by the Department of History. Candidates must have been formally admitted to the Ph.D. program in History and have an advisor/thesis director who has agreed in writing, even if conditionally, to guide the student through the Ph.D. qualifying examinations and direct the dissertation.

The Ph.D. program is supervised by a Ph.D. preparation committee made up of members of the graduate faculty in fields and/or topics in which the student has chosen to specialize. The course of study and language requirements will be determined jointly by the student and the Ph.D. committee. The qualifying examination will test the student’s knowledge in two fields. The first field should be a theoretical and/or comparative field chosen from the graduate program’s thematic fields as applied to a specific region and period. The second field may be defined primarily in terms of region, period, and topic (such as environmental history, diplomatic history, social history, etc.).

A. Coursework

Students in the doctoral program are expected to complete three years of coursework distributed in the manner outlined below. At the end of the third year, students take a comprehensive examination designed to assess their mastery of the subject matter, conceptual tools, and research skills necessary to undertake independent research for the dissertation. The dissertation is to be a substantial piece of original research completed independently by the student, and all students are required to defend their dissertation orally at the end of their course of study.

Students in the doctoral program are required to take the following courses:

1. Core Seminar (HIS 525/526, three credits each semester): This course provides an intensive, year-long introduction to historical theory and research and familiarizes students with the thematic organization of the graduate pro-
gram. All full-time students in the master’s and doctoral programs are required to take this course, which is offered only as a fall/spring sequence, during their first year.

2. Two Field Seminars (three credits each): The Department offers a number of field seminars designed to familiarize students with the history and historiography of specific regions and periods. These courses include HIS 501/502, 521/522, 541/542, 561, and 562. These courses are offered—at minimum—on a two-year cycle, though many are offered each year. Students choosing to concentrate in the history of a specific region are encouraged to take one field seminar dealing with a region outside of their area of concentration. Students are strongly encouraged to audit relevant undergraduate courses in their geographical area of interest.

3. Three Theme Seminars (three credits each). A minimum of two theme seminars are offered each semester. Topics change regularly, and students are free to choose among the theme seminars being offered.

4. Three Research Seminars (three credits each): Research seminars will typically have a set of common core readings, but they are designed to give students the opportunity to carry out individual original research projects in areas related to their developing scholarly interests. Research seminars are generally taken during the second and third years, and the final research seminar is generally taken in conjunction with the dissertation prospectus workshop.

5. Supervised Teaching (HIS 581, three credits): All students who hold teaching assistantships must register for this course.

6. Teaching Practicum (HIS 582, three credits): This course must be taken by all students who hold teaching assistantships during the first semester in which they work as a teaching assistant. This course will provide an opportunity for students to discuss classroom teaching issues as they occur, and it offers a forum for understanding problems of classroom authority, student-teacher relations, plagiarism, sexual harassment, etc. Students may be required to attend teaching workshops offered by the Department of History or the Graduate School in addition to their other TA duties. These workshops are also open to students who do not hold teaching assistantships.

7. Dissertation Prospectus Workshop (HIS 685, three credits): This course must be taken by all students and should be completed either before or in the same semester as the qualifying examination. This workshop helps students prepare their dissertation prospectus. The prospectus should contain an explanation of the research problem under investigation; a summary of the relevant secondary literature; a statement of hypothesis; an outline of both research sources (especially primary materials) and methods the student expects to employ. The prospectus must be acceptable to both the instructor of the workshop and to the student’s Ph.D. committee. The prospectus workshop should be completed either before or in the same semester as the qualifying examination. This workshop will be offered once each year in the spring semester. Completion of the workshop and the dissertation prospectus are required for advancement to candidacy. The course grade is S/U.

As part of the coursework taken prior to the qualifying examination, students may also enroll in the following workshops:

8. Reading Workshops (three credits each): In addition to their regularly scheduled courses, faculty also supervise organized reading courses known as workshops. The Department is committed to this kind of collective independent study rather than individual directed readings. Students are encouraged to propose workshop topics collectively that meet their specific needs and intellectual interests and to arrange with appropriate faculty members to offer them. Workshops often provide an opportunity for groups of students to explore systematically the historiography of a particular nation or region that is not directly addressed through a field seminar.

9. Orals Workshops (six credits, HIS 682, 684, 685, 686): In the fall semester of their third year, students will normally enroll in the Orals Workshop. This is an independent readings course in which students are expected to read intensively in preparation for their oral examinations. Students register for this course under the number of their principal advisor.

Students who hold a master’s degree from another institution may be exempted from the required first-year courses. However, core seminars are rarely waived. In some cases, the advisor may require incoming students with a master’s degree to take the relevant field seminars and other first-year courses. These decisions will be based on an evaluation of the student’s coursework and performance in the prior master’s program and on the amount of time that elapsed between the granting of the master’s degree and entrance into the Ph.D. program.

Below is a sample course of study that might be followed by a first-year student without a master’s degree who also holds a teaching assistantship:

Fall (12 credits)
- HIS 525 Core Seminar I (three credits)
- Field Seminar (three credits)
- HIS 582 Teaching Practicum (three credits)
- Reading Workshop (three credits)

Spring (12 credits)
- HIS 526 Core Seminar II (three credits)
- HIS 581 Supervised Teaching (three credits)
- Theme Seminar (three credits)
- Reading Workshop (three credits)

B. Full-time Status

Students who have not yet advanced to G4 status are required to take 12 credits to maintain full-time status. Full-time enrollment for students who have achieved G4 status is nine credits. Students acting as teaching assistants must carry a full-time load (including the three-credit HIS 581 Supervised Teaching).

C. Award of Master’s Degree

Doctoral students who have completed the requirements for the master’s degree may petition the Graduate School to be awarded the master’s degree while continuing in the doctoral program.

D. Foreign Language Requirement

All students must demonstrate proficiency in at least one relevant foreign language before a student may be advanced to Ph.D. candidacy. This is a Graduate School requirement that may not be waived. Minimal proficiency in a language means the ability to translate a
given passage clearly and accurately with the aid of a dictionary.

Relevant language(s) are determined by the student's area of specialization. Students in U.S. history must be proficient in one foreign language. Students in European history are usually expected to show proficiency in two languages; these students should pass at least one language exam by the end of the third semester in the program and the other before being advanced to candidacy. All students in Latin American history must be proficient in Spanish, except for those studying Brazil, who may choose Portuguese.

Proficiency may be demonstrated either through a written exam administered by the Department or a satisfactory grade in a graduate language course (e.g., French 500).

At the discretion of the advisor, a student may be required to study additional languages as part of his or her degree program. It is the student's responsibility to establish with her or his advisor which foreign languages are necessary for the completion of the Ph.D.

E. Qualifying Examination and Advancement to Candidacy

By the second year in the doctoral program, students should name a Ph.D. advisor and, in consultation with that advisor, name three additional faculty members (one of whom may be from outside the Department) who agree to serve on his or her Ph.D. oral examination committee. The committee will help the student define his or her examination fields, language requirements, and coursework, as well as monitor the student's progress on the dissertation.

The student is also expected to define two fields of concentration that will be the focus of the student's qualifying examination. The first field should be a theoretical and/or comparative field chosen from the graduate program's thematic fields as applied to a specific region and period. The second field may be defined primarily in terms of region, period, and topic (such as environmental history, diplomatic history, social history, etc.).

Full-time students are normally expected to take their qualifying examination no later than the end of their sixth semester of graduate study. The student—in consultation with the examination committee—will decide the precise timing of the exam. However, the student shall present a list of books read to each member of the examination committee no later than the middle of the semester that precedes the Ph.D. oral examination. At that point, the committee shall advise the student of any additional reading that is to be completed for the examination. The necessary reading will then be completed as part of an Orals Workshop during the semester of the examination. The exam is based explicitly and exclusively on seminar work and on mastery of the reading list to be jointly determined by the student, and the student should be prepared to discuss the readings with reference to his or her dissertation prospectus. The examination normally lasts approximately two hours. The committee will grade the examination “pass with distinction,” “pass,” “weak pass,” or “fail.”

F. Dissertation Committee

Normally, the Ph.D. advisor and committee will serve as the student's dissertation committee, which will be constituted immediately following advancement to Ph.D. candidacy. If the Ph.D. advisor is unwilling to serve as dissertation advisor, one member of the Department must declare in writing his or her willingness to serve as dissertation advisor before the student may be advanced to candidacy.

The dissertation advisor will meet with the student at least once each semester (or, if the student is not in Stony Brook, will correspond) to discuss progress on the dissertation. The dissertation advisor will schedule the student's final dissertation defense, which will be attended by the dissertation committee, an outside examiner as required by the Graduate School (chosen by the student in consultation with her/his committee), and interested faculty and students.

G. Dissertation and Defense

Following advancement to candidacy, students are required to enroll for one credit of dissertation research each semester until the dissertation is completed. Teaching assistants will register for nine credits of HIS 699 Research for the Ph.D.

The dissertation is the basic requirement for the conferral of the Ph.D. The completed dissertation must be in the hands of the committee two full months before the scheduled date of the dissertation defense. The dissertation committee has one month to read and correct the dissertation and to give the student their written criticisms and suggestions. These must be in the student's hands one month before the dissertation defense. If the criticisms are not written out, the student can assume the dissertation is approved in the form submitted. All written objections and corrections must be answered by revising the dissertation to the faculty member's satisfaction during the month preceding the dissertation colloquium.

All dissertations must be discussed at a final dissertation defense which is to be attended by the student's advisor and committee, as well as by an outside reader. The defense is also open to interested students and faculty.

Courses

HIS 500 Historiography

Introduction to historiography through reading and writing about interpretations of history, historical methods, and major historians. Term paper on historian of choice.

3 credits, ABCF grading

HIS 501 Introduction to Early Modern Europe

Field seminar in early modern European history, 1450 to 1769. Surveys the major historical problems and interpretations from the Renaissance to the coming of the French Revolution. Required for M.A. students in European history.

3 credits, ABCF grading

HIS 502 Introduction to Late Modern Europe

Field seminar in late modern European history, 1789 to 1945. Surveys the major historical problems and interpretations from the French Revolution through the Second World War. Required for M.A. students in European history.

3 credits, ABCF grading

HIS 515 Theme Seminars on Empire, Modernity, and Globalization

3 credits, ABCF grading

HIS 516 Theme Seminars on Empire, Modernity, and Globalization

3 credits, ABCF grading

HIS 517 Theme Seminars on Empire, Modernity, and Globalization

3 credits, ABCF grading

HIS 521 Introduction to United States History to the Civil War

Field seminar in U.S. history from the founding of the British colonies to the beginning of the Civil War. Surveys the major topics and interpretations. Required for M.A. students in U.S. history.

3 credits, ABCF grading

HIS 522 Introduction to United States History Since the Civil War

Field seminar in U.S. history from the Civil War to the Cold War. Surveys the major interpretations.

3 credits, ABCF grading
HIS 524 Core Seminar: History, Theory, and Practice
Introduction to the theory, practice, and writing of history through the reading of theoretical and historical texts and the writing of a research paper. This course meets over the entire academic year, for three credits per semester, and is mandatory for all new Ph.D. students. Students entering with an M.A. take it at the discretion of their advisor. 3 credits, ABCF grading

HIS 525 Core Seminar: History, Theory, and Practice
Introduction to the theory, practice, and writing of history through the reading of theoretical and historical texts and the writing of a research paper. This course meets over the entire academic year, for three credits per semester, and is mandatory for all new Ph.D. students. Students entering with an M.A. take it at the discretion of their advisor. 3 credits, ABCF grading

HIS 526 Core Seminar: History, Theory, and Practice
Introduction to the theory, practice, and writing of history through the reading of theoretical and historical texts and the writing of a research paper. This course meets over the entire academic year, for three credits per semester, and is mandatory for all new Ph.D. students. Students entering with an M.A. take it at the discretion of their advisor. 3 credits, ABCF grading

HIS 527 Core Seminar: History, Theory, and Practice
Introduction to the theory, practice, and writing of history through the reading of theoretical and historical texts and the writing of a research paper. This course meets over the entire academic year, for three credits per semester, and is mandatory for all new Ph.D. students. Students entering with an M.A. take it at the discretion of their advisor. 3 credits, ABCF grading

HIS 532 Theme Seminar: Gender, Religion, and Modernity
3 credits, ABCF grading
May be repeated five times for credit

HIS 535 Theme Seminars on Gender, Sexuality, and Reproduction
3 credits, ABCF grading

HIS 540 The Black Power Movement
This course examines the Black Power Movement. Stokely Carmichael’s call for Black Power broke through commotion of everyday politics during 1960’s Meredith March Against Fear. Soon after, and for the next decade, Black Power galvanized African American politics, engendering radical movements for social, political, and cultural transformation that impacted blacks in the United States and beyond. An emerging historiography traces the roots of Black Power in the postwar black freedom movement, finding cultural and political touchstones for future Black Power activism among civil rights renegades, trade unionists, and black nationalists. We will examine works produced during the Black Power era and this new scholarship to analyze the Black Power movement’s legacy in the politics and culture of African Americans. This course is offered as both HIS 540 and AFS 540. Prerequisite: permission of advisor. 3 credits, ABCF grading

HIS 541 Introduction to Colonial Latin American History
Field seminar in colonial Latin American history. Surveys major historical problems and debates from the colonial period through the wars for independence. Required for M.A. in Latin American history. 3 credits, ABCF grading

HIS 542 Introduction to Modern Latin American History
Field seminar in modern Latin American history. Surveys major historical problems and debates from the post-independence period to the present. This course is offered as both CEG 517 and HIS 542. Basic background in Latin American history and culture. 3 credits, ABCF grading

HIS 543 Theme Seminars on Gender, Sexuality, and Reproduction
3 credits, ABCF grading

HIS 544 Theme Seminar: Mass Media and Journalism in International Perspectives
3 credits, ABCF grading

HIS 545 Theme Seminars on Gender, Sexuality, and Reproduction
3 credits, ABCF grading
May be repeated for credit

HIS 546 Theme Seminars on Gender, Sexuality, and Reproduction
3 credits, ABCF grading

HIS 547 Special Seminars
Topics to be arranged. The seminar is built around actual research activities of students and faculty. The following topics have been covered: Cultural Theory; Sociology of Technology; Micro-sociology; Advanced Topics in Marxist Theory; Sociology of Emotions; Historical Methods; Ethnic Relations; Biosociology; Comparative Stratification; Max Weber; Sociology of the Future; Science of Society and Everyday Life; The Study of the World’s Advanced Societies; Methods of Behavioral Observation; Social Structure; Sociology of the Family; Cognitive Sociology; Sociology of Work; Transnational Social Movements; Economic Sociology; War and Revolution; Sociology of Gender; Sociology of Culture; Development of Capitalism; Film as a Sociological Research Tool; Funding and Grant Writing; The Three Faces of Social Psychology; A Structural Approach to Organizational Behavior; Professionals and Professionalism; Sociology of Modernity; Globalization and Immigration; Research Support in Sociology; Sociology of Sexual Behavior; Global Sociology; Gender and the Law; Poverty and Homelessness. 3 credits, ABCF grading
May be repeated for credit

HIS 562 Introduction to Modern African History and/or Asian History
Field seminar in modern African history. Surveys major topics such as nationalism, anticolonial movements, and modernization. Note: M.A.T. and M.A./L.S. students must register under CEG 534; crosslisted with HIS 562. 3 credits, ABCF grading
May be repeated once for credit

HIS 563 Introduction to South Asian History
Surveys major topics such as nationalism, anticolonial movements, legacies of British imperialism, and modernization. Spring, 3 credits, ABCF grading

HIS 564 Introduction to Chinese History
Field seminar in modern Chinese history. Surveys major historical topics from modernization to revolution to reform and sociocultural change. For M.A., M.A.T., and Ph.D. students. 3 credits, ABCF grading

HIS 565 Introduction to Japanese History
Field seminar in modern Japanese history surveys major historical topics from reform and modernization to imperialism and post-war reconstruction. For M.A., M.A.T., and Ph.D. students. 3 credits, ABCF grading

HIS 570 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 571 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 572 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 573 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 574 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 575 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 576 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 577 Theme Seminars in Environment, Science, and Health
Spring, 3 credits, ABCF grading

HIS 578 Supervised Teaching
Teaching practicum that usually accompanies a student’s assistantship. 3 credits, SU grading

HIS 579 Teaching Practicum
Teaching practicum in teaching methods for new assistants. (M.A. workshop required deleted from the curriculum.) 3 credits, SU grading

HIS 580 Directed Readings for M.A. Candidates
Specialized tutorials based on contractual relationship between individual student and faculty. Required for M.A. students. 1-3 credits, SU grading
May be repeated for credit

HIS 581 Directed Readings for M.A. Candidates
Specialized tutorials based on contractual relationship between individual student and faculty. Required for M.A. students. 1-3 credits, SU grading
May be repeated for credit
HIS 586 Directed Readings for M.A. Candidates
Specialized tutorials based on contractual relationship between individual student and faculty. Required for M.A. students.
1-3 credits, S/U grading
May be repeated for credit

HIS 595 Reading Colloquium in Women’s History
A topics course dealing with such subjects as women in social movements, the place of gender in particular historical circumstances, imperialism and woman, changing views of sexuality, or relations between family policies and other political programs. This course offered as both HIS 595 and WST 595.
Fall or spring, 3 credits, ABCF grading

HIS 601 Research Seminars on Social and Cultural History
3 credits, ABCF grading

HIS 603 Research Seminar on Social and Cultural History
3 credits, ABCF grading

HIS 615 Research Seminars on Empire, Modernity, and Globalization
3 credits, ABCF grading

HIS 616 Research Seminars on Social and Cultural History
3 credits, ABCF grading

HIS 617 Research Seminars on Empire, Modernity, and Globalization
3 credits, ABCF grading

HIS 622 Migration, Diaspora, and Transnationalism
3 credits, ABCF grading

HIS 623 Research Seminars on Ethnicity and Migration
3 credits, ABCF grading

HIS 631 Research Seminar: The Social History of Medicine and Health
3 credits, ABCF grading

HIS 632 Research Seminars on Gender and Sexuality
3 credits, ABCF grading

HIS 633 Research Seminars on Gender and Sexuality
3 credits, ABCF grading

HIS 634 Research Seminars on Gender and Sexuality
3 credits, ABCF grading

HIS 652 Research Seminar: Oral History: Methodology and Theory
3 credits, ABCF grading
May be repeated for credit

HIS 653 Research Seminars on Nation, State, and Civil Society
3 credits, ABCF grading

HIS 654 Research Seminars on Nation, State, and Civil Society
3 credits, ABCF grading

HIS 655 Research Seminars on Nation, State, and Civil Society
3 credits, ABCF grading

HIS 682 Directed Readings for Ph.D. Candidates
Specialized tutorials based on contractual relationship between individual student and faculty member.
1-18 credits, S/U grading
May be repeated for credit

HIS 684 Directed Readings for Ph.D. Candidates
Specialized tutorials based on contractual relationship between individual student and faculty member.
1-9 credits, ABCF grading
May be repeated for credit

HIS 685 Directed Readings for Ph.D. Candidates
Specialized tutorials based on contractual relationship between individual student and faculty member.
1-18 credits, ABCF grading
May be repeated for credit

HIS 686 Directed Readings for Ph.D. Candidates
Specialized tutorials based on contractual relationship between individual student and faculty member.
1-9 credits, ABCF grading
May be repeated for credit

HIS 695 Dissertation Prospectus Workshop for Ph.D. Candidates
Required of all Ph.D. candidates in order to prepare a dissertation prospectus. This seminar should be completed either before or in the same semester as the qualifying examination.
Offered once each year, 3 credits, S/U grading

HIS 699 Dissertation Research On Campus
Dissertation research under direction of advisor.
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab.
Fall, spring, and summer, 1-18 credits, S/U grading
May be repeated for credit

HIS 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and the Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

HIS 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

HIS 800 Full-Time Summer Research
0 credit, S/U grading
May be repeated for credit
Linguistics (LIN, ESL)

The Department of Linguistics, in the College of Arts and Sciences, offers courses of studies leading to the degrees of Master of Arts in Teaching English to Speakers of Other Languages (TESOL) or Doctor of Philosophy in Linguistics. The graduate program in Linguistics combines sophisticated instruction in theoretical linguistics with extensive field experience and clinical practice in the area of teaching English to non-native speakers, as well as other areas of applied linguistics.

The M.A. in TESOL is designed to prepare students to become professional teachers, teacher educators, and curriculum designers. The program offers courses in applied linguistics and pedagogy and extensive supervised field experience in schools and the English courses offered by the University for international students. Graduates of the program generally teach English to speakers of other languages in schools, colleges, and universities in the United States and abroad. The requirements of the M.A. TESOL program satisfy a substantial portion of the requirements for New York State certification in TESOL, and students may arrange to complete the requirements for state certification in conjunction with pursuit of the M.A.

The Ph.D. program is designed to prepare students for advanced research in linguistic theory and its applications. Students receive a thorough grounding in the fundamentals of grammatical theory through courses such as syntax, semantics, phonology, phonetics, and morphology. Students develop their research interests further through advanced seminars in Linguistics as well as courses in Computer Science, Philosophy, Psychology, and the interdisciplinary Language, Mind, and Brain seminar series. Students are encouraged to develop an area of concentration beyond their primary specialization by focusing a number of their electives in a specific direction.

The M.A. in Linguistics is part of the Ph.D. in Linguistics. It is granted to students in the Ph.D. program who satisfactorily complete 30 credits, which include the courses required for the Ph.D.

Laboratory Facilities
The Department of Linguistics has several lab facilities. The Semantics Lab houses Macintosh computers and is devoted to research and instructional projects in semantics, natural language computation, and software development. The Phonetics Laboratory suite includes a sound-treated room, a teaching lab, and a research lab. Speech analysis platforms available are CSL and Prat. Speech synthesis may be done with HLSyn. There is also a computer lab for students with Internet access and printing facilities.

Admission
Interested students should begin the application process as early as possible, especially if they plan to apply for financial aid. New applications will be considered for admission to the Ph.D. program for the fall semester only. Usually only applications for full-time study will be considered. M.A. applications are normally considered for fall admission.

Ph.D. application materials should be in the Department by February 1; M.A. applications will be accepted through March 1. Admission to all programs is competitive and no single factor (GRE scores, letters, grades, etc.) will exclude anyone from being admitted. Similarly, no single factor will ensure admission.

For admission to the graduate programs in the Department of Linguistics, the following, in addition to the minimum Graduate School requirements, are normally required:

A. Baccalaureate Degree: A baccalaureate degree is required. Students must present evidence that such a degree will be awarded by the time they begin graduate work. A final transcript is also required prior to registration.

B. Cumulative Grade Point Average: Students must have a minimum cumulative grade point average of 3.00 (or its foreign equivalent) on a four-point scale. If you have attended graduate school and obtained a master's degree, and the GPA is over 3.00, then the GPA of the undergraduate school can be below 3.00 for regular admission.

C. Letters of Recommendation: Letters of recommendation from three former instructors are required.

D. Graduate Record Examination: There is no subject test for linguistics or TESOL; the general test is all that is required. Have the testing service send a copy of your score to the Department of Linguistics.

E. Foreign Language Requirement: Proficiency in a foreign language equivalent to two years of college work is required.

F. Writing Sample: The writing sample should be a short paper (two to three pages) written for a previous course taken, or if that is not available, a paper on any subject is acceptable.

G. Curriculum Vitae or Résumé.

H. TOEFL Score: International students must have obtained a minimum score of 600 on the TOEFL test.

I. Acceptance: Students must be accepted by both the Department of Linguistics and the Graduate School.

Note: Students who do not meet the above requirements may be admitted conditionally. Their status will be reviewed after their first semester of graduate study.

Faculty
Professors
Aronoff, Mark, Ph.D., 1974, Massachusetts Institute of Technology: Morphology; orthography.
Broselow, Ellen, Ph.D., 1976, University of Massachusetts, Amherst: Phonology; phonetics; second language acquisition.
Finer, Daniel L., Ph.D., 1984, University of Massachusetts, Amherst: Syntax; semantics; language acquisition.
Harris, Alice C., Ph.D., 1976, Harvard University: Historical linguistics; morphology; languages of the Caucasus.
Hoberman, Robert, Ph.D., 1983, University of Chicago: Semitic linguistics; phonology; morphology.
Kaufman, Dorit, Ph.D., 1991, Stony Brook University: Language acquisition and attrition; language education.
Larson, Richard K., Ph.D., 1983, University of Wisconsin: Semantics; syntax.

Associate Professors
Anshen, Frank, Ph.D., 1968, New York University: Sociolinguistics; morphology.
Bailyn, John, F., Ph.D., 1995, Cornell University: Syntax; Russian syntax; Slavic linguistics.
Huffman, Marie K., Ph.D., 1989, University of California, Los Angeles: Phonetics; phonology.
Repetti, Lori, Ph.D., 1989, University of California, Los Angeles: Italian linguistics; Romance phonology; Italian dialectology.
Number of teaching, graduate, and research assistants, Fall 2007: 19

Degree Requirements

Requirements for the M.A. Degree in TESOL
In addition to the minimum Graduate School requirements, the following are required:

A. Coursework
1. All of the following: (21 credits)
 LIN 522 Phonetics
 LIN 524 TESOL Pedagogy: Theory and Practice and LIN 579 Field Experience N-12
 LIN 527 Structure of English
 LIN 529 Content-based Language and Literacy Development Practice and LIN 579 Field Experience N-12
 LIN 530 Introduction to General Linguistics
 LIN 571 Curriculum Design and Evaluation and LIN 578 Field Experience in Adult and Tertiary Contexts

2. Two of the following: (six credits)
 LIN 525 Contrastive Analysis
 LIN 526 Analysis of an Uncommonly Taught Language
 LIN 532 Second Language Acquisition
 LIN 541 Bilingualism
 LIN 542 Sociolinguistics
 LIN 555 Error Analysis or any other TESOL-related courses approved by the graduate program director

3. Elective: (three credits)
 One elective course to be approved by the Department

B. Qualifying Papers
Acceptance by the Department of two papers of publishable quality in distinct areas of linguistics (qualifying papers) is required. Each paper will be defended orally before a committee of at least three faculty members, at least two of whom will be full-time faculty from within the Department. The inside membership of the two qualifying paper committees must not be identical. The pre-defense draft of a qualifying paper must be submitted to the committee at least three weeks before the defense date. The final version of the first qualifying paper must be submitted not later than six weeks before the last day of classes of the fifth semester, and the final version of the second qualifying paper must be submitted not later than the last day of classes of the sixth semester. Failure to meet the first deadline will affect the student’s priority for funding. Students who have not had the final versions of both qualifying papers accepted by their committees by the end of the sixth semester will normally be dismissed from the program.

Public presentation of one of these papers is required.

C. Language Requirement:
Demonstrated knowledge of two foreign languages other than the student’s mother tongue. This requirement may be satisfied by any of the following methods:

1. Submission of an analytic paper demonstrating knowledge of the structure of the language.
2. Satisfactory completion of a course in the structure of the language.
3. Satisfactory performance on a standardized exam designed to measure language proficiency.
4. Satisfactory completion of two years of college-level instruction in the language.

Advancement to Candidacy
Advancement to candidacy takes place upon the successful completion of the following before the beginning of the fourth year of full-time study: the required courses in A, the qualifying paper requirement in B, and the language requirement in C.

D. Teaching and Research
Students become qualified in teaching and research by working with faculty on an individual basis as teaching assistants and by participating in research projects. They have the opportunity to prepare and teach undergraduate classes during the academic year and in summer sessions.

E. Dissertation
Before a student proceeds to write the dissertation, a dissertation proposal must be accepted by the Department. The dissertation proposal outlines the topic and how the student plans to go about investigating this topic. The advisor will organize a discussion in which a committee considers the proposal with the student. The purpose of this discussion is to ensure that the topic is manageable and substantive.
LINGUISTICS

The dissertation committee will consist of a minimum of four members, at least three from the full-time faculty in the Department and at least one from outside the Department (or University). The committee will be chosen in consultation with the dissertation supervisor, who will be a full-time member of the Department faculty. The formal public defense of the dissertation requires the full attendance of the dissertation examining committee.

Courses

LIN 521 Syntax I
A study of formal grammar as one aspect of our knowledge of language. Concepts and elements of modern syntactic analysis are introduced and motivated using a variety of grammatical phenomena and processes, across a wide range of languages.
Prerequisite: Enrollment in LIN program or permission of instructor
Fall, 3 credits, ABCF grading

LIN 522 Phonetics
A study of articulatory phonetics and the international phonetic alphabet, with intensive practice in phonetic transcription from a wide variety of languages. Acoustic phonetics, speech perception, and the applications of phonetics to foreign language teaching.
Prerequisite: Enrollment in TESOL or LIN program; pre- or co-requisite: LIN 521
Fall, 3 credits, ABCF grading

LIN 523 Phonology I
An introduction to the formal study of sound patterns. Problems from various languages serve as a basis for developing a theory of the representation of sound structure.
Prerequisite: Enrollment in LIN program or permission of instructor
Fall, 3 credits, ABCF grading

LIN 524 TESOL Pedagogy: Theory and Practice
Theoretical and practical bases of language and literacy instruction. Inquiry of instructional approaches, standard-based lesson planning, reflective practices, and assessment in the teaching of speaking, listening, reading, and writing. Evaluation of resources and technologies.
Prerequisite: Enrollment in TESOL or LIN program, pre- or co-requisite: LIN 520; co-requisite: LIN 579
Fall, 3 credits, ABCF grading

LIN 525 Contrastive Analysis
A survey of linguistic typology and a comparison of various languages as a basis for understanding the errors made by language learners and devising strategies for teaching a foreign language. May be crosslisted with CEL 551.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor, and LIN 530, or LIN 521 and LIN 523
Fall or spring, 3 credits, ABCF grading

LIN 526 Analysis of an Uncommonly Taught Language
Working from primary and secondary sources, students construct an outline of the phonology, morphology, and syntax of a language previously unknown to them.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor, and LIN 530, or LIN 521 and LIN 523
Fall or spring, 3 credits, ABCF grading
May be repeated for credit if language differs

LIN 527 Structure of English
A description of the major sentence elements, subsystems, and productive grammatical processes of English. The justification of grammatical categories, interaction between systems and processes, and notions of standard and correctness are discussed with a view to their application in the ESL classroom.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor
Fall or spring, 3 credits, ABCF grading

LIN 529 Content-based Language and Literacy Development
Theory and practice of language and literacy development across disciplines. Students design standard-based curricular modules and assessment, engage in reflective and collaborative practices, and design and evaluate Web-based technologies.
Co-requisite: LIN 579 (LIN 578 with permission of instructor for non-certification candidates)
Prerequisite: Enrollment in TESOL or LIN program or completion of LIN 524 with a grade of B or higher
Spring, 3 credits, ABCF grading

LIN 530 Introduction to General Linguistics
An introduction to modern theoretical and applied linguistics, including phonology, morphology, syntax, language acquisition, historical linguistics, and sociolinguistics.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor
Fall, 3 credits, ABCF grading

LIN 532 Second Language Acquisition
Study of the acquisition of a second language by children and adults. The focus is on data; the systematicity of the learner’s errors, the ease of acquisition in childhood, etc., the adequacy of theories (e.g., interlanguage processes, the monitor model, the critical period) to explain data, and the reliability of methods of obtaining data. Students conduct an empirical study testing a current hypothesis.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor, and LIN 530, or LIN 521 and 522
3 credits, ABCF grading

LIN 535 Historical Linguistics
A study of linguistic change. Some general topics to be discussed are the genetic classification of languages; language families, language, and prehistory; reconstruction; types of sound change; types of semantic change, borrowing.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor
Fall or spring, 3 credits, ABCF grading

LIN 541 Bilingualism
Study of the social, linguistic, educational, and psychological aspects of bilingualism. May be co-scheduled with CEL 541.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor, and LIN 530, or LIN 521 and LIN 523
3 credits, ABCF grading

LIN 542 Sociolinguistics
An introduction to major topics in sociolinguistics, including variation theory, language attitudes, language planning, language change, and pidgins and creoles.
Prerequisite: Enrollment in TESOL or LIN program or permission of instructor
3 credits, ABCF grading

LIN 544 Language Acquisition and Literacy Development
In-depth exploration of the theories of literacy and language development of native English speakers and students who are English language learners in Pre-school through grade 12. The development and assessment of literacy skills among children at various stages of learning development and across disciplines will be examined. Attention will also be given to children with special needs and the integration of technology in the development of literacy skills.
Prerequisite: Enrollment in a teacher preparation program
Fall and spring, 3 credits, ABCF grading

LIN 550 Selected Topics in Linguistics
Topics are announced each semester. 3 credits, ABCF grading
May be repeated for credit if topic differs

LIN 555 Error Analysis
Study of the systematic errors made by foreign language learners and the potential of various linguistic theories to predict and account for these errors.
Prerequisite: Enrollment in TESOL or LIN program, and LIN 522
Spring, 3 credits, ABCF grading

LIN 571 Curriculum Design and Evaluation
An in-depth study of curriculum design and evaluation with a focus on needs analysis, goals and objectives, approaches to language learning and teaching, assessment, resources, and program evaluation.
Prerequisite: Enrollment in TESOL or LIN program and LIN 524; co-requisite: LIN 578 (LIN 579 with permission of instructor)
Spring, 3 credits, ABCF grading

LIN 574 Managing Instruction, Assessment, and Resources
Investigation and evaluation of instructional planning and assessment, content-based curriculum development, and technologies for language and literacy development among English language learners in multilevel classrooms. Partnerships with colleagues, parents, and the respective communities are explored.
Prerequisites: Enrollment in TESOL or LIN program, completion of LIN 529 with a grade of B or higher, permission of Department, New York Teacher
LIN 578 Field Experience in Adult and Tertiary Contexts
Observation, inquiry, and practice of English language instruction and learning in community-based ESL programs or programs on tertiary contexts. Fifty hours of fieldwork.
Prerequisites: LIN 529 or LIN 571
Fall and spring, 1 credit, S/U grading
May be repeated for credit

LIN 579 Field Experience in Grades N-12
Observation, inquiry, and practice in language and literacy development across disciplines for learners from linguistically and culturally diverse backgrounds. Students are placed in variety of educational settings in pre-secondary levels for fifty hours of fieldwork.
Prerequisites: LIN 524, LIN 572, or LIN 571
Fall and spring, 1 credit, S/U grading
May be repeated for credit

LIN 581 Supervised Student Teaching in English as a Second Language: Primary and Middle Level (Grades N-9)
Prospective ESOL teachers receive supervised practice teaching by arrangements with selected Long Island schools. The student teacher reports to the school to which he or she is assigned each full school day for the entire semester. Applications must be filed in the academic year preceding that in which the student plans to take the course.
Prerequisites: Enrollment in TESOL program, permission of the Department
Co-requisites: LIN 582 and LIN 571
Fall and spring, 3 credits, S/U grading

LIN 582 Supervised Student Teaching in English as a Second Language: High School (Grades 10-12)
Prospective ESOL teachers receive supervised practice teaching by arrangements with selected Long Island schools. The student teacher reports to the school to which he or she is assigned each full school day for the entire semester. Applications must be filed in the academic year preceding that in which the student plans to take the course.
Prerequisites: Enrollment in TESOL program, permission of the Department
Co-requisites: LIN 581 and LIN 571
Fall and spring, 3 credits, S/U grading

LIN 591 Directed Readings
Students read and evaluate the literature on a topic of special academic interest or professional relevance under the direction of a faculty member.
Prerequisite: Permission of instructor
Fall and spring, 1-3 credits, S/U grading
May be repeated for credit

LIN 592 Directed Research
Students conduct research on a topic of special academic interest or professional relevance under the direction of a faculty member.
Prerequisite: Permission of instructor
Fall and spring, 1-3 credits, S/U grading
May be repeated for credit

LIN 621 Syntax II
A detailed consideration of recent developments in syntactic theory, including treatments of constituency and word order, grammatical relations, typological variation and linguistic universals, and constraints on grammatical rules and representations.
Prerequisite: LIN 521
Spring, 3 credits, ABCF grading

LIN 623 Phonology II
A study of recent developments in phonological theory, with particular attention to non-linear models of phonological representation and constraint-based models.
Prerequisite: LIN 523
Spring, 3 credits, ABCF grading

LIN 624 Morphology and Word Formation
The internal structure of words and the place of the word in syntax, phonology, and the lexicon. A variety of analytical methods—distributional, experimental, and computational will be introduced.
Prerequisites: LIN 521 and LIN 523
Fall or spring, 3 credits, ABCF grading

LIN 625 Semantics
An investigation of the role of semantics (the theory of meaning) in the overall theory of grammar, structured around such topics as formal semantics, the interaction of syntax and semantics, and lexical semantics.
Prerequisite: LIN 521
Fall, 3 credits, ABCF grading

LIN 650 Selected Topics: Graduate Seminar
Topics will be announced each semester.
Fall or spring, 0-3 credits, ABCF grading
May be repeated for credit if topic differs

LIN 651 Syntax Seminar
Topic varies and relates to current issues in the field and research activities of faculty and students. Past topics have included A-dependencies, adjectival and adverbial modification, word order and asymmetry.
Fall or spring, 0-3 credits, ABCF grading
May be repeated for credit

LIN 653 Phonology Seminar
Topic varies and relates to current issues in the field and research activities of faculty and students. Past topics have included interface issues (phonetics, morphology, syntax), functional motivations for phonological constraints (articulatory ease, perceptual salience, parsing considerations), intonation, and second language and loanword phonology.
Fall or spring, 0-3 credits, ABCF grading
May be repeated for credit

LIN 680 Qualifying Paper Workshop
Doctoral candidates will present and discuss their own research work.
Prerequisite: Advanced standing
Fall or spring, 1-3 credits, S/U grading
May be repeated for credit

LIN 689 Graduate Practicum in Teaching
0-6 credits, S/U grading
May be repeated for credit

LIN 699 Dissertation Research On Campus
Independent research for the Ph.D. degree.
Prerequisite: Open only to candidates for the Ph.D. degree who have advanced to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

LIN 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

LIN 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

LIN 800 Summer Research
0 credit, S/U grading
May be repeated for credit

ESL courses listed below are offered by the Department of Linguistics, but are not part of the master’s or Ph.D. program.

ESL 591 Intermediate Oral/Aural Skills Class
The purpose of this course is to do intensive work in aural and oral language skills. Emphasis is on the segmental level; vowel/sonant work, syllable work, and word stress, as well as rhythm on the sentence level. Summarizing and questioning are practiced with work on learning styles. Students’ awareness of American teaching and cultural patterns are stressed. Observing American professors and students in class is encour-
aged. A student will receive a diagnostic assessment of her/his language segmental and suprasegmental difficulties from the instructor and will be expected to work on improvement in these speech areas both in the classroom and independently in the language laboratories. Successful completion (A- or higher) of the course leads to ESL 598; B+ or below leads to ESL 596.

Prerequisite: SPEAK Test score of 40–44
3 credits, ABCF grading

ESL 593 Advanced Composition
Advanced training in writing for ESL students who need to concentrate on paragraph development. The first half of the semester deals with paragraph construction, stressing concepts of the main thesis and supporting arguments. Some advanced grammar is reviewed, but the assumption is that basic structures and mechanics of writing have already been mastered. The second half of the semester stresses combining paragraphs into short compositions. Both descriptive and argumentative writing are practiced. Diagnostic test during the first week of classes determines placement in the course. A through C/Unsatisfactory grading only.
3 credits, ABCF grading

ESL 596 High Intermediate Oral/Aural Skills Class
The emphasis of this course is threefold: developing language skills, teaching skills, and cultural awareness. Language skills will focus on sentence stress, phrasing, linking, and pausing with field-specific language practice. Teaching skills stressed include questioning techniques for discussion and assessment, leading effective discussions, and assessing student learning. The cultural awareness focuses on idioms, American cultural values, and norms as well as non-verbal communication. Successful completion of this course (B or higher) leads to ESL 598.
Prerequisites: SPEAK Test score of 45–49
3 credits, ABCF grading

ESL 598 Advanced Oral Aural
An advanced course in speaking and listening skills for non-native speakers of English. Work is done with individual problem sounds, stress, and intonation to help students modify their accents and make their speech more intelligible. Techniques of speaking before a group are taught to enable non-native speakers to feel more confident in participating in their other classes. Advanced work in American idioms and grammar is usually included. Language laboratory may be required by individual instructors. Especially useful for undergraduate and graduate students who need to make seminar presentation and for graduate students with teaching assistantships.
Prerequisite: TSE or SPEAK score of 50 or higher or completion of ESL 591 or ESL 596 with a grade of B or higher
3 credits, ABCF grading
Marine and Atmospheric Sciences (MAS)

Dean: David O. Conover, Endeavour Hall Room 145, (631) 632-8700
Graduate Program Director: Anne McElroy, Dana Hall Room 113, (631) 632-8488
Coordinator of Atmospheric Sciences Program: Sultan Hameed, Endeavour Hall Room 131, (631) 632-8319
Director of Waste Reduction and Management Program: R. Lawrence Swanson, Dutchess Hall Room 147, (631) 632-8704
Graduate Program Coordinator: Carol Dovi, Endeavour Hall Room 105, (631) 632-8681

Degrees awarded: M.S. in Marine and Atmospheric Science; Ph.D. in Marine and Atmospheric Science; Graduate Certificate in Oceanic Science; Graduate Certificate in Waste Management

The Marine and Atmospheric Sciences (MAS) graduate program is located within the School of Marine and Atmospheric Sciences (SoMAS). Research activities within SoMAS are coordinated through the Marine Sciences Research Center (MSRC), and the Institute for Terrestrial and Planetary Atmospheres (ITPA). MSRC is the center for research, graduate education, and public service in the marine sciences for the entire State University of New York system. SoMAS faculty have active research programs in all major oceanographic and atmospheric disciplines and many focus on interdisciplinary approaches to understanding environmental processes and issues. Specific areas of cross-disciplinary focus include: biogeochemical transformation of energy and elements, conservation and management of marine resources, environmental health and contaminants, environmental modeling and prediction, and patterns and impacts of global climate change.

SoMAS is ideally situated for studies of a variety of coastal environments including barrier islands, continental shelf waters, estuaries, lagoons, and salt marshes. Long Island has a greater diversity of coastal environments in a limited geographical range than any other comparable area in the United States. The proximity of New York City and the burgeoning population of Long Island and Connecticut make New York coastal waters an excellent laboratory for assessing human impacts on the coastal seas, and understanding land/sea interactions at all levels. In addition to working on coastal issues, SoMAS scientists have active research programs on all the world’s oceans and ITPA faculty examine atmospheric processes on the Earth and other planets.

SoMAS offers M.S. and Ph.D. degree programs in either oceanography or atmospheric sciences. Interested students should address inquiries to the graduate program director. Virtually all M.S. and Ph.D. students in good standing receive stipends and full tuition scholarships.

Facilities
The main laboratories and offices of SoMAS are housed in a cluster of buildings on South Campus with more than 8,000 square meters of usable floor space. Laboratories are well equipped for most analyses, and students and faculty have access, with special arrangements, to nearby Brookhaven National Laboratory (BNL) and Cold Spring Harbor Laboratory. Center and University computing facilities are excellent and include the new 100 TFlop IBM Blue Gene supercomputer recently installed at BNL. SoMAS is home to the Marine Animal Disease Laboratory, a diagnostic and research facility focused on the health of living marine resources, the Waste Reduction and Management Institute, the Living Marine Resources Institute, the Long Island Groundwater Institute, the New York Sea Grant College Program, and several analytical facilities. MASIC (the Marine and Atmospheric Sciences and Information Center) is the branch of the campus library system located at SoMAS. Officially designated as a prototype for technology-based branch libraries on the campus, MASIC offers students and faculty a core collection of journals and monographs relevant to the multidisciplinary pursuits of SoMAS and its affiliated institutes as well as a state-of-the-art computer teaching laboratory.

SoMAS manages the Flax Pond Marine Laboratory located on a 0.6-square-kilometer salt marsh approximately seven kilometers from campus. This facility provides flow-through seawater and space suitable for culture and experimentation on living marine resources. Part of the facility is in a greenhouse offering ambient light and temperature conditions. Laboratory and sea-table space are available to faculty and students at SoMAS and other collaborating University programs. SoMAS also manages the marine station at Stony Brook Southampton, located 46 miles away on the beautiful east end of Long Island. Several SoMAS faculty keep research laboratories at Stony Brook Southampton, and additional wet lab space is available for student and faculty research.

SoMAS also operates a fleet of research vessels, the largest of which is the R/V SEAWOLF, a 24-meter research vessel designed specifically for oceanographic research. The SEAWOLF is ideally suited for extended research trips, large-scale oceanographic sampling, and trawling. Several other smaller boats are available for local cruises out of either the Stony Brook or Southampton campuses.

Graduate Degree Program Descriptions

The M.S. Program in Marine and Atmospheric Science
The M.S. program offered by SoMAS consists of a rigorous interdisciplinary approach to oceanography and atmospheric sciences based on interdisciplinary course work and a research thesis. It is designed to prepare students for positions in environmental protection, management, research, and resource development. The program provides students with a firm basis for more advanced study. But, more importantly, it is designed to equip students with the background and tools needed for effective careers without additional training. Required course work is identical to the Ph.D. program, allowing M.S. students to continue on in the Ph.D. program provided they have demonstrated adequate performance and found a suitable faculty advisor.

Ph.D. Program in Marine and Atmospheric Science
The Ph.D. program is designed to prepare students...
students to independently identify and attack oceanographic and atmospheric problems. It builds on a series of core required courses (taken by both Ph.D. and M.S. students), and allows students to create their own course of advanced study, helping them to become effective, independent problem solvers. The Ph.D. in Marine and Atmospheric Science prepares students to compete effectively for academic positions, direct research programs at government or private laboratories, and direct research and assessment programs at non-governmental organizations. An M.S. degree is not required for admission to the Ph.D. program.

Admission Requirements

There are two tracks in the M.S. and Ph.D. programs—one in Oceanography and one in Atmospheric Sciences. Students should indicate which track they wish to pursue on their applications. All applications should be submitted electronically through the Graduate School.

For admission to either the M.S. or Ph.D. graduate programs in Marine and Atmospheric Sciences, the following, in addition to the minimum Graduate School requirements, are normally required:

A. B.A. or B.S. degree in atmospheric sciences, biology, chemistry, geology, mathematics, physics, or other suitable science discipline, the coursework equivalent to obtain such a degree;

B. Two semesters of coursework in mathematics through calculus, physics, and chemistry, and as appropriate to specialization area, biology or earth sciences, with advanced work in at least one of these disciplines;

C. Cumulative grade point average of at least 3.0 (B);

D. Acceptable scores on the Graduate Record Examination (GRE) General Test;

E. Acceptable scores on the TOEFL (paper: 600, computer: 230, iBT: 90) or IELTS (6.5)

F. Three letters of recommendation;

G. Official transcript(s);

Students should state why they wish to enter the SoMAS graduate program and provide an indication of both the specific research areas they would like to address and potential faculty advisors in their personal statement.

Certificate Programs

In addition to the M.S. and Ph.D. programs of study, certificate programs provide the opportunity for advanced study for students who do not wish to pursue a degree. Students interested in either of these programs should contact the Graduate Program Director.

Graduate Certificate Program of the Waste Reduction and Management Institute

MSRC is the home of the Waste Reduction and Management Institute, dedicated to lessening the impacts of a complex array of wastes through environmental assessment, policy analysis, public outreach, and research. A Graduate Certificate in Waste Management is administered by the School of Professional Development. The 18-credit program provides access to the most current expertise in waste management essential to working effectively in professional careers or public service. The certificate may also be incorporated into the degree of Professional Studies with a concentration in waste management. For further information refer to the School of Professional Development section in this Bulletin.

Advanced Graduate Certificate Program in Oceanic Science

The advanced graduate certificate program in Oceanic Science is designed to make the unique resources of the MSRC available to professionals as well as to scholars both within the SUNY system and at other institutions as well as other professionals. Students admitted to this program complete two full-time semesters (18 credits) of intensive, specialized graduate studies in our core curriculum, or the equivalent, under the supervision of a faculty sponsor. The program is intended to supplement a student’s primary educational and professional goals. Qualified students are provided with a broad background in oceanography as well as opportunity for in-depth course work in highly specialized topics.

Faculty

Distinguished Professors

Aller, Robert C., Ph.D., 1977, Yale University: Marine geochemistry; marine animal-sediment relations.

Cess, Robert D., Emeritus, Ph.D., 1959, University of Pittsburgh: Atmospheric sciences.

Fisher, Nicholas S., Ph.D., 1974, Stony Brook University: Marine biogeochemistry of metals, marine pollution, phytoplankton, herbivore interactions.

Lee, Cindy, Ph.D., 1975, University of California, San Diego (Scripps): Marine geochemistry of organic compounds; organic and inorganic nitrogen cycle biochemistry.

Distinguished Service Professor

Bowman, M.J., Ph.D., 1971, University of Saskatchewan, Canada: Coastal dynamics; oceanic fronts; productivity and physical processes.

Professors

Aller, Josephine Y., Ph.D., 1975, University of Southern California: Marine benthic ecology; invertebrate zoology; marine microbiology; biogeochemistry.

Bokuniewicz, Henry J., Ph.D., 1976, Yale University: Nearshore transport processes; coastal sedimentation; marine geophysics.

Cochran, J. Kirk, Ph.D., 1979, Yale University: Marine geochemistry; use of radionuclides as geochemical tracers; diagenesis of marine sediments.

Conover, David O., Dean of SoMAS, Ph.D., 1981, University of Massachusetts: Ecology of fishes; fisheries biology.

Flood, Roger D., Ph.D., 1978, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution: Marine geology; sediment dynamics; continental margin sedimentation.

Geller, Marvin A., Ph.D., 1969, Massachusetts Institute of Technology: Atmospherics dynamics; climate and the upper atmosphere.

Hameed, Sultan, Coordinator of Atmospheric Sciences Program, Ph.D., 1968, University of Manchester, England: Atmospheric sciences.

Lopez, Glenn R., Ph.D., 1976, Stony Brook University: Benthic ecology; animal-sediment interactions.

Scranton, Mary L., Ph.D., 1977, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution: Marine biogeochemistry; geochemistry of reduced gases; chemical cycling in anoxic systems.

Swanson, R. Lawrence, Ph.D., 1971, Oregon State University: Physical oceanography of coastal waters and estuaries; ocean dumping; coastal zone management.

Taylor, Gordon T., Ph.D., 1983, University of Southern California: Marine microbial ecology; microbial mediation of biogeochemical processes; biofuelling.

Varanasi, Prasad, Ph.D., 1967, University of California, San Diego: Atmospheric spectroscopy; remote sensing; global warming.
Wang, Dong-Ping, Ph.D., 1975, University of Miami: Coastal ocean dynamics.

Zhang, Minghua, Ph.D., 1987, Institute for Atmospheric Physics, Academia Sinica, Beijing: Atmospheric sciences; modeling of climate.

Associate Professors

Armstrong, Robert A., Ph.D., 1975, University of Minnesota: Marine ecosystem ecology; marine biogeochemistry; population and community ecology.

Cerrato, Robert M., Ph.D., 1980, Yale University: Benthic ecology; population and community dynamics; recolonization.

Colle, Brian A., Ph.D., 1997, University of Washington: Synoptic meteorology; mesoscale numerical modeling and forecasting; coastal meteorology.

Gobler, Christopher, Ph.D., 1999, Stony Brook University: Phytoplankton; harmful algal blooms; estuarine ecology; aquatic biogeochemistry.

Khairoutdinov, Marat, Ph.D., 1997, University of Oklahoma: Climate modeling; high-resolution cloud modeling; cloud microphysics; super parameterization; massively parallel super-computing; cloud parameterization.

Lonsdale, Darcy J., Ph.D., 1979, University of Maryland: Zooplankton ecology with special interest in physiology; life history studies.

Mak, John E., Ph.D., 1992, University of California, San Diego (Scripps): Atmospheric chemistry and biosphere-atmosphere interactions; isotope geochemistry.

McElroy, Anne E., Graduate Program Director, Ph.D., 1985, Massachusetts Institute of Technology. Woods Hole Oceanographic Institution: Aquatic toxicity, fate and effects of organic contaminants.

Wilson, Robert E., Ph.D., 1973, Johns Hopkins University: Estuarine and coastal ocean dynamics.

Assistant Professors

Allam, Bassem, Ph.D., 1998, University of Western Brittany: Diseases of shellfish.

Collier, Jackie L., Ph.D., 1994, Stanford University: Phytoplankton physiology and ecology; freshwater and marine plankton; molecular microbial ecology.

Fast, Mark D., Ph.D., 2005, Dalhousie University, Canada: Aquatic diseases and immunology.

Frisk, Michael, Ph.D., 2004, University of Maryland: Biology; life history; conservation of elasmobranchs.

Munch, Stephen, Ph.D., 2002, Stony Brook University: Evolutionary ecology of growth and life history traits; evolution in harvested populations; applied population dynamics modeling; mathematical modeling and statistics.

Peterson, Bradley, Ph.D., 1998, University of South Alabama: Community ecology of seagrass dominated ecosystems.

Joint Faculty

Akacakaya, Resit, Ph.D., 1989, Stony Brook University: Ecological risk assessment, metapopulation modeling, population viability analysis, threatened species assessment, uncertainty analysis.

Baines, Stephen, Assistant Professor, Ecology and Evolution, Ph.D., 1993, Yale University: Aquatic biogeochemistry of carbon and trace elements.

De Zafra, Robert. Emeritus, Ph.D., 1958, University of Maryland: Positron annihilation, physics.

Koppelman, Lee E., Center for Regional Policy Studies, Ph.D., 1970, Cornell University: Coastal zone management; planning; policy studies.

Lewinton, Jeffrey, Professor, Ecology and Evolution, Ph.D., 1971, Yale University: Marine ecology.

Padilla, Diana, Ph.D., 1987, University of Alberta: Mollusc ecology; invasive species.

Reaven, Sheldon, Ph.D., 1975, University of California, Berkeley: Energy and environmental problems; waste management; science and society.

Adjunct Faculty

Buoniauto, Frank, Ph.D., 1999, Stony Brook University: Coastal processes, numerical modeling of waves, tides and sediment transport.

Bowser, Paul, Ph.D., 1978, Aurora University: Fish pathology.

Chistoserdov, Andre Y., Ph.D., 1985, Institute of Genetics and Selection of Industrial Microorganisms, Russia: Marine microbiology; molecular genetics of methylotrophic bacteria; marine biotechnology and bioremediation.

Engel, Anga: Organic matter cycling marine gel particles, ocean acidification.

Espinosa, Emmanuelle pales, Ph.D., 1999, University of Nante, France: Shellfish physiology; particle selection mechanisms in suspension-feeding bivalves, algology.

Essington, Tim, Ph.D., 1999, University of Wisconsin-Madison: Marine fish ecology and biology; food web interactions, marine fisheries.

Ferson, Scott, Ph.D., 1988, Stony Brook University: Risk assessments and uncertainty analysis.

Fowler, Scott, Ph.D., 1969: Zooplankton ecology; biogeochemistry of metals; marine pollution; radioecology; ecotoxicology.

Goodbred Jr., Steven, Ph.D., 1999: Coastal and marine sedimentology; quaternary development of continental margins; salt-marsh processes and responses.

Letherman, Stephen P., 1975, University of Virginia: Coastal geomorphology.

Pikitch, Ellen, K., Ph.D., 1983, Indiana University: Fisheries science; conservation biology; marine policy.

Riemer, Nicole, Ph.D., 2002, University of Karlsruhe, Germany: Cloud microphysics; aerosol physics; chemistry.

Safina, Carl, Adjunct, Ph.D., 1987, Rutgers University: Marine vertebrates; fisheries policy; raising awareness of ocean change.

Sanudo-Wilhelmy, Sergio A., Ph.D., 1993, University of California, Santa Cruz: Chemical oceanography; coastal geochemistry; metal cycling in aquatic systems.

Waliser, Duane, Ph.D., 1992: Ocean-atmosphere interactions; tropical climate dynamics.

Degree Requirements

Requirements for the M.S. Degree in Marine and Atmospheric Sciences

In addition to the minimum Graduate School requirements, the following are required:

A. An overall B (3.0) average in the required core courses with no grade lower than a C. See details of required coursework below;

B. Seminar MAR 580 (two semesters);

C. An advisor by the end of the first year;

D. Master's research proposal due by end of first year, signed by advisor and two readers;

E. Sea experience or appropriate field experience for students in the oceanography track only; approved by the advisor;

F. Oral presentation of thesis work;

G. Submission of approved thesis.

The M.S. degree is 30 credits, made up of research credits in addition to required and elective course work.

Requirements for Ph.D. Degree in Marine and Atmospheric Sciences

In addition to the minimum Graduate School requirements, and general requirements for the M.S. degree, the following are required:

A. Comprehensive Examination: The primary purposes of the Comprehensive
Examination is to assess the student’s knowledge of his or her field and the student’s ability to relate his or her specific research interests to the broader field. The student must demonstrate a general knowledge of oceanography or atmospheric sciences, including an understanding of the current concepts of his or her field. Success on the examination implies the ability to use this information to address questions of a multidisciplinary nature;

B. Ph.D. degree dissertation proposal approved by a dissertation committee and oral preliminary examination;

C. Practicum in teaching;
D. Oral defense of dissertation;
E. Submission of approved dissertation.

Required Courses:

Marine Track:
A. Core Courses: MAR 501 Physical Oceanography, MAR 502 Biological Oceanography, MAR 503 Chemical Oceanography, and MAR 506 Geologic Oceanography
B. MAR 568 Scientific Communication;
C. A minimum of six credits in specialty courses (excluding MAR 501, 502, 503, 506, 547, 555, and 580) selected by the student and his or her advisor and approved by the advisor;
D. Sea experience or appropriate field experience.

Atmospheric Track:
A. Core courses: 1) MAR 541 and 542, Foundations of Atmospheric Sciences I and II; 2) One of the required oceanography core courses (MAR 501, 502, 503, or 506); and 3) Two or three out of the five following advanced courses, for M.S. and Ph.D. students, respectively: MAR 530 Atmospheric Physics, MAR 594 Atmospheric Dynamics, MAR 590 Atmospheric Radiations, MAR 596 Atmospheric Chemistry, and MAR 598 Synoptic and Mesoscale Meteorology;
B. MAR 595 Graduate Seminar in Atmospheric Sciences (two semesters);
C. Minimum of 24 course credits for Ph.D. students.

Courses

Marine Science Courses

MAR 501 Physical Oceanography
Examines physics of ocean circulation and mixing on various scales with strong emphasis on profound effects of Earth’s rotation on motions and distribution of properties. An introduction to physics of estuaries and other coastal water bodies.
Co-requisite: MAR 555 or permission of instructor
Fall, 3 credits, ABCF grading

MAR 502 Biological Oceanography
Examines biological processes in the ocean, and introduces major ocean biomes and groups of organisms. A broad treatment of energy and nutrient cycling in coastal and open ocean environments.
Prerequisite: Enrollment in Marine Environmental Sciences program or permission of instructor
Fall, 3 credits, ABCF grading

MAR 503 Chemical Oceanography
Introduction to chemical oceanography. Topics include origin and history of seawater, major and minor constituents, dissolved gases, the carbon dioxide system, distribution of properties in the world ocean, isotopic geochemistry, and estuarine and hydrothermal vent geochemistry.
Prerequisite: Enrollment in the Marine Environmental Sciences program or permission of instructor
Spring, 3 credits, ABCF grading

MAR 506 Geologic Oceanography
An introduction to the geological oceanography of the world ocean with emphasis on the coastal environment; discussions of the physical processes controlling the structure and evolution of the ocean basins and continental margins, the distribution of marine sediment, and the development of coastal features.
Prerequisite: Enrollment in Marine Environmental Sciences program or permission of instructor
Spring, 3 credits, ABCF grading

MAR 510 Modeling Techniques in Chemical Oceanography
Derivation of solutions to advection-diffusion-reaction equations for marine sediments and waters. One- and multi-dimensional models are developed for dissolved and solid-phase substances in cartesian, cylindrical, and spherical coordinates. Effects of imposing multiple layers on these systems is examined.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAR 511 Benthic Ecology
This course focuses on the ecological interactions of benthic organisms and their habitat. Topics include life histories, the roles of competition, predation and disturbance, feeding adaptations and food webs, interactions between benthic organisms and water motion, sediment chemistry, and other abiotic factors, and evolutionary history of benthic ecological processes.
Spring, alternate years, 2 credits, ABCF grading

MAR 512 Marine Pollution
Review of the physical and chemical characteristics and speciation in the marine environment of organic pollutants, metals and radionuclides including bioavailability, assimilation by marine organisms, toxicity, and policy issues. Crosslisted as MAR 512 or HPH 671.
Prerequisites: MAR 502, MAR 503
Fall, 3 credits, ABCF grading

MAR 514 Marine Management
The course analyzes waste management issues particularly affecting the marine environment. Topics include ocean dumping, sewage treatment, fish kills, beach pollution, and nuisance algal blooms. Techniques for managing the waste stream are presented. Crosslisted as HPH 672 or MAR 514.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAR 515 Phytoplankton Ecology
The biology and ecology of marine phytoplankton. Covered are life cycles, growth, nutrient uptake, grazing, and the effects of environmental factors on growth and survival of phytoplankton. The characteristics of various classes are examined and are related to environmental conditions.
Prerequisites: General biology
Fall, 3 credits, ABCF grading

MAR 516 Larval Ecology
This course examines (1) physical, chemical, and biological processes that regulate timing of reproduction, larval dispersal, and larval settlement, (2) selective forces in the plankton that shape life histories, and (3) ecological and evolutionary consequences of complex life cycles.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAR 517 Waves
Theory and observations of surface waves, internal waves, and planetary waves; wave-wave, wave-current, and wave-turbulence interactions; surface wave prediction; beach processes.
Spring, alternate years, 3 credits, ABCF grading

MAR 518 Environmental Engineering
A technical, legal, and regulatory review of various aspects of environmental engineering. Problems of and solutions for managing water resources and air quality in an urban/suburban coastal environment are discussed.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAR 519 Geochemistry Seminar
This course explores topics in low-temperature geochemistry as chosen by the instructors and participants. The seminar series is organized around a theme such as early diagenesis, estuarine geochemistry, or aquatic chemistry. Students are required to lead one of the seminars and to participate in discussions.
Prerequisite: MAR 503 or permission
MAR 520 New Production and Geochemical Cycles
Consideration of oceanic new production for a variety of ecosystems. Quantitative examination of the impact of new production on the transport and cycling of major and minor elements and pollutants. Pre- or corequisites: MAR 502, 503. Spring, alternate years, 2 credits, ABCF grading.

MAR 521 Groundwater Problems
Discussion of the hydraulic processes and technologies that are central to the management and monitoring of groundwater resources including special problems of coastal hydrology and saltwater intrusion, as well as the fate of contaminants. Remediation approaches are also examined. Crosslisted as MAR 521 or HPH 673. Prerequisite: Permission of instructor. Summer, 3 credits, ABCF grading.

MAR 522 Environmental Toxicology and Public Health
Principles of toxicology and epidemiology are presented and problems associated with major classes of toxic chemicals and radiation to human and environmental health are examined in case study format. Spring, 3 credits, ABCF grading.

MAR 524 Organic Contaminant Hydrology
There are a host of chemical, biological, and physical processes that affect the transport and fate of organic chemicals in natural waters. This course concerns understanding these processes and the structure-activity relationships available for predicting their rates. The major focus of this class is on contaminant hydrology of soil and aquifer environments, and includes the principles behind remediation and containment technologies. This course is offered as both MAR 524 and GEO 524. Prerequisite: GEO 526 or MAR 503 or permission of instructor. Spring, 3 credits, ABCF grading.

MAR 525 Environment and Public Health Engineering/Sanitation
Review of the interactions of humans with the atmosphere and water resources, especially in the Long Island coastal community. An introduction is provided to the field of environmental health and the practices relevant to an urban/suburban and coastal setting. Crosslisted with HPH 675. Prerequisite: Permission of instructor. Spring, every year, 3 credits, ABCF grading.

MAR 526 Pollutant Responses in Marine Organisms
This course examines physiological, biochemical, and molecular responses of marine organisms to contaminant stress. Material will be examined through review lectures on the topic and group discussion of the current literature. Fall, alternate years, 3 credits, ABCF grading.

MAR 527 Global Change
The course examines the scientific basis behind questions of global change and some of the policy implications of changes to the region and country. Topics include evidence and courses of past climatic changes, greenhouse gases and the greenhouse effect, analogues with other planets, the Gaia hypothesis, climate modeling, and deforestation and the depletion of ozone. Prerequisite: Permission of instructor. Fall, alternate years, 2 credits, ABCF grading.

MAR 528 Ocean Atmosphere Interactions
This course discusses the fundamental physical and atmospheric mechanisms through which the ocean and atmosphere interact. These principles are applied to the understanding of phenomena, such as the El Nino Southern Oscillation, the effects of sea surface temperature on the distribution of low-level winds and development of tropical deep convection, and the effects of tropical deep convection and mid-latitude storms on the ocean's mixed layer. Both modeling and observational aspects are discussed. Material will be taken from selected textbooks, as well as recent literature. Prerequisite: Permission of instructor. Spring, alternate years, 3 credits, ABCF grading.

MAR 529 Isotope Geochemistry
This course deals both with the use of stable and radiogenic applications to the earth sciences. Fall, 3 credits, ABCF grading.

MAR 530 Organic Geochemistry
Introduction to the organic chemistry of the earth, oceans, and atmosphere. Topics include production transformation and fate of organic matter; use of organic biomarkers and stable and radiogenic isotopes; diagenesis in recent sediments; oil and coal production and composition; dissolved and particulate organic matter in seawater. Prerequisite: Permission of instructor. Fall, alternate years, 3 credits, ABCF grading.

MAR 531 Instrumental Analysis
Fundamental principles of instrumental chemical analysis and practical applications of molecular spectroscopy and atomic spectroscopy. These two instruments are widely used in environmental problem solving. Lectures cover basic concepts of chemical analysis and the fundamental principles of the analytical techniques to be used. In the laboratory, students gain hands-on experience both by performing a series of required basic chemical determinations (nutrients and trace metals in sediments and in river water) and by undertaking special projects. Students prepare written reports describing the methods, the theory underlying those methods, results, and figures of merit. Students also present their results orally in brief presentations. Prerequisite: Permission of instructor. Spring, 3 credits, ABCF grading.

MAR 532 Aquaculture
Biological, economic, practical, social, and legal aspects of cultivating marine and freshwater organisms, including plants, crustaceans, and finfish. Basic principles of aquaculture and successes and failures with selected species. Field trips and the preparation and evaluation of aquaculture proposals. Fall, 2 credits, ABCF grading.

MAR 535 Physiological Ecology of Marine Organisms
An introduction to the physiological adaptations of marine organisms to environmental changes. Specific topics covered include responses to stress, temperature adaptation, genetic basis of physiological adaptation, resource partitioning, bioenergetics, and feeding models and resource limitation. Prerequisite: Undergraduate courses in biology, particularly ecology, invertebrate zoology, and/or physiology. Fall, 3 credits, ABCF grading.

MAR 536 Environmental Law and Regulation
This course covers environmental law and regulations from inception in common law through statutory law and regulations. The initial approach entails the review of important case law giving rise to today's body of environmental regulations. Emphasis is on environmental statutes and regulations, including those relating to air and water pollution, hazardous waste, and solid waste as well as New York State's Environmental Quality Review Act (SEQRA) and the National Environmental Policy Act (NEPA). Crosslisted as MAR 536 or HPH 676. Spring, 3 credits, ABCF grading.

MAR 537 Modern Methods of Data Analysis in Atmospheric and Ocean Sciences—Part I
An introduction to basic statistical concepts and their applications to analysis of data in atmospheric and marine sciences. The topics include distribution, statistical estimation, hypothesis testing, analysis of variance, linear and nonlinear regression analysis, and bases of experimental design. In-depth class discussions of the theoretical concepts are accompanied by extensive applications to data sets supplied by the instructor and the students. Prerequisites: MAR or OCN graduate standing or permission of instructor. Fall, alternate years, 3 credits, ABCF grading. May be repeated once for credit.

MAR 540 Marine Microbial Ecology
An historical perspective of the field, aspects of nutrition and growth, microbial metabolism, and trophodynamic relationships with other organisms. Emphasis on roles of microorganisms in marine environments such as salt marshes, estuaries, coastal pelagic ecosystems, and the deep sea, as well as microbial contribution to geochemical cycles. Contemporary and classical methodologies covered. Prerequisite: MAR 502 or permission of instructor. Fall, 3 credits, ABCF grading.
MAR 541 Foundations of Atmospheric Sciences I
This course will first give an overview of the atmosphere and the climate system, including weather systems and atmospheric general circulations. It then introduces atmospheric thermodynamics and dynamics at the level appropriate to all students in atmospheric sciences.
3 credits, ABCF grading

MAR 542 Foundations of Atmospheric Sciences II
This course introduces cloud physics, atmospheric chemistry, boundary layer turbulence, and atmospheric radiation. This is the second course in a two-course series taught at the level appropriate to all students in atmospheric sciences.
Fall, every year, 3 credits, ABCF grading

MAR 544 Atmospheric Radiation
Discussion of the compositions and radiative components of planetary atmospheres. Blackbody and gaseous radiation with emphasis on the respective roles of electromagnetic theory and quantum statistics. Derivation of the equation of transfer and radiative exchange integrals, with application to energy transfer processes within the atmospheres of Earth and other planets.
Fall, alternate years, 3 credits, ABCF grading

MAR 545 Paleocenography and Paleoclimatology
This course will provide an extensive overview of the methods used in paleocenography research and an examination of important climate events during the Late-Mesozoic and Cenozoic eras. We will discuss proxies used to create paleocenographic reconstructions forcing mechanisms on interannual to million-year time scales, climate effects on geological and biological processes, and the modeling of present climate and extrapolation to past and future climates.
Fall, alternate years, 1-4 credits, ABCF grading

MAR 546 Marine Sedimentology
Study of sedimentology in the marine environment including an introduction to fluid mechanics, sediment transport theory, quantitative models of sedimentation, and dynamic stratigraphy.
Prerequisite: Permission of instructor
Fall, alternate years, 3 credits, ABCF grading

MAR 547 Dynamical Oceanography I
The first course in a two-course series on basic methods and results in dynamical oceanography. This course emphasizes unstratified fluids. Topics covered include but are not limited to basic conservation equations, effects of rotation, geostrophy, potential vorticity conservation, Ekman layers, and Ekman pumping.
Prerequisite: MAR 501 or permission of instructor
Spring, 3 credits, ABCF grading

MAR 548 Dynamical Oceanography II
Continuation of Dynamics I. Course covers some of the basic effects of stratification. Topics include potential vorticity for baroclinic motion and baroclinic instability.
Prerequisite: Dynamical Oceanography I
Fall, 3 credits, ABCF grading

MAR 549 Current Topics in Atmospheric Sciences
This course will discuss current research topics in atmospheric sciences and their connections with advanced course materials.
0-2 credits, SU grading
May be repeated once for credit

MAR 550 Topics in Marine Sciences
This course is designed to present special interest courses, including internships, short courses by visiting and adjunct faculty and courses requested by students. Those given in recent years include Nature of Marine Ecosystems, Science and Technology in Public Institutions, Plutonium in the Marine Environment, and Problems in Estuarine Sedimentation.
Fall and spring, 1-4 credits, ABCF grading May be repeated for credit

MAR 551 Special Topics in Management
This course involves in-depth examination and assessment of one or two topical problems and issues in the management of fisheries in the mid-Atlantic region. Fisheries management encompasses a diversity of disciplines and interests: biology, ecology, mathematics, law, policy, economics, analytical modeling, sociology, and anthropology. The class conducts a detailed and thorough review of one or two key fisheries management problems that incorporate component issues spanning this range of disciplines. Students form several teams, each team focusing on one aspect of the overall problem and preparing a report detailing that aspect and making recommendations on how management decisions can be improved.
Prerequisite: Permission of instructor
Fall, 1-4 credits, ABCF grading May be repeated for credit

MAR 552 Directed Study
Individual studies under the guidance of a faculty member. Subject matter varies according to the needs of the students.
Prerequisite: Permission of instructor
Fall, spring, and summer, 1-12 credits, ABCF grading May be repeated for credit

MAR 553 Fishery Management
Survey of the basic principles of and techniques for studying the population dynamics of marine fish and shellfish. Discussion of the theoretical basis for management of exploited fishes and shellfish, contrasting management in theory and in practice using local, national, and international examples. Includes laboratory use of computer-based models for fish stock assessment.
Prerequisite: Calculus I or permission of instructor
Spring, alternate years, 3 credits, ABCF grading

MAR 554 Aquatic Animal Diseases
This course is designed to expose students to fundamental and current issues pertaining to host-pathogen interactions in aquatic environments. By the end of the course, students should have a basic understanding of disease processes in aquatic animals; knowledge of the tools used for disease diagnosis; and an appreciation of disease management tools available today. A particular accent is given to the role of the environment as an important factor in infectious and non-infectious diseases.
3 credits, ABCF grading

MAR 555 Introduction to Mathematics for Marine Scientists
Course is designed to develop quantitative thinking and approaches in marine sciences. Topics covered are differential equations, partial and integral calculus, (minimum) partial differential equations. Discussions include formulation of practical problems, i.e., application of differential equations.
Prerequisite: Calculus I or permission of instructor
Fall, 3 credits, ABCF grading

MAR 556 Biology of Fishes
Lectures and laboratories on comparative evolution, morphology, physiology, and ecology of fishes with emphasis on marine and estuarine forms.
Prerequisite: Permission of instructor
Fall, alternate years, 3 credits, ABCF grading

MAR 557 Remote Sensing
Theory and application of remote sensing and digital image analysis to marine research. Students use standard software and PCs for digital filtering, enhancement, and classification of imagery.
Prerequisite: MAR 501, 502, 504, 506, or permission of instructor
Spring, 3 credits, ABCF grading

MAR 558 Applied Groundwater Modeling
This seminar-style course will explore error estimation, uncertainty propagation, risk analysis, model validation, and decision analysis.
Fall, alternate years, 2 credits, ABCF grading

MAR 559 Ecology of Fishes
Introduction to current research in the ecology of fishes. Topics such as population regulation, migration, reproductive strategies, predator-prey interactions, feeding behavior, competition, life history strategies, and others are discussed.
Prerequisite: Familiarity with concepts of ecology or biological oceanography
Spring, alternate years, 3 credits, ABCF grading

MAR 560 Aquatic Animal Pathology
This course is designed to expose students to fundamental and current issues pertaining to host-pathogen interactions in aquatic environments. By the end of the course, students should have a basic understanding of disease processes in aquatic animals; knowledge of the tools used for disease diagnosis; and an appreciation of disease management tools available today. A particular accent is given to the role of the environment as an important factor in infectious and non-infectious diseases.
3 credits, ABCF grading

MAR 561 Aquatic Animal Pathology
This seminar-style course will explore error estimation, uncertainty propagation, risk analysis, model validation, and decision analysis.
Fall, alternate years, 2 credits, ABCF grading

MAR 562 Early Diagenesis of Marine Sediments
The course treats qualitative and quantitative aspects of the early diagenesis of sediments. Topics include diffusion and adsorption of dissolved species; organic matter decomposition and storage; and diagene-
sis of clay materials, sulfur compounds, and calcium carbonates. The effects of bioturbation on sediment diagenesis are also discussed. This course is offered as both MAR 562 and GEO 562.

Prerequisite: Permission of instructor
Fall, alternate years, 3 credits, ABCF grading

MAR 563 Early Diagenesis of Marine Sediments II
The basic principles and concepts of diagenetic processes developed in MAR/GEO 562 are used to examine in detail early diagenesis in a range of sedimentary environments. These include terrigenous and biogenic sediments from estuarine, lagoonal, deltaic, open shelf, hemipelagic, oligotrophic deep-sea, and hydrothermal regions.

Prerequisite: MAR/GEO 562
3 credits, ABCF grading

MAR 564 Atmospheric Structure and Analysis
Real-world applications of basic dynamical principles to develop a physical understanding of various weather phenomena. Topics include the basic principles of atmospheric science and the evolution of extratropical cyclones, fronts, hurricanes, and convective systems, surface and upper air analysis techniques, radar and satellite interpretation, and introduction to operational products and forecasting.

Prerequisite: One year of calculus
Spring, 3 credits, ABCF grading

MAR 565 Global Atmospheric Change
An application of chemical principles to the analysis and prediction of climate changes on Earth. The course analyzes climates that have occurred in the Earth's past and uses this information to infer climate changes that are likely to occur in the near and distant future. Topics covered include atmospheric chemistry, paleoclimates, greenhouse warming, ozone changes, and urban pollution.

Prerequisite: One year of calculus
Spring, 3 credits, ABCF grading

MAR 566 Air Pollution and Its Control
A detailed introduction to the causes, effects, and control of air pollution. The pollutants discussed include carbon monoxide, sulfur oxides, nitrogen oxides, ozone, hydrocarbons, and particulate matter. The emissions of these bases from natural and industrial sources and the principles used for controlling the latter are described. The chemical and physical transformations of the pollutants in the atmosphere are investigated and the phenomena of urban smog and acid rain are discussed.

Spring, 3 credits, ABCF grading

MAR 568 Scientific Communication
This course is designed to provide first-year graduate students with an introduction to the standards and practices of both proposing and presenting results of oceanographic research. Students will develop skills in communicating both oral and written formats, and have the opportunity to produce a draft thesis proposal.

2 credits, ABCF grading

MAR 570 Modern Methods of Data Analysis in Atmospheric and Ocean Studies—Part II
Sampling and experiment design considerations, time and frequency domain analysis. Fourier methods, related topics in probability and statistics. Course involves some computer work.

Prerequisite: Permission of instructor
Fall, alternate years, 3 credits, ABCF grading

MAR 571 Zooplankton Ecology
The course is designed to acquaint the student with the theoretical problems and applied methodology in ecological studies of marine and freshwater zooplankton. Topics will include taxonomy, anatomy, physiology, life history strategies, population dynamics, and food chain interaction.

Prerequisites: MAR 502 and permission of instructor
Spring, alternate years, 3 credits, ABCF grading

MAR 572 Geophysical Simulation
Basic equations and boundary conditions. Linear and nonlinear instabilities. Finite-difference and time integration techniques for problems in geophysical fluid dynamics. Numerical design of global atmospheric and ocean models.

Fall, alternate years, 3 credits, ABCF grading

MAR 573 Special Topics: Chemical Oceanography
This course is designed for the discussion of topics of special interest on demand that are not covered in regularly scheduled courses. Examples of possible topics include carbonate chemistry, isotopic chemistry, and microbial chemistry.

Prerequisite: Permission of instructor
Spring, 1-4 credits, ABCF grading

MAR 574 Special Topics: Ocean Dynamics
Introductory dynamical oceanography, framework of oceanic flows.

Summer, 1-4 credits, ABCF grading

MAR 575 Special Topics: Geological Oceanography
The course proposes to take several views of the ecology and biogeochemistry of intertidal wetlands to see whether one or more of these views might be useful in reinvigorating interest in the study of wetland function for its own sake. Ecology and plant life history will be studied in addition to geology and wetlands management.

Spring, 1-4 credits, ABCF grading

MAR 576 Special Topics: Biological Oceanography
The course is designed for the discussion of topics of special interest on demand that are not covered in regularly scheduled courses. Examples of possible topics include grazing in benthic environment, coastal upwelling, the nature of marine ecosystems, and marine pollution processes.

Prerequisite: Permission of instructor
Fall, 1-4 credits, ABCF grading

May be repeated for credit

MAR 577 Special Topics: Coastal Zone Management
The course is designed for the discussion of topics of special interest on demand that are not covered in regularly scheduled courses. Examples of possible topics include microcomputer information systems, environmental law, coastal pollution, dredge spoil disposal, science and technology in public institutions, and coastal marine policy.

Prerequisite: Permission of instructor
Fall and Spring, 1-4 credits, ABCF grading

May be repeated for credit

MAR 580 Seminar
A weekly series of research seminars presented by visiting scientists and members of the staff.
Fall and spring, 0 credit, S/U grading

May be repeated

MAR 581 Coastal Engineering Geology
Concepts of the mechanics of earth materials and the physics of surficial processes with applications to the coastal environment and engineering.

Prerequisites: Enrollment in MESP or OCN Program or permission of the instructor
3 credits, ABCF grading

MAR 582 Advanced Atmospheric Dynamics
Application of the concepts of balanced flow and potential vorticity thinking—conservation and inversion—to study wave propagation, baroclinic instability, evolution of cyclones and baroclinic waves, and wave-mean flow interactions.

Prerequisite: MAR 594
Spring, 3 credits, ABCF grading

MAR 584 Applied Marine Ecology Seminar
This course provides an opportunity for advanced graduate students to practice presenting data on their thesis research in areas broadly related to how individuals and communities of marine organisms respond to changes in their environments. Each student will prepare an abstract of the work they plan to present and assign an appropriate review paper for the class to read. They will then prepare a formal presentation of their work suitable for a Departmental seminar. Faculty and students will provide constructive criticism of the presentation as well as participate in a discussion of the work.

Fall, every year, 1 credit, S/U grading

May be repeated for credit

MAR 585 Coastal Geology Seminar
An assessment of recent developments in coastal geology. Discussion of advances in the application of sedimentology, stratigraphy, and geomorphology to the study of coastal environments. Modern-ancient analogues are emphasized where appropriate.

Prerequisite: Stratigraphy and sedimentary marine geology
Fall, 2 credits, S/U grading

May be repeated for credit
MAR 586 Introduction to Ecological Modeling
This course will provide students with a familiarity with the major concepts, approaches, and underlying rationale for modeling in the ecological sciences. Topics will include reviews of theoretical and empirical models, the use of models in adaptive management, and how to confront models with data to evaluate alternative hypotheses. Roughly one-third of the course will be devoted to the use of models in management, focusing on the problems of fitting models to data and management pitfalls that follow. Course work will consist of readings, in-class exercises, and group assignments that involve the construction, analysis, and interpretation of ecological models.
Prerequisite: BEE 550, BEE 552, MAT 131 or equivalent; any statistics course
Spring, 3 credits, ABCF grading

MAR 587 Basics of Arc GIS
An introduction to the basic elements of GIS analysis with marine applications. The course includes “hands-on” exercises to familiarize students with Arc GIS capabilities and basics of a GIS toolbox. A project will be required with an emphasis on marine and coastal situations.
Spring, every year, 3 credits, ABCF grading

MAR 590 Research
Original investigation undertaken with the supervision of the advisor.
Prerequisite: Permission of instructor
Fall and spring, 1-12 credits, SU grading
May be repeated for credit

MAR 591 Atmospheric Molecular Processes
Review of electromagnetic theory of scattering and spectroscopy in a manner appropriate for studies of planetary atmospheric phenomena involving gaseous molecules. A major portion is devoted to quantitative spectroscopic aspects of absorption of infrared radiation by planetary atmospheric gases. Spectral line shapes and band models.
Fall, alternate years, 3 credits, ABCF grading

MAR 593 Atmospheric Physics
Advanced cloud physics, atmospheric convection, and other moist processes.
3 credits, ABCF grading

MAR 594 Atmospheric Dynamics
This course covers atmospheric waves, quasi-geostrophic theory, and atmospheric dynamic instability.
3 credits, ABCF grading

MAR 595 Graduate Seminar in Atmospheric Sciences
Discussion of special research topics centered on monographs, conference proceedings, or journal articles. Topics include climate change, atmospheric chemistry, radiation transfer, and planetary atmospheres. This course is intended primarily for students who have passed the written qualifying examination in atmospheric sciences, although other students may enroll with permission of the faculty seminar leader.
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

MAR 596 Principles of Atmospheric Chemistry
The application of photochemistry and reaction kinetics to the atmospheres of the Earth and planets. The composition and structure of various regions of atmospheres, including the troposphere, stratosphere, and ionosphere. Incorporation of chemical rate processes and physical transport into models. Production of airglow and auroral emissions.
Prerequisite: Permission of instructor
Fall, alternate years, 3 credits, ABCF grading

MAR 597 Climate Dynamics
Fundamentals of the observed climate system. Simple climactic models including energy balance models and radiative-convective models. Physical processes in the climate system and their quantitative simulations with emphasis on convection and clouds, radiation, soil temperature and moisture, snow and ice, etc. Introduction to numerical climate modeling.
Prerequisite: Permission of instructor
Fall, alternate years, 3 credits, ABCF grading

MAR 598 Synoptic and Mesoscale Meteorology
Course examines the structure and evolution of synoptic and mesoscale systems using observations, modern dynamical analysis, and numerical weather prediction models. Diagnosis of synoptic systems includes applications of quasi-geostrophic theory to baroclinic waves; jet stream and frontal circulations. A survey of the concepts of mesoscale systems includes convective systems, gravity waves, and terrain-coastal circulations. The student will investigate such phenomena in the laboratory as well as individual projects.
Prerequisite: Permission of instructor
Spring, alternate years, 4 credits, ABCF grading

MAR 600 Summer Research
Summer, 0 credit, SU grading
May be repeated

MAR 605 Dissertation Research
Original investigation undertaken with the supervision of research committee.
Fall and spring, 1-9 credits, SU grading
May be repeated for credit

MAR 650 Dissertation Research
May be repeated

MAR 655 Directed Study
Individual study under the guidance of a faculty member. Subject matter varies according to the needs of the student.
Prerequisite: Permission of instructor
Fall, spring, and summer, 1-9 credits, ABCF grading
May be repeated for credit

MAR 670 Practicum in Teaching
Fall and spring, 1-3 credits, SU grading
May be repeated for credit

MAR 699 Dissertation Research On Campus
Research course exclusively for students who have been advanced to candidacy (G5). Major portion of research must take place on SB campus, at Cold Spring Harbor, or at the Brookhaven National Lab.
Fall, spring, and summer, 1-9 credits, SU grading
May be repeated for credit

MAR 700 Dissertation Research Off Campus

MAR 701 Dissertation Research Off Campus
Materials Science and Engineering (ESM)

Chair: Michael Dudley, Old Engineering Building Room 312, (631) 632-8500
Graduate Program Director: Dilip Gersappe, Old Engineering Building Room 316, (631) 632-8499
Department Office: Old Engineering Building Room 314, Zip 2275, (631) 632-8484
Office Staff: Lynn Alloppena, Sr. Staff Assistant; Debby Michienzi, Staff Assistant

Degrees awarded: M.S. in Materials Science and Engineering; Ph.D. in Materials Science and Engineering

The Department of Materials Science and Engineering offers graduate work leading to the Master of Science and Doctor of Philosophy degrees. The motivating philosophy of the graduate program is to provide the student with a broad synthesis of the theoretical and experimental techniques required to work with all classes of materials. Emphasis is placed on courses that unify the field in terms of fundamentals treated with sufficient depth to enable the student to make technological contributions in diverse areas of materials science and engineering. Laboratory and course work are structured to provide programs for students who (1) are entering intensive basic research-oriented programs leading to Ph.D. or Master of Science degrees, (2) are currently employed and can complete their studies in the evening, or (3) are working in materials-related industries and can integrate their work experience into their degree requirements.

Industrial Cooperative Ph.D. Program
A special extramural Ph.D. degree program is offered by the Department of Materials Science and Engineering for highly qualified individuals working in an industrial materials research area. Candidates for this program must have met the graduate coursework requirements for the Ph.D. typically by earning a master’s degree. Doctoral research is generally done at the student’s place of employment, rather than on the University campus. Contact the Department for further information.

One-Year Master’s Degree Program
Students admitted to this program can complete all requirements for the degree in two semesters of full-time study. Required courses are given in the late afternoon or evening and research projects can be carried out at the student’s work location. Contact the Department for further information.

Bachelor of Science Degree/Master of Science Degree Program
An engineering science, engineering chemistry, or physics student may apply at the end of the junior year for admission to this special program, which leads to a Bachelor of Engineering or Bachelor of Science degree at the end of the fourth year and a Master of Science degree at the end of the fifth year. In the senior year, a student in the program takes six credits of graduate courses. In the fifth year, the student takes 24 credits, of which at least 18 credits are coursework and 6 credits are ESM 599 Research. The advantages of this program over the regular M.S. program is that a student may start his or her M.S. thesis in the senior year, and that he or she needs only 24 credits in the fifth year as opposed to 30 credits for a regular M.S. student. For details of the M.S. degree requirements, see the graduate program director.

Research Activities
Since its inception, the Department has had a strong research component, with a major emphasis in surface science and engineering. The Department has been successful in obtaining external funding for research and currently has the highest per capita faculty funding within the University. In 2003, the Department topped the list for research funding in the College of Engineering and Applied Sciences. The Department boasts more than $4 million in external funding for 15 total full-time faculty members. The Department hosts two main interdisciplinary centers, one on polymers and the other on thermal spray. These centers offer a unique and rich environment for interdisciplinary graduate research and education.

Garcia Center for Polymers at Engineered Interfaces: The Polymer Center offers an interdisciplinary program aimed at studying the molecular basis of macroscopic phenomena. With funds from industrial partners, the NSF and the Department of Energy (DOE), research is conducted on polymer dynamics, nanomaterials, thin film and interface engineering, surface modification, blends, polymeric behavior, adhesion, block polymers, and wetting.

Center for Thermal Spray Research: The Center for Thermal Spray Research (CTSR) conducts both applied and fundamental research on thermal spray technology, which involves melt spray formation of protective coatings and free standing forms. CTSR is a unique facility containing a vast array of industrial-level plasma and combustion spray devices. In 1999, CTSR’s research program received a significant boost through a $5 million award from the Defense Advanced Research Projects Agency (DARPA) to pursue revolutionary applications of thermal spray in electronics. Under the auspices of the Mesoscale Integrated Conformal Electronics initiative, CTSR has expanded its reach in the design, synthesis, and applications of thick film electronics and sensor materials. A new laboratory for both electronics fabrication and characterization has been set up.

Recent awards made to the faculty include two NSF Nanoscale Integrated Research Team awards (totaling $2 million), one concerning the use of metal oxide electronic noses for use as molecular and biological sensors, and the other concerning molecular electronics on the nanoscale.

The proximity to Brookhaven National Laboratory (BNL) and its advanced national facilities has been a major benefit to both faculty and students within the Department. Several faculty members hold guest appointments at BNL, while Brookhaven scientists participate in research and teaching within the Department. The DOE awarded the contract to manage BNL in 1998 to Brookhaven Science Associates, a consortium of other universities led by Stony Brook and the Battelle Memorial Institute. The University’s relationship with this premier research facility greatly enhances both the Department’s and Stony Brook’s research programs.

At BNL, the facilities available to the
Department include particle accelerators for carrying out ion beam surface modification experiments and highly sophisticated surface analysis probes. The National Synchrotron Light Source (NSLS) is also located at BNL. As one of the participating research teams at NSLS, the Synchrotron Topography Research Group, centered in Stony Brook’s Department of Materials Science and Engineering, is using special X-ray methods to image nondestructively dislocation microstructures. This enables image-detailed descriptions of dislocation motion and structures attendant to crystal growth and plastic deformation and fracture, as well as to interesting materials behaviors. The topographic method is also being used in Department-based studies of surface chemical reactivity. The Department recently was awarded a $1 million NSF Major Research Instrumentation grant to set up a center for crystal growth. The center is focused on developing capabilities for tackling the most challenging problems in crystal growth of novel advanced materials, and currently includes a high-pressure, high-temperature furnace for crystal growth of III-nitrides from solution-melts, a low-temperature CVD reactor for deposition of ZnO films, a two-zone high-temperature resistance-heater furnace for sublimation growth of ZnO, and a high-temperature RF reactor for SiC sublimation growth.

As a result of the University’s Engineering 2000 initiative, our ties with industry are growing stronger: faculty members are working with industry on joint research projects and submitting cooperative proposals to outside agencies. The Department of Materials Science has led the effort in joint industry-University projects within the College of Engineering through the New York State Strategic Partnership for Industrial Resurgence (SPIR) program.

Stony Brook’s own facilities include state-of-the-art low-energy electron diffraction (LEED); a state-of-the-art scanning electron microscope and a transmission electron microscope, both equipped with analytical capabilities and the latest software for electron diffraction simulation and image processing; an atomic force microscope; and electron spectroscopy for chemical analysis (ESCA) IAES/SIMS Infrared Microscopy units, as well as central characterization facilities that include equipment for microanalysis and X-ray techniques. A well-equipped materials fabrication and processing facility within the Department boasts a collection of furnaces capable of reaching 3,000°C in controlled atmospheres or under vacuum, a resist-spinner, ellipsometer, contact angle goniometers, and a high-resolution Nomarsky metallurgical microscope with image processing capability.

The analytical electron facility of the Department consists of both scanning and transmission electron microscopes. The state-of-the-art Schottky Field Emission Scanning Electron Microscope (SEM) (LEO Gemini 1550) includes an In-Lens Secondary Electron Detector in addition to the standard E-T detector, and a Rutherford Backscatter Electron Detector: This SEM allows for high-resolution imaging of the surfaces and cross-sections of all types of solid materials. It is also fully equipped with an EDS (energy dispersive X-ray spectroscopy) system using an EDAX detector that provides elemental compositions and X-ray maps of the various phases of the materials examined. Finally, the SEM includes an Electron-Backscattered Electron Diffraction (EBED) analysis system based on the TSL/EDAX orientation imaging and Phase-ID software that allows for non-destructive diffraction analysis and orientation imaging (texture analysis) of the grain structure of the surface of the specimens tested.

This facility also includes a digitally controlled Transmission Electron Microscope (Philips CM12), complete with EDS and PEELS (Parallel-reading Electron Energy Loss Spectroscopy) facilities for detailed analytical studies. This tool allows for the direct observation of the “internal” structure of materials at resolutions as low as a few Å and for the determination of the crystal structure of their various components.

There are also facilities for sample preparation for electron microscopy and microanalysis observations, including precision ion milling units (such as VCR Group XLA 2000).

Furthermore, advanced software for electron diffraction patterns simulation and image processing is available (e.g., Desktop Microscopist and Digital Micrograph).

Another research area that is emerging in the Department includes the development and testing of chemical sensors. A gas sensor testing facility is being set up in the Department and it will be available shortly.

Other surface-related research involves studies of surface/environmental interactions. Using unique combinations of electron and ion spectrocopies, infrared and optical microspectroscopy and synchrotron-based techniques, research is being conducted into corrosion behavior and corrosion inhibition of engineering alloys, degradation of paints and other coatings, remediation of contaminated surfaces, and surface cleaning. Much of this work has included collaborations with other universities, industries, national laboratories, and government facilities such as the Army Research Laboratory, Weapons and Materials Directorate (Aberdeen, MD). An evolving area of collaborative research involves related studies of unique thin films and structures formed using femtosecond lasser ablation. The structure of epitaxial surface monolayers is being studied using LEED; extension of this research is also performed at the NSLS. The preparation of thin films of magnetic metals is studied using ultrahigh-vacuum (UHV) molecular beam epitaxy (MBE) processing. These materials are used in the computer industry in disk storage devices. The magnetic properties of these materials are studied using a vibrating sample magnetometer (VSM) and magneto-optic Kerr effect (MOKE) spectroscopy. Research is also being performed on the chemical makeup of the newly discovered high-temperature superconductors. Novel methods of rapidly spraying such materials onto surfaces are being developed.

Through a Department of Defense instrumentation program, a comprehensive thermal analysis and porosity laboratory has been set up within the Department.

Consistent with Stony Brook’s designated mission as a research center, the cornerstone of the Department’s academic program is the graduate work leading to the research-oriented M.S. and Ph.D. degrees. The Department has about 50 full-time, fully supported students and as many as 10 part-time students, most of whom work in Long Island’s high-technology industries.

Admission

Admission is based on the graduate program committee’s assessment of the applicant’s aptitude for research and the compatibility of his or her interests with the active research programs and capabilities of the Department. Applicants
are advised to pay particular attention to their statements of purpose (page 3 of the application form). Minimum requirements, in addition to those of the Graduate School, are as follows:

A. A bachelor’s degree in engineering, mathematics, physics, chemistry, or a closely related area from an accredited college or university;

B. A minimum grade average of at least a B in all courses in engineering, mathematics, and science;

C. Results of the Graduate Record Examination (GRE) General Test;

D. For foreign students, results of the TOEFL exam with a score of at least 600 (paper), 250 (computer) or 90 iBT, and no subscore should be below a 22.

E. Acceptance by both the Department of Materials Science and Engineering and the Graduate School.

Faculty

Distinguished Professors

Chu, Benjamin, Ph.D., 1959, Cornell University: Structure and dynamics of supramolecular and polymeric systems, using laser-light scattering, fluorescence recovery after photo bleaching, transient electric birefringence, small-angle X-ray scattering with synchrotron radiation, and other spectroscopic techniques.

Herman, Herbert, Ph.D., 1961, Northwestern University: Protective coatings; thermal spray; composites; marine materials.

Professors

Clayton, Clive R., Ph.D., 1976, Surrey University, England: Environmental degradation of materials; XPS; AES; dynamic and static SIMS; electrochemical analysis synthesis by ultra-fast laser ablation; RHEED; protective coatings.

Dudley, Michael, Chair, Ph.D., 1982, University of Warwick, England: Synchrotron topography; crystal defects; mechanical properties.

Jona, Franco P., Ph.D., 1949, Swiss Polytechnic Institute (E.T.H.), Switzerland: Surface physics; LEED.

Mahajan, Devinder, Ph.D., 1979, University of British Columbia: Inorganic chemistry; fuel cells; catalysis.

Rafailovich, Miriam, Ph.D., 1980, Stony Brook University: Polymeric liquids; phase transitions; thin film wetting phenomena; atomic force microscopy; ion, X-ray, and neutron scattering.

Sampath, Sanjay, Ph.D., 1989, Stony Brook University: Thermal spraying; protective coatings; functioning graded materials; thick film electronics and sensors.

Seigle, Leslie, Emeritus, Ph.D., 1951, Massachusetts Institute of Technology: Thermodynamics of solids; diffusions in solids; protective coatings.

Sokolov, Jonathan C., Ph.D., 1983, Stony Brook University: Surface and interface properties of polymers and blends; phase transitions; neutron and X-ray scattering; EXAFS; SIMS.

Associate Professors

Charles Fortmann, Ph.D., 1985, Stanford University: Solid state physics; protein dynamics.

Gersappe, Dilip, Graduate Program Director, Ph.D., 1992, Northwestern University: Polymer theory and simulation.

Gouma, Pelagia-Irene (Perena), Ph.D., 1996, University of Birmingham, England: Advanced materials characterization; electron microscopy and microanalysis techniques; chemical sensors.

Halada, Gary, Ph.D., 1993, Stony Brook University: Electron spectroscopy; electrochemistry; surface engineering; optical spectroscopy; environmental remediation.

Assistant Professors

Koga, Tadadori, Ph.D., 1998, Kyushu University, Japan: Green nanofabrication of polymer thin films; chemical recycling of waste plastics and methane hydrate as a future energy resource.

Orlov, Alexander, Ph.D., 2005, University of Cambridge, U.K.; M.Phil., University of Cambridge, U.K.; M.S.E., University of Michigan; M.E./B.E., National Technical University, Ukraine: Materials for environmental applications; physical chemistry, environmental nanotechnology, and photocatalysis.

Venkatash, T.A., Ph.D., 1998, Massachusetts Institute of Technology: Nanomaterials, smart materials, materials for MEMS and biomedical applications.

Research Professors

Gambino, Richard, M.S., 1976, Polytechnic Institute of New York: Magnetic thin films; magneto-optical properties; Hall effect and magneto-resistance of magnetic metals; epitaxial growth of magnetic materials.

Adjunct Faculty

Adzic, Radoslav, Ph.D., 1974, University of Belgrade: Surface electrochemistry; electrocatalysis; direct energy conversion; fuel cells.

Berndt, Christopher C, Ph.D., 1980, Monash University, Australia: Protective coatings; mechanical properties; biomaterials; thermal spray.

Chidambaram, Dev, Ph.D., 2003, Stony Brook University: Corrosion science and surface analysis.

Czajkowski, Carl, Ph.D., 1996, Stony Brook University: Nuclear materials engineering.

Dasgupta, Avijit, Ph.D., 1983, University of Miami: Environmental engineering.

Gu, Genda, Ph.D., 1989, Harbin Institute of Technology, Harbin, China: Materials science and engineering; single crystal characterization and physical properties measurement; single crystal growth and solidification of oxide materials and metallic materials.

Huang, Xianrong, Ph.D., 1995, Nanjing University, China: X-ray typography.

Isaccs, Hugh, Ph.D., 1963, Imperial College of Science and Technology, University of London, England: Electrochemical research.

Jones, Keith, Ph.D., 1955, University of Wisconsin, Madison: Physics.

Li, Qiang, 1991, Iowa State University at Ames: Energy and electronic materials; synthesis and characterization.

Lewis, Laura J.H., Ph.D., 1993, University of Texas, Austin: Materials science and engineering.

Samuilov, Vladimir, Ph.D., 1986, Belarus State University: Physics.

Schwarz, Steven, Ph.D., 1980, Stanford University: Electrical engineering.

Stein, Richard, Ph.D., 1949, Princeton University: Physical chemistry.

Twiley, John, B.S., 1976, University of California, Riverside: Chemistry.

Weil, Edward, Ph.D., 1953, University of Illinois: Organic chemistry.

Welch, David O., Ph.D., 1964, University of Pennsylvania: Theoretical materials science; kinetics of diffusion; energetics; statistical mechanics; crystal lattice defects; equations of state phase equilibria; radiation effects.

Zaitsev, Vladimir, Ph.D., 1992, Moscow State University, Russia: Chemistry.

Zhu, Yimei, Ph.D., 1987, Nagoya University, Japan: Materials physics.
Degree Requirements
Requirements for the M.S. Degree
In addition to the minimum requirements of the Graduate School, the requirements for the M.S. degree in the Department of Materials Science and Engineering can be satisfied by either one of the two following options:

M.S. Non-Thesis Option
A. Election
The election of this option must be made by the student upon admission to the program and is considered a terminal degree.

B. Coursework
1. A minimum of 30 graduate credits with a grade point average of 3.0 or better in all graduate courses taken is required to graduate. All credits must be from coursework.
2. The 30 credits must include the following three core courses: ESM 511 Thermodynamics of Solids; ESM 513 Strength of Materials; and ESM 521 Diffusion in Solids. If the student does not receive a minimum of a B in a core course, he or she may repeat that course one other time.
3. In addition, all students who are supported as Teaching Assistants must complete ESM 501 Teaching and Mentoring Techniques and ESM 698 Practicum in Teaching.
4. The 30 credits must include six credits of ESM 599 Research.
5. Only six credits of ESM 696 Special Problems in Materials Science are allowed.
6. All courses taken outside the Department require permission from the graduate program director.

M.S. Thesis Option
A. Election
The election of this option must be made by the student upon admission to the program, and is normally considered part of the Ph.D. sequence. Students may not transfer to the non-thesis option while registered for a thesis master's or a Ph.D. degree.

B. Coursework
1. A minimum of 30 graduate credits is required to graduate; 24 credits must be from coursework. An average grade of B or better is required for all courses.
2. The 30 credits must include the following three core courses: ESM 511 Thermodynamics of Solids; ESM 513 Strength of Materials; and ESM 521 Diffusion in Solids. If the student does not receive a minimum of a B in a core course, he or she may repeat that course one other time.
3. In addition, all students who are supported as Teaching Assistants must complete ESM 501 Teaching and Mentoring Techniques and ESM 698 Practicum in Teaching.
4. The 30 credits must include six credits of ESM 599 Research.
5. Only six credits of ESM 696 Special Problems in Materials Science are allowed.
6. All courses taken outside the Department require permission from the graduate program director.

Requirements for the Ph.D. Degree
A. Plan of Work
Before completion of one year of full-time residence, the student must have selected a research advisor who agrees to serve in that capacity. The student will then prepare a plan of further coursework. This must receive the approval of the student's advisor and of the graduate program committee.

B. Coursework
1. An average grade of B or higher is required for all courses.
2. A minimum of 24 graduate course credits is required to graduate (excluding ESM 599, 697, 698, and 699).
3. The 24 course credits must include the following three core courses: ESM 511 Thermodynamics of Solids; ESM 513 Strength of Materials; and ESM 521 Diffusion in Solids. If the student does not receive a minimum of a B in a core course, he or she may repeat that course one other time.
4. All students must complete ESM 501 Teaching and Mentoring Techniques.
5. The student must pass at least three credits of ESM 698 Practicum in Teaching and six credits of ESM 699 Dissertation Research on Campus.
6. Only six credits of ESM 696 Special Problems in Materials Science are allowed.
7. All courses taken outside the Department require permission from the graduate program director.
8. If a student is being supported the student must TA/GA/RA for five semesters.

C. Preliminary Examination
The preliminary examination must be taken before the beginning of the student’s fifth semester. This is an oral examination designed to test the student's ability to utilize his or her materials science background to carry out research in a chosen field of study, and make clear written and oral presentations of research. At least ten days prior to the examination, the candidate should submit a research proposal (10 to 15 pages) to the examiners that places the research in context and outlines a scenario for its completion.

The examination committee will consist of two Department of Materials Science and Engineering faculty members. If a second examination is required, it must be completed by the tenth week of the fifth semester.

D. Advancement to Candidacy
After the student has successfully completed all requirements for the degree, other than the dissertation, he or she is eligible to be recommended for advancement to candidacy. This status is conferred by the Dean of the Graduate School upon recommendation of the chair and the graduate program director.
E. Dissertation
The most important requirement of the Ph.D. degree is the completion of a dissertation, which must be an original scholarly investigation. The dissertation shall represent a significant contribution to the scientific literature, and its quality shall be compatible with the publication standards of appropriate and reputable scholarly journals. At least two semesters should elapse between the preliminary exam and submission of the dissertation.

F. Defense
The candidate shall defend the dissertation before an examining committee consisting of four members, including the research advisor, two members of the Department of Materials Science and Engineering, and one member from outside the Department.

G. Time Limit
All requirements for the Ph.D. degree must be completed within seven years after completing 24 credit hours of graduate courses in the program.

Courses

ESM 501 Teaching and Mentoring Techniques
Discussion of various phases of teaching, including preparation, classroom technique, and student evaluation. Also exploration of skills and understanding necessary for mentoring undergraduates and others involved in research. Fall, 1 credit, S/U grading

ESM 502 Scanning Electron Microscopy
Skills
Practical introduction to the operation of scanning electron microscopes, including energy-dispersive X-ray spectrometers. Required of all students who use the SEM in their research. Spring, 1 credit, ABCF grading

ESM 503 Electron Diffraction
A quantitative discussion of electron diffraction as a means of micro-characterization of materials and as a basis for understanding image contrast in the transmission electron microscope. Topics covered include atomic, kinematical, and dynamical scattering; indexation diffraction patterns; and convergent-beam diffraction. Spring, 3 credits, ABCF grading

ESM 511 Thermodynamics of Solids
Current knowledge regarding the thermodynamic properties of condensed phases is discussed. The thermodynamic treatment of ideal, regular, and real solutions is reviewed. Estimation of reaction-free energies and equilibria in condensed phase reactions such as diffusion, excitation, and phase transformations; thermodynamic analysis of phase equilibrium diagrams. Fall, 3 credits, ABCF grading

ESM 512 Structure of Materials
The structure of solids can be studied using X-ray, neutron, and electron diffraction techniques. Topics covered are coherent and incoherent scattering of radiation, structure of crystalline and amorphous solids, stereographic projection and crystal orientation determination, the concept of reciprocal vector space. Laboratory work in X-ray diffraction is also included. Fall, 3 credits, ABCF grading

ESM 513 Strength of Materials
A unified approach for all solid materials will be used with regard to the correlation between microstructure and their macroscopic mechanical properties. The course deals with various testing techniques for delineating mechanical properties of materials, considering elasticity, inelasticity, plasticity, dislocation theory, cohesive strength, fracture, and surface wear. Attention is given to strengthening mechanisms for solids, metals, ceramics, and polymers. Fall, 3 credits, ABCF grading

ESM 521 Diffusion in Solids
Kinetics and Transformations I changed to Diffusion in Solids. Atomistic rate processes in solids with emphasis on diffusion in crystals. Theory of diffusion and experimental techniques; the role played by a broad class of crystalline imperfections. Topics include annealing of deformed materials, kinetics of defect interactions, thermally controlled deformation, kinetics of nucleation and growth, solidification, and precipitation. Fall, 3 credits, ABCF grading

ESM 522 Imperfections in Crystals
The characteristics of point defects in metals, semiconductors, and ionic solids are described, and the thermodynamics of point defects is developed. Dislocation theory is introduced and the structure of internal boundaries and surfaces is described. Finally, interactions between lattice imperfections are discussed, with emphasis on plasticity and fracture. Spring, 3 credits, ABCF grading

ESM 523 Solid-State Electronics
A study of the electronic processes in solids leading to the analysis and design of materials and devices. Crystal structures, bonding, electrical and thermal conductivities, diffusion, galvomagnetic, thermomagnetic, and thermoelectric effects. Hall effect and magnetoresistance. Conductivity in thin films. Fall, 3 credits, ABCF grading

ESM 531 Phase Transformations
Kinetics and Transformations II changed to Phase Transformations. A review of the processes by which structures are changed in the solid state. Classical nucleation theory including homogeneous and heterogeneous mechanisms. Diffusion and diffusionless growth mechanisms. Transformation kinetics. Spring, 3 credits, ABCF grading

ESM 532 Materials Processing
A study of manufacturing processes used in the semiconductor industry. Topics include single crystal growth, compound formation, zone refining, epitaxial growth, doping techniques, thin film techniques, thick film techniques, passivation, isolations, lead bonding techniques, cleaning and etching, and failure analysis; discrete devices and integrated circuit devices; various modern concepts in IC processing. Fall, 3 credits, ABCF grading

ESM 533 Polymeric Materials

ESM 534 Advanced Laboratory
Students perform a series of advanced materials experiments which involve some independent research. The results are then written in a report suitable for publication in a journal or proceeding. Fall, 3 credits, ABCF grading

ESM 542 Modern Electron Microscopy
Principles and practice for transmission and scanning transmission electron microscopes. Instrument design. Specimen preparation. Instrument operation. Electron diffraction and imaging theory. Microanalysis using X-ray and electron spectra. Typical electron microscope investigations are outlined and used as examples. Fall, 3 credits, ABCF grading

ESM 543 Engineering Ceramics
The characterization of ceramics is reviewed with special reference to advanced engineering ceramics, bulk high-temperature superconductors, and ceramic magnets. Typical microstructures and thin film techniques, electrical properties are compared. These properties are related to the various methods of processing. Spring, 3 credits, ABCF grading

ESM 550 Introduction to Homeland Security
The course is a combination of lectures and laboratory experience to introduce students to critical issues and assess needs for homeland security. The course includes invited lectures by experts on special topics such as fundamentals of nuclear, chemical, and biological weapons and the associated threat to the transportation of goods and the public. The students will learn about cyber security, devices to safeguard materials from terrorist threats, safety of nuclear power plants and water supply, forensics, and emergency preparedness. The students will submit a term paper on a selected topic in lieu of the final exam. Prerequisite: Undergraduate-level biology, chemistry, and physics Fall, spring, 3 credits, ABCF grading

ESM 553 Nuclear Safeguards and Security
The course is intended to familiarize students with the fundamentals of nuclear physics, radiation, mining, weapons and fuel cycle, other than producing electricity, as it per-
tains to nuclear power plants. Topics include nuclear detection, devices to safeguard nuclear materials from terrorist threats, needed physical protection for safe handling and its relevance to Homeland Security. The course combines lectures with hands-on experience at the newly installed nuclear detection facility located at the nearby U.S. Department of Energy’s Brookhaven National Laboratory.

Prerequisite: Undergraduate or equivalent physics and chemistry

Fall, spring, 4 credits, ABCF grading

ESM 554 Chemical and Biological Weapons: Safeguards and Security

This course deals with the fundamentals of chemistry and biochemistry related to chemical weapons (CW) and biological weapons (BW) that could be used by terrorists. Topics include CW and BW history, production, control, detection, identification, and emergency response measures to deal with intended or unintended release and escape, and security measures to protect and control stockpiles.

Prerequisite: Undergraduate or equivalent chemistry, biochemistry, and microbiology

Fall, spring, 4 credits, ABCF grading

ESM 555 Synchrotron Techniques in Materials Science

A short course in a selected synchrotron analytical technique as applied to problems in materials science. May include demonstration and hands-on experience at the National Synchrotron Light Source at Brookhaven National Laboratory, and synchrotron safety training.

Pre- or co-requisite: BNL Synchrotron Safety Training; students must complete BNL guest registration

1 credit, ABCF grading

ESM 560 Risk Assessment, Regulation, and Homeland Security

The course focuses on risk assessment associated with nuclear, chemical, and biological weapons as it relates to Homeland Security. Topics include air dispersion, uncertainty analysis, exposure measurements, epidemiology, toxicology, regulatory issues, risk management, risk communication, risk perception, and risk preparedness. The course will also cover laws and regulation, and disaster preparedness, various acts passed by the U.S. Congress to regulate water, air, and controlled substances.

Prerequisite: Undergraduate or equivalent physics, math, and chemistry

Fall, spring, 4 credits, ABCF grading

ESM 561 Crystal Growth Technology

The main goal of this course is to introduce graduate students to the fundamentals and physical principles that govern the process of crystal growth and show them how to apply those principles to design and engineer growth systems for different crystalline materials. While microscopic theory of nucleation and growth kinetics will be an essential part of this course, its core will mainly focus on applied concepts. Kinetics and mechanisms of nucleation and growth and the thermodynamics of chemical reactions to the design of processing reactors. As part of the academic requirements associated with this course, students will form teams and work on the virtual design of crystal growth reactors using software packages for transport phenomena modeling.

Fall, every year, 3 credits, ABCF grading

ESM 575 The Material World

The evolution of the material world starting from the Big Bang, the creation of stars and galaxies, the nucleosynthesis of the elements in supernova explosions, formation of the Earth and solar system, and human adaptation of Earth resources to create the modern world will be discussed. In this process we will discover the fundamental laws governing material behavior and explore the cosmic significance of our existence.

3 credits, ABCF grading

ESM 599 Research

Fall and spring, 1-12 credits, SU grading

May be repeated for credit

ESM 600 Seminar in Surface Science

Discussions and reading on current problems in surface physics, chemistry, and crystallography.

Spring, 3 credits, ABCF grading

ESM 602 Seminar in Plasticity and Fracture

Intended for advanced students, especially those doing research in the area. Topics: detailed description of defects and their relations to mechanical structure; dislocation theory; plasticity and yield criteria; creep and fatigue; microscopic theory of fracture including ductile and brittle behavior and the relationships of plastic flow to cleavage.

Prerequisite: ESM 513

3 credits, ABCF grading

ESM 604 Seminar in Ultrasonic Methods and Internal Friction in Solids

Review of advanced measurement techniques in the field of ultrasonics coupled with quantitative descriptions of experimental variables related to the sample microstructure. Application to optical, electrical, and mechanical properties are discussed. Use of ultrasounds for nondestructive evaluation is considered.

Prerequisite: ESM 513

Spring, 3 credits, ABCF grading

ESM 605 Advanced Diffraction Techniques

Advanced topics in diffraction theory including the dynamical theory in perfect and imperfect crystals and its applications in imaging methods. Other topics from the following list are pursued if time is available: EXAFS/EXELFS/SEXAFS; LEED/RHEED; small-angle scattering; Kossel line and electron channeling patterns; convergent beam diffraction; phonon scattering; glancing incidence X-ray diffraction; diffraction from defect structures; colored symmetry; holography.

Prerequisites: ESM 512 or permission of instructor

Fall, 3 credits, ABC grading

ESM 606 Seminar in Optical Properties of Material

A survey of modern optical materials and their characterization. The properties of both glasses and crystalline materials are related to physical origin. Electro-optic, elasto-optic, and magneto-optic properties and their interrelations are related to applications in technology including laser systems, displays, and spectroscopy.

Fall, 3 credits, ABCF grading

ESM 608 Seminar in Catalysis

Fall, 3 credits, ABCF grading

ESM 610 Seminar in Reactions in Inorganic Solids

Fall, 3 credits, ABCF grading

ESM 612 Seminar in Advanced Thermodynamics of Solids

The fundamentals of the thermodynamics of irreversible processes are presented and the theory applied to thermal diffusion, thermo-electric transport, and other coupled processes in solids. Thermodynamics of multicomponent phase equilibria. Diffusion, oxidation, and other rate processes in ternary and higher-order systems.

Prerequisite: ESM 511

Spring, 3 credits, ABCF grading

ESM 613 Seminar in Materials and Environment

Interactions between materials and their environments including corrosion, oxidation, absorption, and adsorption reactions. The influence of these reactions on the properties of materials, the design of materials resistant to these phenomena, alternative methods of protection, and the utilization of these reactions in promoting breakdown and deterioration of materials.

Spring, 3 credits, SU grading

ESM 614 Seminar in Diffusion in Solids

Diffusion in solids is considered in detail, including solution of the transport equations for volume, grain boundary, and surface diffusion. Kirkendall effect and other diffusion phenomena, atomic mechanisms of diffusion, correlation effects, etc. Next, the theory of processes in which diffusion plays an important role is considered, such as ionic conduction, oxidation of metals, and the sintering of solids.

Spring, 3 credits, SU grading

ESM 615 Seminar in Phase Transformations

The theory of phase transformations in solids is considered. Kinetics and mechanisms of nucleation and growth and martensitic transformations. Melting and solidification,
precipitation from solid solution, polymorphic transformations, eutectic and eutectoid reactions, second-order transitions, recrystallization, and other transformations in solids.

ESM 695 Graduate Internship
Participation in private corporations, public agencies, or non-profit institutions for ongoing research activities related to thesis research. Students will be required to have a faculty coordinator as well as a contact in the outside organization, to participate with them in regular consultations on the project, and to submit a final report to both. Not accepted for credit toward the M.S. degree.

Prerequisite: Permission of graduate program director
1-3 credits, S/U grading
May be repeated for credit

ESM 696 Special Problems in Materials Science
Supervised reading and discussion of selected publications in particular fields of materials science. This course is designed primarily for advanced graduate students who are, or expect to be, involved in research in these areas, although other students may enroll with permission of the instructor.

Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

ESM 697 Materials Science Colloquium
A weekly series of lectures and discussions by visitors, local faculty, and students presenting current research results.

Fall and spring, 0-3 credits, S/U grading
May be repeated for credit

ESM 698 Practicum in Teaching
Fall and spring, 0-3 credits, S/U grading
May be repeated for credit

ESM 699 Dissertation Research On Campus
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ESM 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ESM 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

ESM 800 Full-time Summer Research
6 credit, S/U grading
May be repeated

The Department of Mathematics, in the College of Arts and Sciences, offers degree programs leading to the M.A. in Mathematics (Secondary Teacher Option), the M.A. in Mathematics, and the Ph.D. in Mathematics. Several surveys, including the latest in U.S. News & World Report’s “America’s Best Graduate Schools,” rank the Department’s graduate program in the top 25 in the nation.

Master of Arts in Teaching Mathematics 7 to 12

This is a 42-credit master’s program administered by the School of Professional Development (SPD). It is designed for students who already have a bachelor’s degree in mathematics or the equivalent and who wish to teach mathematics in grades 7 to 12. Individuals interested in this program should refer to SPD’s online Bulletin: www.stonybrook.edu/spd/graduate/matmath

The M.A. Program: Secondary Teacher Option

The Secondary Teacher Option is a 30-credit, two-year, part-time program designed for secondary school mathematics teachers who are seeking permanent certification. The nine required courses in the program are given in the evenings and in the summer on a rotating basis; each required course is offered at least once every two and a half years.

Admission

In addition to the Graduate School requirements, the minimum requirements for admission to this program are:

A. A bachelor’s degree;

B. Two years of college-level mathematics, including one year of single variable calculus, one semester of linear algebra, and one additional semester of mathematics beyond single variable calculus;

C. Provisional New York State Certification for Teaching Mathematics, Grades 7 to 12;

D. A grade point average of at least 3.0 in all calculus and post-calculus mathematics courses;

E. Evidence that the student is likely to succeed: this usually consists of three letters of recommendation from former teachers or supervisors;

F. Acceptance by both the Department of Mathematics and the Graduate School.

The M.A. and Ph.D. Programs: Professional Option

The Professional Option is designed for students who plan careers as professional mathematicians in research and/or teaching at universities and colleges (including two-year colleges), in industry, or in government. With rare exceptions, all students in this option are full-time students, and at least one year of full-time study is required.

Admission

In addition to the Graduate School requirements, the minimum requirements for admission to this program are:

A. A bachelor’s degree with a major in mathematics, or the equivalent;

B. Evidence that the student is likely to succeed: this must include three letters of recommendation from mathematicians, usually from present or former teachers; the breadth and depth of mathematical courses taken, the grades obtained in these courses, as well as test scores on the Graduate Record Examination (GRE) General Test and a personal background essay are also considered;

C. Foreign students: Evidence that the student can understand and speak English sufficiently well; a TOEFL score paper based of 550, computer-based of 21, or iBT-based of 90 is considered satisfactory;

D. Acceptance by both the Department of Mathematics and the Graduate School.

Faculty

Distinguished Professors

Glimm, James, Ph.D., 1959, Columbia University: Applied mathematics; numerical analysis; mathematical physics.

Lawson, H. Blaine, Jr., Ph.D., 1968, Stanford University: Differential geometry; topology; algebraic geometry.

McDuff, Dusa, Ph.D., 1971, University of Cambridge, England: Geometry; symplectic topology.

Minor, John W.,1 Director of the Institute for Mathematical Sciences, Ph.D., 1954, Princeton University: Dynamical systems; topology; geometry.

Sullivan, Dennis,2 Ph.D., 1965, Princeton University: Dynamical systems; topology; geometry; partial differential equations; quantum topology.

Distinguished Service Professor

Kra, Irwin, Emeritus, Ph.D., 1966, Columbia University: Complex analysis; Kleinian groups.

Professors

Anderson, Michael, Ph.D., 1981, University of California, Berkeley: Differential geometry; geometric analysis; mathematical physics.

Bishop, Christopher, Ph.D., 1987, University of Chicago: Complex analysis.

Ebin, David, Chair, Ph.D., 1967, Massachusetts Institute of Technology: Global analysis; mathematics of continuum mechanics; partial differential equations.

Fox, William, Emeritus, Ph.D., 1955, University of Michigan: Complex analysis.

Gromoll, Detlef, Ph.D., 1964, University of Bonn, Germany: Differential geometry.

Hill, C. Denson, Ph.D., 1966, New York University: Partial differential equations; several complex variables.

Jones, Lowell, Ph.D., 1970, Yale University: Topology; geometry.

Knapp, Anthony, Emeritus, Ph.D., 1965, Princeton University: Lie groups; representation theory.

Lister, William, Emeritus, Ph.D., 1951, Yale University: Algebra.
Lyubich, Mikhail, Deputy Director of the Institute for Mathematical Sciences, Ph.D., 1983, Tashkent State University, Russia: Dynamical systems.
Maskit, Bernard, Ph.D., 1964, New York University: Complex analysis; Riemann surfaces; Kleinian groups and their deformation spaces.
Michelsohn, Marie-Louise, Ph.D., 1974, University of Chicago: Differential geometry.
Susz, Peter, Emeritus, Ph.D., 1951, University of Budapest, Hungary: Analytic number theory.
Takhtajan, Leon, Ph.D., 1975, Leningrad University of Budapest, Hungary: Analytic applications to mathematical physics.

James H. Simons Instructors
He, Xuhua, Ph.D., 2005, MIT: Representation theory, algebraic geometry.
Kamenova, Ljudmila, Ph.D., 2006, MIT: Complex geometry.
Redden, Corbett, Ph.D., 2006, Notre Dame University: Riemannian geometry; algebraic topology.
Simon, Scott, Ph.D., 2006, Purdue University: Infinite-dimensional complex analysis, several complex variables.

Lecturers and Visitors
Andersen, Robert, M.S., 1974, Adelphi University, N.Y.: Mathematics education.
Chas, Moira, Ph.D., 1998, Universitat Autonoma de Barcelona, Spain: Dynamical systems; geometric topology.
Wiegand, Judy, M.S., 1969, Polytechnic Institute of New York, Brooklyn: Hamilton graph theory; harmonic analysis.

RTG Postdoctoral Fellows
Harrelson, Eric, Ph.D., 2006, University of Minnesota: Algebraic topology, string field theory.
Linich, William, Ph.D., 2005, University of Maryland at College Park: Theoretical and mathematical physics.

Institute for Mathematical Sciences
Lyubich, Mikhail, Deputy Director of the Institute for Mathematical Sciences, Ph.D., 1983, Tashkent State University, Russia: Dynamical systems.
Millon, John W., Director of the Institute for Mathematical Sciences, Ph.D., 1954, Princeton University: Dynamical systems; topology, geometry.
1) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1990.
2) Member, Institute for Mathematical Sciences

Degree Requirements

Requirements for the M.A. Degree

In addition to the requirements of the Graduate School, the following are required:

A. Completion of 30 credits in graduate courses approved by the Department with a 3.0 overall grade point average;

B. Passing the comprehensive examination;

C. A nine-credit minor.

For students in the Secondary Teacher Option, the 30-credit requirement is ordinarily satisfied by the following courses: MAT 511 Fundamental Concepts of Mathematics, MAT 512 Algebra for Teachers, MAT 513-514 Analysis for Teachers I-II, MAT 515 Geometry for Teachers, MAT 516 Probability and Statistics for Teachers, MAT 517 Calculators and Computers for Teachers, MAT 518 Seminar in the Uses of Mathematics, MAT 519 Seminar in Mathematics Teaching, and a three-credit elective with a significant mathematical or pedagogical component. The comprehensive examination consists of the final examinations in MAT 512, 513, 514, and 515. The minor requirement is met by the three courses MAT 516, MAT 517, and MAT 518.

For students in the Professional Option, the courses that satisfy the 30-credit requirement are MAT 530-531 Topology/Geometry I-II, MAT 534-535 Algebra I-II, MAT 542 Complex Analysis I, MAT 544 Real Analysis I, MAT 550 Real Analysis II, and MAT 598 Teaching Practicum. Unless specifically exempted by the Director of Graduate Studies, all first-year graduate students are required to take the core courses, MAT 530, 531, 534, 535, 542, 544, and 550 during their first year; this requirement is automatically waived for students who have passed the comprehensive examination (see the Guide to Graduate Study for exemption guidelines).

In addition, students preparing for the doctoral program ordinarily take MAT 590 Problem Seminar. The comprehensive examination consists of the final examinations in MAT 530, 531, 534, 535, 542, 544, and 550, or the equivalent. The minor program consists of three courses in an allied area such as applied mathematics, computer science, statistics, or theoretical physics.

Requirements for the Ph.D. Degree

In addition to the requirements of the Graduate School, the following are required:

A. Passing the doctoral comprehensive examination;

B. Passing the doctoral preliminary examination;

C. Demonstrating proficiency in reading mathematics in two relevant
foreign languages, usually French, German, or Russian; non-English-speaking international students can demonstrate their proficiency in one of these languages, in addition to their native language;

D. Advancement to candidacy;

E. Writing an acceptable dissertation;

F. Two consecutive semesters of full-time study.

Doctoral Comprehensive Examination
This examination, which is offered twice a year (just before the start of each semester), is designed to test mastery of the fundamentals of mathematics. This exam is based on the syllabi of the core courses: MAT 530, 531, 534, 535, 542, 544, 550. Students who transfer from graduate programs at other universities may, in some cases, be granted exemption from this requirement.

Doctoral Preliminary Examination
This examination is oral. Each student must take this examination no later than one year after passing the comprehensive examination or receiving an exemption therefrom. The chair and one additional member of the examining committee are chosen by the student; one additional member is chosen by the program.

Professional Academic Training Program
All full-time graduate students are required to participate in this program, consisting of supervised teaching/tutoring at the lower undergraduate levels.

Courses

Mathematics Education Courses
Visit our Web site for the most current descriptions: www.math.sunysb.edu

MAE 501 Foundations of Secondary Mathematics Curriculum
A re-examination of the current middle school and high school mathematics curriculum. A review of the techniques and discussion of the ideas from a more advanced point of view, including topics in algebra, geometry, elementary functions, and probability and statistics. Competence in basic secondary school mathematical ideas and techniques is tested.
Fall, 3 credits, ABCF grading

MAE 510 Introduction to Methods of Teaching and Learning Standards
Introduction to the basic methods of teaching middle school and high school mathematics, including study of lesson designs based on National Council of Teachers of Mathematics (NCTM) and New York State standards, and the study of pedagogical techniques including cooperative learning and the uses of technology. Students also engage in guided observation of middle school and high school mathematics classes.
Pre- or Co-requisite: MAE 501
Fall, 3 credits, ABCF grading

MAE 520 Advanced Methods of Teaching Secondary School Mathematics
The philosophy and goals of mathematics education, with an emphasis on implementation: curriculum development; teaching techniques and styles, and learning theories and styles; lesson planning and assessment. Students will plan an entire unit, the work sample, including lesson plans and assessments, for inclusion in the professional portfolio.
Prerequisites: MAE 501 and 510
Spring, 3 credits, ABCF grading

MAE 530 Directed Readings and Research Paper in Mathematics Education
Tutorial studies concerning current issues in Mathematics Education, including recent research and its relationship to teaching practice. Students write a 10-page paper for inclusion in the professional portfolio.
Prerequisites: MAE 501 and 510
Fall, spring, 1 credit, ABCF grading

MAE 540 Clinical Experience
Supervised classroom experience in both middle school and high school settings, including experience in a high-needs district, individual tutoring, working with small groups, and working as an inclusion aide. Seminar discussions focus on classroom observations and experiences.
Prerequisites: MAE 501 and 510
Pre- or Co-requisite: MAE 520
Spring, 2 credits, ABCF grading

MAE 551 Supervised Student Teaching in Middle School
Student teaching under the supervision of an experienced teacher in middle school and high school settings. These courses must be taken simultaneously.
Prerequisites: MAE 520, 530, and 540; satisfaction of all other program requirements; permission of the Director of Mathematics Education
Co-requisite: MAE 552 and 554
Fall, spring, 3 credits, SU grading

MAE 552 Supervised Student Teaching in High School
Student teaching under the supervision of an experienced teacher in middle school and high school settings. These courses must be taken simultaneously.
Prerequisites: MAE 520, 530, and 540; satisfaction of all other program requirements; permission of the Director of Mathematics Education
Co-requisite: MAE 552 and 554
Fall, spring, 3 credits, SU grading

MAE 554 Student Teaching Seminar
The student teaching experience (MAE 551/552) serves as a focus for weekly discussions of teaching and learning styles and techniques, and classroom management issues. Includes New York State mandated seminars on child abuse, substance abuse, and school violence.
Prerequisite: Permission of the Director of Mathematics Education
Co-requisites: MAE 551 and 552
Fall, spring, 3 credits, ABCF grading

Core Courses for Teacher Option
Visit our Web site for the most current descriptions: www.math.sunysb.edu

MAT 511 Fundamental Concepts of Mathematics
Brief history of mathematics; sets, functions and logic; constructions of number systems; mathematical induction. The main focus of the course will be on the construction and writing of mathematical proofs.
Fall, spring, or summer, 3 credits, ABCF grading

MAT 512 Algebra for Teachers
Linear algebra, the algebra of polynomials, algebraic properties of the complex numbers, number fields, solutions of equations.
Prerequisite: MAT 511
Fall, spring, or summer, 3 credits, ABCF grading

MAT 513 Analysis for Teachers I
Topics in differential calculus, its foundations, and its applications. This course is designed for teachers and prospective teachers of advanced placement calculus.
Prerequisite: MAT 511
Fall, spring, or summer, 3 credits, ABCF grading

MAT 514 Analysis for Teachers II
Topics in calculus, its foundations, and its applications. Emphasis is on integration and numerical techniques. This course is designed for teachers and prospective teachers of advanced placement calculus. Analysis for Teachers I is not a prerequisite for this course.
Prerequisite: MAT 511
Fall, spring, or summer, 3 credits, ABCF grading

MAT 515 Geometry for Teachers
A re-examination of elementary geometry using concepts from analysis and algebra.
Prerequisite: MAT 511
Fall, spring, or summer, 3 credits, ABCF grading

MAT 516 Probability and Statistics for Teachers
A priori and empirical probabilities; conditional probability; mean and standard deviation; random variables; financial distributions; continuous distributions; sampling; estimation; decision making.
Fall, spring, or summer, 3 credits, ABCF grading

MAT 517 Calculators and Computers for Teachers
Calculators and Computers for teachers. Graphing calculators, programming, comput-
ing and curve sketching; Geometers Sketchpad or other computer-based classroom tools; educational use of the Web.

Fall, spring, or summer, 3 credits, ABCF grading

MAT 518 Seminar on the Uses of Mathematics
This seminar explores the ways in which secondary school and elementary college mathematics are used in such diverse areas as psychology, sociology, political science, economics, business, engineering, physics, chemistry, biology, and medicine. Primarily for secondary school teachers of mathematics.

Fall, spring, or summer, 3 credits, ABCF grading

MAT 519 Seminar in Mathematics Teaching
Study of recent curricular and pedagogical developments in secondary school mathematics.

Fall, spring, or summer, 3 credits, SU grading

Introductory Courses for Professional Option
Visit our Web site for the most current descriptions: www.math.sunysb.edu

MAT 530 Topology, Geometry I
Basic point set topology; connectedness, compactness, continuity, etc. Metric spaces, function spaces, and topological manifolds. Introduction to algebraic topology: fundamental group and covering space; homology: applications.

Fall, 3 credits, ABCF grading

MAT 531 Topology, Geometry II

Spring, 3 credits, ABCF grading

MAT 534 Algebra I
Groups: normal subgroups, quotient groups, Lagrange's theorem, class formula, finite p-groups and soluble groups, Sylow's theorems, finitely generated abelian groups. Rings and modules: subrings, fields, prime and maximal ideals, quotient rings, ID's, PID's, UFD's, polynomial rings, field of fractions, the Wedderburn theorem, Hilbert basis theorem, finitely generated modules over a PID. Vector spaces: basis, linear maps and matrices, dual spaces, determinants, eigen values and vectors, inner products, spectral theorem for normal operators.

Fall, 3 credits, ABCF grading

MAT 535 Algebra II

Spring, 3 credits, ABCF grading

MAT 536 Algebra III
Selections from the following topics: introductory algebraic number theory, introductory algebraic geometry, algebraic groups, cohomology of groups, homological algebra, advanced field theory and Galois theory, central simple algebras, representations of finite and compact groups.

Prerequisite: MAT 535
Fall, 3 credits, ABCF grading

MAT 539 Algebraic Topology
Homology and cohomology groups, homotopy groups and the Hurewicz theorem, the universal coefficient theorem, cup and cap products, Poincare duality, and introduction to spectral sequences.

Spring, 3 credits, ABCF grading

MAT 540 Topology in Geometry and Algebra I
Cell complexes, algebraic and geometric definitions of homology, fundamental and higher homotopy groups, Hurewicz theorem, Lefschetz theorem and related topics.

Prerequisites: MAT 530, MAT 531
Fall, 3 credits, ABCF grading

MAT 541 Topology in Geometry and Algebra II
Cohomology, relations with obstruction and deformation theory, Poincare, Lefschetz, and Alexander dualities, intersection theory, relations to differential forms, monodromy, and related topics.

Prerequisites: MAT 530, MAT 531
Spring, 3 credits, ABCF grading

MAT 542 Complex Analysis I
Elementary functions, holomorphic functions. Cauchy theory, power series, classification of isolated singularities, calculus of residues, open mapping theorem, Riemann mapping theorem.

Spring, 3 credits, ABCF grading

MAT 543 Complex Analysis II

Fall, alternate years, 3 credits, ABCF grading

MAT 544 Real Analysis I
Ordinary differential equations; Banach and Hilbert spaces; inverse and implicit function theorems; Lebesgue measure; general measures and integrals; measurable functions; convergence theorems for integrals.

Fall, 3 credits, ABCF grading

MAT 545 Real Analysis II
Differentiation in Banach spaces; differentiation of sequences.

Fall, 3 credits, ABCF grading

MAT 550 Real Analysis III
Spring, 3 credits, ABCF grading

MAT 551 Real Analysis IV
Spring, 3 credits, ABCF grading

MAT 552 Introduction to Lie Groups and Lie Algebras

Prerequisite: MAT 531, MAT 544
Fall, 3 credits, ABCF grading

MAT 555 Introduction to Dynamical Systems
Fundamental themes of dynamical systems and applications to other areas. Topics may include the following: Poincare recurrence and Birkhoff Ergodic Theorem, Smale horseshoe and hyperbolicity, geodesic flow on constant curvature surfaces, one-dimensional dynamics, Julia sets and Mandelbrot set, renormalization, rigidity and universality phenomena, Hamiltonian dynamics and integrability, Kolmogorov-Arnold-Moser Theory (overview), Homoclinic bifurcations and Newhouse phenomenon.

Prerequisite: MAT 530, MAT 544
Spring, 3 credits, ABCF grading

MAT 560 Mathematical Physics I
Aimed at students affiliated with the RTG program. Topics include classical field theory (Lagrangian and Hamiltonian), electromagnetism, special relativity, statistical mechanics and thermodynamics, quantum mechanics and quantum field theory.

3 credits, ABCF grading
MAT 561 Mathematical Physics II
Aimed at students affiliated with the RTG program. Topics include classical field theory (Lagrangian and Hamiltonian), electromagnetism, special relativity, statistical mechanics and thermodynamics, quantum mechanics and quantum field theory.
Spring, 3 credits, ABCF grading

MAT 566 Differential Topology
Vector bundles, transversality, and characteristic classes. Further topics such as imbeddings and immersions, intersection theory, surgery, and foliations.
Prerequisite: MAT 531
Fall, 3 credits, ABCF grading

MAT 568 Differential Geometry
Connections, curvature, geodesics, parallelism, and completeness. Riemannian manifolds, geometry of sub-manifolds; method of integral formulas; applications to global extrinsic theorems. Riemannian curvature. Gauss-Bonnet theorem, Hopf-Rinow theorem.
Prerequisite: MAT 531
Fall, 3 credits, ABCF grading

MAT 569 Differential Geometry
First and second variation formulas, conjugate points and Jacobi fields, comparison theory. Curvature and fundamental group: spaces of positive and of negative curvature, space forms, Lie groups, homogeneous spaces, and symmetric spaces. Different topics may be covered depending on the choice of the instructor.
Prerequisite: MAT 531, MAT 568
Spring, 3 credits, ABCF grading

MAT 570 Concepts and Methods of Quantum Mechanics
Spring, 3 credits, ABCF grading

MAT 588 First-Year Seminar I
Workshop on basic graduate-level mathematics skills and knowledge. Skills include reading and writing proofs, solving problems, reading mathematics. Topics cover fundamental ideas and theories such as constructions of number systems, interchanges of limits, the Euclidean algorithm, and the axioms of choice.
Fall, 3 credits, S/U grading

MAT 589 First-Year Seminar II
Same concept as MAT 588, but covers different materials.
Spring, 3 credits, S/U grading

MAT 590 Problem Seminar
Analyze problems and explore supplementary topics related to the core courses in the Professional M.A. Option. Focus on preparation for the doctoral comprehensive examination.

MAT 598 Teaching Practicum
Seminar and workshop for new teaching assistants.
Fall, 3 credits, S/U grading

MAT 599 M.A. Research
1-12 credits, S/U grading

Intermediate Courses

MAT 602 Topics in Algebra
Typical topics are drawn from group theory, ring theory, representation theory of groups and algebras, fields and commutative algebra, and homological algebra.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MAT 603 Topics in Algebra
Typical topics are drawn from group theory, ring theory, representation theory of groups and algebras, fields and commutative algebra, and homological algebra.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MAT 608 Topics in Number Theory
Typical topics are drawn from analytic number theory, algebraic number theory, diophantine equations, and transcendental number theory, with indications of methods from algebra, geometry, analysis, and logic.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MAT 609 Topics in Number Theory
Typical topics are drawn from analytic number theory, algebraic number theory, diophantine equations, and transcendental number theory, with indications of methods from algebra, geometry, analysis, and logic.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MAT 614 Topics in Algebraic Geometry
Topics are drawn from varieties and schemes, algebraic curves, and their arithmetic.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MAT 615 Topics in Algebraic Geometry
Typical topics are drawn from varieties and schemes, algebraic curves, and their arithmetic.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MAT 620 Topics in Algebraic Topology
Topics of current interest such as foliations, surgery, singularities, group actions on manifolds, and homotopy theory.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAT 621 Topics in Algebraic Topology
Topics of current interest such as foliations, surgery, singularities, group actions on manifolds, and homotopy theory.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAT 626 Topics in Complex Analysis
Topics selected from Riemann surfaces, quasiconformal mappings, several complex variables, Fuchsian groups, Kleinian groups, moduli of Riemann surfaces and Kleinian groups, analytic spaces, singularities.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAT 627 Topics in Complex Analysis
Topics selected from Riemann surfaces, quasiconformal mappings, several complex variables, Fuchsian groups, Kleinian groups, moduli of Riemann surfaces and Kleinian groups, analytic spaces, singularities.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAT 632 Topics in Differential Equations
Typical topics are hyperbolic or elliptic systems, parabolic equations, spectral theory, finite difference equations, Cauchy-Riemann equations and complex vector fields, equations with constant coefficients, solvability of linear equations, Fourier integral operators, nonlinear equations.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MAT 633 Topics in Differential Equations
Typical topics are hyperbolic or elliptic systems, parabolic equations, spectral theory, finite difference equations, Cauchy-Riemann equations and complex vector fields, equations with constant coefficients, solvability of linear equations, Fourier integral operators, nonlinear equations.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MAT 638 Topics in Real Analysis
Topics selected from functional analysis, harmonic analysis, Banach algebras, operator theory.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

MATHEMATICS
MAT 639 Topics in Real Analysis
Topics selected from functional analysis, harmonic analysis, Banach algebras, operator theory.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 641 Topics in Lie Groups Theory
Typical topics are universal enveloping algebras; free, solvable and nilpotent Lie algebras; Lie theory and formal groups; root systems, Dynkin diagrams, classification and representations of complex semisimple Lie algebras; method of orbits; representations of non-compact Lie groups; loop groups.
Prerequisite: MAT 552
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 644 Topics in Differential Geometry
Typical topics will be drawn from areas such as comparison theorems, pinching theorems, Morse theory, characteristic classes, minimal varieties, Hodge theory, spectrum of the Laplacian, and geometry of general relativity.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 645 Topics in Differential Geometry
Typical topics will be drawn from areas such as comparison theorems, pinching theorems, Morse theory, characteristic classes, minimal varieties, Hodge theory, spectrum of the Laplacian, and geometry of general relativity.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 648 Topics in Mathematical Physics
Typical topics are mathematical methods of classical and quantum mechanics; methods of functional integration and its applications; infinite-dimensional Lie algebras, quantum groups and representations; conformal field theories; super-symmetry; topological quantum field theories; gauge theories and geometry in four-dimensions; supergravity and mirror symmetry; strings.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 649 Topics in Mathematical Physics
Typical topics are mathematical methods of classical and quantum mechanics; methods of functional integration and its applications; infinite-dimensional Lie algebras, quantum groups and representations; conformal field theories; super-symmetry; topological quantum field theories; gauge theories and geometry in four-dimensions; supergravity and mirror symmetry; strings.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 655 Topics in Dynamical Systems
Typical topics are drawn from holomorphic and low-dimensional dynamics, hyperbolic dynamics, theory of Hamiltonian systems, ergodic theory, and bifurcation theory.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

Advanced Courses
These courses are designed for students doing advanced work, especially in connection with doctoral dissertations. The only prerequisite is permission of the instructor. The topics are selected from the areas listed under the corresponding intermediate course and will generally be on a more advanced level. A course normally begins in the fall and may continue in the spring. Course offerings will depend on student demand and availability of faculty to supervise advanced work in the area. Courses may be taken for repeated credit; each carries three credits. Visit www.math.sunysb.edu for current descriptions.

MAT 662 Advanced Topics in Algebra
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 663 Advanced Topics in Algebra
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 666 Advanced Topics in Algebraic Topology
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 667 Advanced Topics in Algebraic Topology
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 670 Advanced Topics in Complex Analysis
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 671 Advanced Topics in Complex Analysis
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 674 Advanced Topics in Differential Equations
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 675 Advanced Topics in Differential Equations
Prerequisite: Permission of instructor

MAT 678 Advanced Topics in Real Analysis
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 679 Advanced Topics in Real Analysis
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 682 Advanced Topics in Differential Geometry
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 683 Advanced Topics in Differential Geometry
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 685 Advanced Topics in Dynamics
An advanced topic selected from holomorphic and low-dimensional dynamics, hyperbolic dynamics, KAM theory, smooth ergodic theory, geodesic flows, bifurcation theory.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated for credit

MAT 686 Advanced Topics in Dynamics
An advanced topic selected from holomorphic and low-dimensional dynamics, hyperbolic dynamics, KAM theory, smooth ergodic theory, geodesic flows, bifurcation theory.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading
May be repeated for credit

MAT 690 RTG Seminar in Mathematics and Physics I
Intensive learning seminar aimed at first- and second-year graduate students. The main purpose is to introduce mathematics students to the methods, language, and modes of thought in modern physics, and conversely to introduce physics students to the same things in modern mathematics. Student participation required. Topics change year to year.
1-6 credits, S/U grading

MAT 691 RTG Seminar in Mathematics and Physics II
Intensive learning seminar aimed at first- and second-year graduate students. The main purpose is to introduce mathematics students to the methods, language, and modes of thought in modern physics, and conversely to introduce physics students to the same things in modern mathematics. Student participation is required. Specific topics will change from year to year.
1-6 credits, S/U grading

MAT 696 Mathematics Seminar
1-12 credits, S/U grading
May be repeated for credit
MAT 697 Mathematics Colloquium
1-12 credits, S/U grading
May be repeated for credit

MAT 698 Independent Study
1-12 credits, S/U grading
May be repeated for credit

MAT 699 Dissertation Research On Campus
Dissertation research under direction of advisor.
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

MAT 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

MAT 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

MAT 800 Full-Time Summer Research
0 credit, S/U grading
May be repeated for credit
Mechanical Engineering (MEC)

Chair: Fu-pen Chiang, Light Engineering Building Room 105, (631) 632-8311
Graduate Program Director: Peisen Huang, Light Engineering Building Room 163, (631) 632-8329
Graduate Secretary: Diane Van Tronk, Light Engineering Building Room 103, (631) 632-8340

Degrees awarded: M.S. in Mechanical Engineering; Ph.D. in Mechanical Engineering

The Department of Mechanical Engineering, in the College of Engineering and Applied Sciences, offers graduate work leading to the Master of Science and Doctor of Philosophy degrees. The Department offers a broad curriculum with concentrations in Design and Manufacturing, Solid Mechanics, and Thermal Sciences. Departmental brochures that provide a more detailed description of the graduate program are available upon request. Additional information is also available at the Department’s Website: http://me.eng.sunysb.edu

Facilities and Areas of Specialization

Design and Manufacturing

Studies include computer-integrated engineering; CAD/CAM; kinematics, robotics, and manufacturing systems; dynamics and vibration; control; design optimization; metrology; machine vision; mechatronics; microelectromechanical systems (MEMS); and micro/nano-technologies. Research topics cover the analysis and design of mechanical systems, such as high performance machinery and robotic manipulators, and mechanisms, including dynamics, motion, control, and vibration-related problems; optical metrology, 3-D machine vision, and their applications to manufacturing; manufacturing process modeling, free abrasive machining, human augmented systems, and intelligent fault detection and diagnosis. Applied courses emphasize case studies, finite element methods, and computer graphics. Also featured are an array of equipment and software for research and teaching, such as mechatronic systems, robots, computer vision systems, CAD/CAM stations, CMM, desktop rapid prototyping machine, I-DEAS, NX, and AutoCAD.

Solid Mechanics

The mechanical behavior of advanced materials and structures is studied with emphasis on mathematical modeling and simulation of deformation, failure, stability, and microstructural transformation. These issues span a wide range of interests that focus on various materials, systems, and multiple length scales. Research topics include fracture mechanisms of embedded flaws in coatings and thin films, delamination in composites, and the mechanical properties and behavior of micron-scale structures and systems, such as microelectromechanical systems (MEMS) and microelectronic components. Stability of complex shell structures is studied with emphasis on nonlinear buckling mode interactions, inelastic material behavior, and deformation localization mechanisms observed in shell collapse. Also investigated are the constitutive modeling and failure characterization of ceramics, polymers, and heterogeneous multi-component materials, and nano- and micromechanics of defect formation and motion in bulk materials and thin films. Experimentally based research programs focus on the mechanical, thermo-mechanical, and failure behavior of a wide variety of materials such as metals, polymers, ceramics, hard and soft biological tissues, and composites under both static and dynamic loading conditions. Optical techniques of strain analysis including moiré methods, laser and white-light speckle methods, holographic interferometry, photoelasticity, and classical interferometry are developed and applied to solid mechanics problems such as fracture, wave propagation, metal forming, vibration, and deformation of micron-scale structures and systems such as MEMS. Characterization of micron and nano-scale materials and structures is accomplished with instrumented-indentation and scanning probe microscopy techniques for wear and harsh environment applications. Research is also conducted to characterize the failure mechanics of various engineered heterogeneous materials systems, ranging from functionally layered/graded coatings to nanocomposites under impact loading and high-temperature conditions. Specialized equipment includes high-speed digital cameras, scanning electron microscope, and split Hopkinson pressure bars, and in situ micromechanical high temperature fatigue testing system. Current research topics also include the characterization of mechanical properties of soft tissues and the pumping efficiency of an ischemic heart, both in vitro and in vivo.

Thermal Sciences and Fluid Mechanics

Fluid Mechanics

Current topics include advanced combustor design and flow control, and the behavior of chemically reacting species in turbulent flows. Numerical and theoretical studies include direct simulation of turbulent flows and turbulent transport at modest Reynolds numbers, stochastic modeling of the turbulent transport of temperature, and spectral closure approximations for chemically reactive flows. Other areas include microfluidics, interfacial fluid phenomena and wetting, multiphase flows, miscible flows, and complex fluids.

Heat Transfer

Current topics include measurement of thermophysical properties, laser-material interaction, materials processing, and heat transfer in advanced energy systems. Active research is also conducted on various aspects of crystal growth (e.g., modeling, simulation, material characteristics, process control, and system design), advanced sensors, photovoltaic technology, fuel cells, wind energy and biomass energy. The integrated crystal growth and wafer manufacturing research facility consists of an industry-scale high-pressure system for synthesis and growth of III-V compound semiconductor crystals. The ultra fast thermal processing and laser-based measurement laboratory has an amplified oscillator/regenerative amplifier, a femtosecond autocorrelator, and a host of optoelectronics and light sources. The thermal sciences research laboratory has a visualization and digital image processing system. The solidification and interfacial science laboratory contains several Bridgman crystal growth systems, a laboratory scale...
physical vapor deposition system, a surface energy analysis and measurement system, and a Labview-based data acquisition system.

Thermodynamics

The design of heat engines, as well as most industrial processes that involve fluids, requires accurate, convenient-to-implement methods for predicting and correlating the thermodynamic properties of the fluids present in the process. This concentration is designed to provide students with the analytical tools needed to model and predict the thermophysical properties of fluids. Current studies include the development of statistical mechanical techniques to assess the relation between intermolecular forces and the thermodynamic, dielectric, optical, and transport properties of fluids, fluid mixtures, and suspensions. Research is also being conducted on combustion heat engines, aiming at achieving high efficiency and engine performance. In a different research direction, methodological issues of thermodynamic theory are being examined leading to the argument that theoretical self-consistency requires thermodynamic theory to be based on both the "descriptive is" statements of thermodynamic laws and the "prescriptive how" statements of operational principles—with a broad range of implication in technology and biological sciences and in philosophy of science following from this argument.

Admission

For admission to the M.S. and Ph.D. programs in Mechanical Engineering the following are required:

A. A bachelor's degree in mechanical engineering or a related field such as another engineering discipline, physical science, or mathematics;

B. A grade point average of at least B or equivalent in engineering, mathematics, and science courses;

C. Completion and submission of the Graduate Record Examination (GRE) General Test;

D. Acceptance by both the Department of Mechanical Engineering and the Graduate School.

Combined B.E./M.S. Degree

Undergraduate mechanical engineering majors with strong academic performance (GPA of 3.0 or above) may apply for admission to the special combined Bachelor of Engineering/Master of Science (B.E./M.S.) degree program in mechanical engineering at the end of their junior year. Once accepted into this program, students will be permitted to take up to nine graduate credits in replacement of the required technical electives. These credits will be applied towards both their bachelor's degree and master's degree, which will be awarded together at the end of the program after they have fulfilled the requirements for both degrees. More information about this program may be obtained from the graduate program director or the Department Web site.

Faculty

Distinguished Professor

Chiang, Fu-pen, Chair, Ph.D., 1966, University of Florida: Experimental mechanics; solid mechanics; photoelasticity; moiré and laser methods for stress analysis; mechanics of soft tissues and heart.

Professors

Ge, Q. Jeffrey, Ph.D., 1990, University of California, Irvine: Design kinematics; robotics; CAD/CAM; mechanical systems analysis and simulation.

Kao, Imen, Ph.D., 1991, Stanford University: Robotics; modeling of contact interface; stiffness control; intelligent fault detection and diagnosis; modern wire saw manufacturing process; wafer manufacturing; smart contact surface technology using MEMS; Taguchi Methods and quality engineering.

Kincaid, John, Ph.D., 1974, Rockefeller University: Statistical mechanics and thermodynamics.

Sharma, Satya, Ph.D., 1975, University of Pennsylvania: Manufacturing and production.

Tasi, James, Emeritus, Ph.D., 1962, Columbia University: Solid mechanics; shock waves in crystal lattices.

Associate Professors

Huang, Peisen S., Ph.D., 1993, University of Michigan, Ann Arbor; Dr.Eng., 1995, Tohoku University, Japan: Optical metrology; 3-D computer and machine vision; manufacturing automation.

Kukta, Robert V., Ph.D., 1998, Brown University: Solid mechanics; mechanics of thin films; micromechanical modeling of defects in crystals; crystal growth.

Ladeinde, Foluso, Ph.D., 1988, Cornell University: Supersonic and hypersonic flows; flow control; turbulent flows; computational fluid dynamics; aircraft engines; combustion; numerical mathematics.

Longtin, Jan P., Ph.D., 1995, University of California, Berkeley: Heat transfer at fast time scales; ultrafast laser liquid- and laser-solid interactions; laser processing, measurement, and diagnostics for thermal systems; surface tension effects.

Rastegar, Jahangir, Ph.D., 1976, Stanford University: Mechanical design.

Wang, Lin-Shu, Ph.D., 1966, University of California, Berkeley: Combustion heat engines; thermodynamic theory; philosophy of science and technology; solar energy.

Zhang, Hui, Ph.D., 1994, Polytechnic University: Crystal growth, disaster simulations, process modeling, renewable energy systems, and spray coating.

Assistant Professors

Cubaud, Thomas, Ph.D., 2001, Paris-Sud University/ESPCI, France: Microfluidics, interfacial fluid phenomena and wetting, multiphase flows, miscible flows, and complex fluids.

Korach, Chad S., Ph.D., 2004, Northwestern University: Solid mechanics; micro and nanoscale tribology; thin films for wear applications; friction and wear modeling, composite degradation, hard and soft biological material mechanics.

Lopez-Panni, Oscar, Ph.D., 2006, University of Pennsylvania: Solid mechanics; nonlinear homogenization; instabilities; polymers; multi-functional materials.

Neeson, Michelle Denise, Visiting Assistant Professor, Ph.D., 2000, Stony Brook University: Turbulence and computational fluid mechanics.

Nejat, Goldie, Ph.D., 2005, University of Toronto: Autonomous systems; robotics and mechatronics.

Purwar, Anurag, Research Assistant Professor, Ph.D., 2005, Stony Brook University: CAD/CAM; computational kinematics; design automation; robotics.

Sesay, Juldeh, Visiting Assistant Professor, Ph.D., 2005, Stony Brook University: Turbulent flows; combustion; computational fluid dynamics and biothermal fluid sciences.

Zhou, Yu, Ph.D., 2004, Johns Hopkins University: Robot kinematics, dynamics planning, sensing and control, multi-robot systems, stochastic modeling, macromolecular mechanics.

Adjunct Faculty

Hodson, Donald, Adjunct Instructor, M.S., 1969, SUC at Buffalo: CAD; industrial arts; desktop publishing.
Rohalgi, Upendra Singh, Adjunct Professor, Brookhaven National Laboratory, Ph.D., 1975, Case Western Reserve University: Fluid mechanics; heat transfer; two-phase flow; numerical analysis; and turbomachinery.

Yuan, Lifang, Adjunct Assistant Professor, Ph.D., 2001, Stony Brook University: Cam integrated high-speed mechanisms; smart materials; robotics; optimal machine design.

Affiliated Faculty
Adzic, Radoslav, Senior Chemist, Brookhaven National Laboratory, Dr.Sci., 1974, University of Belgrade: Surface electrochemistry; electrocatalysis, direct energy conversion; fuel cells.

Cess, Robert D., Distinguished Professor and Distinguished Service Professor Emeritus, Marine Sciences Research Center, Ph.D., 1959, University of Pittsburgh: Atmospheric sciences; climate modeling; greenhouse effect; nuclear winter theory.

Einav, Shmuel, Professor and Associate Dean, College of Engineering and Applied Sciences, Ph.D., 1972, Stony Brook University: Biomedical engineering, two dimensional flow systems.

Mahajan, Devinder, Research Professor, Department of Materials Science and Engineering, Ph.D., 1979, University of British Columbia, Canada: Clean fuels, energy technologies.

Sampath, Sanjay, Professor, Center for Thermal Spray Research, Ph.D., 1989, Stony Brook University: Thermal spraying, coatings, direct write electronics, thick film sensors, multifunctional systems.

Wong, Teng-fong, Professor, Department of Geosciences, Ph.D., 1980, Massachusetts Institute of Technology: Experimental rock physics; fault mechanics.

Number of teaching, graduate, and research assistantships, Fall 2007: 39

Academic Advisor
Each graduate student is assigned an academic advisor in his or her area of interest before registration. The academic advisor will guide the student in course selection, research, and other areas of academic importance. Students receiving financial aid must select a thesis research advisor before the start of their second semester.

Academic Standing
An average GPA of 3.0 or higher in all coursework, exclusive of MEC 599 M.S. Thesis Research, MEC 698 Practicum in Teaching II, and MEC 699 Ph.D. Dissertation Research, is a minimum requirement for satisfactory status in the graduate program. In the doctoral program, a 3.5 grade point average is expected.

Degree Requirements
Requirements for the M.S. Degree
A minimum of 30 credits is required for the M.S. degree.

A. Course Requirements
1. M.S. with thesis: 21 approved graduate course credits and an accepted thesis, which is registered as nine credits of MEC 599 and MEC 696 Special Problems in Mechanical Engineering combined.

2. M.S. without thesis: 30 approved graduate credits. No credit for MEC 599 Master’s Thesis is approved for fulfilling this requirement. No more than six credits of MEC 696 may be applied toward the course requirements.

3. All full-time graduate students are required to register for MEC 691 Mechanical Engineering Seminar each semester and obtain a satisfactory grade.

4. A minimum of 18 graduate credits, of which 15 credits are in courses other than MEC 599 and MEC 696, must be taken in the Department of Mechanical Engineering. All courses taken outside the Department for application to the graduate degree requirements are subject to approval of the student’s advisor and the graduate program director.

B. Transfer Credits
A maximum of 12 graduate credits may be transferred from other programs toward the M.S. degree. These may include up to six credits from other institutions. The maximum also includes any credits received from taking Mechanical Engineering courses while having non-degree status at Stony Brook as an SPD or GSP student. Credits used to obtain any prior degrees are not eligible for transfer. All requests for transfer of credits require the approval of the graduate program director.

C. Thesis Requirements
A student choosing the thesis option must select a research advisor. Upon completion, the thesis must be defended in an oral examination before a faculty committee of at least three members of which at least two must be Mechanical Engineering faculty. A student choosing the thesis option may not switch to the non-thesis option without permission of the graduate program committee. A student who has ever been appointed as a teaching, graduate, or research assistant must choose the thesis option unless otherwise approved by the graduate program committee.

Requirements for the Ph.D. Degree
A. Course Requirements
1. Eighteen approved graduate course credits beyond the M.S. degree requirement. A minimum of nine credits, excluding MEC 599, MEC 696 and MEC 699, must be taken in the Department.

2. MEC 507. The graduate program director may waive this requirement if the student has taken sufficient applied mathematics courses elsewhere.

3. All full-time graduate students are required to register for MEC 691 each semester and obtain a satisfactory grade.

4. All courses taken outside the Department for application to the graduate degree requirements are subject to approval of the student’s advisor and the graduate program director. The advisor may impose additional course requirements.

B. Transfer Credits
A student who has entered the Ph.D. program with an M.S. degree from another institution may transfer up to 12 credits; a student with a master's degree from Stony Brook may transfer up to six credits toward the Ph.D. degree. Credits used to obtain any prior degrees are not eligible for transfer. Requests for transfer of credits must be submitted to the graduate program director.

C. Areas of Concentration
The student selects an area of concentration in one of the following areas of Mechanical Engineering:

1. Design and Manufacturing
2. Solid Mechanics
3. Thermal Sciences and Fluid Mechanics

D. Written Qualifying Examination
The written qualifying examination is offered once every year, usually in January. Students who enter the graduate program with an M.S. degree from another institution are encouraged to
take the examination the first time it is offered after they begin academic residency. Students who enter the graduate program without an M.S. degree are encouraged to take the examination the first time it is offered following three academic semesters in residence. Both categories of students who fail to take this opportunity must take the examination the next time it is offered during their residency. Part-time students should follow a rule based on graduate course credit hours (determined by the equivalence of nine credits with one semester in residence). Students are allowed to take the written qualifying examination no more than twice. Any student who fails the exam twice will be dismissed from the Ph.D. program.

The written qualifying examination consists of two parts. Part I covers applied mathematics. Part II corresponds to the student's area of concentration.

More precise information on the exam, including a list of suggested courses for each subject in the exam, is available in the Departmental office, as are samples of previous examination questions.

Each student taking the examination is required to submit a written statement to the graduate program director with a declaration of both areas chosen at least one month before the announced exam date.

E. Minor Area of Concentration

In addition to the major area of concentration, each student must select a second, minor area from the following list: Bioengineering, Biomedical Engineering, Computational Sciences (including Applied Mathematics), Design and Manufacturing, Electrical Engineering, Electronic Engineering, Environmental Sciences, Fluid Mechanics, Geological Sciences, Information Sciences, Material Science and Engineering, Solid Mechanics, and Thermodynamics and Heat Transfer. A petition to select a minor area that is not contained in this list must be approved by the Graduate Program Committee.

A student will be required to take a coherent sequence of three graduate level courses in the minor area and obtain a grade of B or better in each of the courses. However, students must submit a list of five courses from the proposed minor field no later than the time he or she applies to take the qualifying exam. The courses in the minor field must be approved by the graduate program director, with the recommendation of the student's advisor. Upon submission of the list of five courses, students must provide an explanation for the list, how the courses are related, and the rationale for the courses. Note that students are not required to have taken the courses in the minor field before taking the qualifying exam. However, the minor requirement must be satisfied before the student can be admitted to candidacy.

F. Advancement to Candidacy

A student will be advanced to candidacy for the Ph.D. degree when all formal coursework has been completed and all the requirements listed in items A through E have been satisfied.

These requirements must be completed within one calendar year after passing the written qualifying examination. Advancement to candidacy must be one year before the beginning of the semester in which a student plans to defend his or her dissertation.

G. Teaching

Ph.D. students are required to take three credits of MEC 698 Practicum in Teaching I as part of the degree requirement. This requirement may be met by taking one three-credit MEC 698, or a combination of one-credit and/or two-credit MEC 698, totaling three credits. The form of this practicum may include making class presentations, teaching in recitation classes, and preparation and supervision of laboratory classes. Note that MEC 697 Practicum in Teaching I does not meet this requirement.

A faculty advisor is responsible for providing feedback and formal evaluation of MEC 698.

H. Dissertation Examining Committee and Dissertation Proposal

The student chooses a dissertation topic in consultation with his or her doctoral dissertation advisor as soon as possible after passing the written qualifying examination. Within one year after passing the written qualifying examination, a dissertation examining committee is established. The committee must include at least three members from the Department of Mechanical Engineering, including the dissertation advisor, and at least one member from another program or from outside the University. The committee must be approved by the graduate program director upon recommendation by the dissertation advisor. The official recommendation for the appointment of the dissertation examining committee is made to the dean of the Graduate School.

Dissertation research is an apprenticeship for the candidate, who, under the supervision of the dissertation advisor, independently carries out original work of significance. The dissertation examining committee provides a means of exposing the candidate's ideas to a variety of views, and helps to guide and oversee the candidate's research progress, which is reviewed by the committee each year. The chair of the committee must submit a written report to the graduate program director on the student's progress after each review.

In addition, the student is required to submit a written dissertation proposal and present it in an oral examination conducted by the dissertation examining committee. The written dissertation proposal must be distributed to the committee members at least two weeks before the oral examination. The oral examination probes the doctoral student's ability and examines the progress, direction, and methodology of the dissertation research. The student will be examined on the dissertation topic and its objective, the problem formulation, research approach, and knowledge in related areas. The majority of the dissertation examining committee must approve the student's performance.

I. Dissertation Defense

At the completion of the dissertation, approval of the dissertation involves a formal oral defense. The formal defense is open to all interested members of the University community. A candidate must fill out the Doctoral Degree Defense Form (available on the Graduate School Web page) with dissertation abstract as well as other relevant details, and submit the form to the graduate program director at least three weeks in advance of the proposed event. The form is forwarded by the graduate program director to the Dean of the Graduate School, which will be responsible for advertising the defense to the University community. Copies of the dissertation are to be distributed to the committee members at least two weeks before the dissertation defense; one copy is to be kept in the Departmental office.
MECHANICAL ENGINEERING

for examination by the faculty. The final approval of the dissertation must be by a majority vote of the dissertation examining committee.

Courses

MEC 500 Introduction to Computer Integrated Design and Manufacturing
Topics include part design specification; Computer Aided Design (CAD); CAD-driven engineering analysis; Computer Aided Manufacturing (CAM); integration of CAD/CAM; computer integrated manufacturing industrial robotics; CAD-driven inspection and measurement; concurrent engineering; Internet-based design and manufacturing.
Prerequisite: B.S. in engineering
Fall, 3 credits, ABCF grading

MEC 501 Convective Heat Transfer and Heat Exchange
Differential and integral formulation. Exact and approximate solutions. Topics include parallel and boundary layer flows, similarity solutions, external and internal flows, laminar and turbulent convection, and forced and free convection.
Spring, 3 credits, ABCF grading

MEC 502 Conduction and Radiation Heat Transfer
Heat conduction and conservation laws; formulation of conduction equations in differential and integral forms; analytical solution techniques including Laplace transforms and separation of variables; scaling analysis; black body radiation, Kirchhoff’s law, analysis of heat conduction problems; analysis of radiative exchange between surfaces and radiative transport through absorbing, emitting, and scattering media.
Fall, 3 credits, ABCF grading

MEC 504 Thermal Analysis and Design of Electronic Systems
Thermal characteristics of electronic components and systems, reliability considerations, design concepts, basic modes of heat transfer and fluid flow. Topics of applied heat transfer: heat exchanger, boiling and condensation, cooling at various packaging levels, thermal elastic effects, computations for electronic systems.
Fall, alternate years, 3 credits, ABCF grading

MEC 505 Modeling and Simulation for Materials Processing and Manufacturing
Importance of modeling and simulation; interface between computer models and actual processes; microscopic versus macroscopic models; continuum models; thermo-fluid models, chemical transport, magnetic and electrical effects, and stress field; simulation schemes: finite difference versus finite element methods; software development; post-processing: graphical representation, video animation; case studies; melting/solidification bulk crystal growth; thin film deposition.
Spring, alternate years, 3 credits, ABCF grading

MEC 506 Energy Management in Commercial Buildings
Topics include basic heating, ventilating, and air-conditioning (HVAC) system design and selection for commercial buildings (includes both low-rise and high-rise buildings); selection of central plant components and equipment; calculation of space heating and cooling loads; computer techniques for estimating annual energy consumption; design tools for reducing energy consumption; ASHRAE codes; building controls; BACnet.
Prerequisite: B.S. in mechanical engineering or related fields
Fall, alternate years, 3 credits, ABCF grading

MEC 507 Mathematical Methods in Engineering Analysis I
An introduction to the use of mathematical analysis techniques for the solution of engineering analysis problems and the simulation of engineering systems. Both continuous and discrete methods are covered. Initial and boundary value problems for ordinary and partial differential equations are treated.
Fall, 3 credits, ABCF grading

MEC 508 Mathematical Methods in Engineering Analysis II
A continuation of the material covered in MEC 507. Introduction to and application of numerical analysis techniques used in engineering such as finite elements and fast Fourier transforms. Determination of response characteristics of dynamic systems. Combinatoric methods and techniques for optimization of engineering design and systems/process analysis problems.
Prerequisite: MEC 507
Spring, alternate years, 3 credits, ABCF grading

MEC 510 Object-Oriented Programming for Scientists and Engineers
Practical introduction to C++ and object-oriented programming for a first programming course for scientists and engineers. Covers basics of application software development such as problem decomposition, structure charts, object modeling, class diagrams, incremental code building, and testing at a beginner’s level. Features the concepts of abstract data types (ADT), encapsulation, inheritance, composition, polymorphism, operator and function overloading besides studying UML (Unified Modeling Language) as a graphical representational design technique. The course follows the evolution of programming ideas from the use of a single function to the use of structural charts and functions to modularize and finally to the use of object-oriented programming.
Prerequisite: B.S. in science or engineering
Spring, 3 credits, ABCF grading

MEC 511 Mechanics of Perfect Fluids
Lagrangian and Eulerian frames. Dynamical equations of momentum and energy transfer. Two-dimensional dynamics of incompressible and barotropic perfect fluids and of the compressible perfect gas. Conformal mapping applied to two-dimensional fluid dynamics. Jets and cavities. Surface waves, internal waves. Perfect shear flows.
Stommel, 3 credits, ABCF grading

MEC 512 Mechanics of Viscous Fluids
The role of viscosity in the dynamics of fluid flow. The Navier-Stokes equations, low Reynolds number behavior including lubrication theory, percolation through porous media, and flow due to moving bodies. High Reynolds number behavior including steady, unsteady, and detached boundary layers, jets, free shear layers, and wakes. Phenomenological theories of turbulent shear flows are introduced.
Fall, 3 credits, ABCF grading

MEC 514 Advanced Fluid Mechanics: Introduction to Turbulence
Introductory concepts and statistical descriptions: kinematics of random velocity fields; equations of motion; experimental techniques: isotropic turbulence, closure problem; transport processes.
Prerequisite: MEC 512
Spring, alternate years, 3 credits, ABCF grading

MEC 521 Thermodynamics
This course begins with a review of the fundamental concepts and laws of classical thermodynamics. Then the thermodynamic theory of equilibrium states and phase transitions is treated, followed by the thermodynamic theory of processes and cycles of simple and composite systems, including heat engines. Special topics may include statistical thermodynamics, irreversible thermodynamics, radiation and photovoltaic energy conversion, biological thermodynamic processes, and other topics of current interest.
Spring, 3 credits, ABCF grading

MEC 524 Computational Methods for Fluid Mechanics and Heat Transfer
Introduction of finite difference, finite volume, and finite element methods for incompressible flows and heat transfer. Topics include explicit and implicit schemes, accuracy, stability and convergence, derived and primitive-variables formulation, orthogonal and non-orthogonal coordinate systems. Selected computer assignments from heat conduction, incompressible flows, forced and free convection.
Prerequisite: MEC 507
Fall, alternate years, 3 credits, ABCF grading

MEC 525 Product Design Concept Development and Optimization
This graduate course will concentrate on the design concept development of the product development cycle, from the creative phase of solution development to preliminary concept evaluation and selection. The course will then cover methods for mathematical modeling, computer simulation, and optimization. The concept development component of the course will also cover intellectual property and patent issues. The course will not concentrate on the development of any particular class of products, but the focus will be mainly on mechanical and electromechanical devices and systems. As part of the course, each participant will select an appropriate project to practice the application of the material covered in the course and prepare a final report.
Prerequisites: Undergraduate electrical or mechanical engineering and/or science training
Spring, 3 credits, ABCF grading

MEC 528 Introduction to Experimental Stress Analysis
The concepts of three-dimensional stress and strain, their transformation laws, and their mutual relationships are discussed in detail. Results from theory of elasticity as pertinent to experimental stress analysis are also presented. Experimental techniques studied include two-dimensional photoelasticity, resistance strain gauge, moiré methods, holographic interferometry, and speckle photography. The application of different techniques to the measurement of stress and strain in models as well as actual structures is demonstrated. Students form small groups and each group is assigned different laboratory projects to gain experience in various experimental stress analysis methods.
Prerequisite: MEC 592 or equivalent 3 credits, ABCF grading

MEC 529 Introduction to Robotics: Theory and Applications
Topics: robot components and mechatronic aspects of robotics (sensors, actuators, and effectors, system integration); rotation, translation, rigid-body transform; robotics foundations in kinematics and inverse kinematics, dynamics, serial and parallel manipulators and their duality, introduction to mobile robots and LEGO Robotics, control theories, motion planning, trajectory generation, grasping and manipulation, robotic programming language, industrial robotics, manufacturing automation, and societal impacts. Include hands-on projects.
Spring, 3 credits, ABCF grading

MEC 530 Applied Stress Analysis
A study of linear elastic solids with emphasis on internal stress analysis. Simple boundary value problems at plane structures are analyzed with various solution techniques. Major topics are stress and strain tensors, linear elasticity, principle of virtual work, torsion, stress functions, stress concentration, elementary fracture, and plasticity.
3 credits, OPT

MEC 532 Vibration and Control
Fundamentals of vibrations and control of vibrations of structures and dynamic systems. Topics include one dof systems and responses, multiple dof systems and responses, classical feedback control theory, modern state-space feedback control theory, application of control methodology in structure and systems under vibration and dynamics; introduction of optimal control theory; feedforward control; and distributed transducers for active control of vibration.
Fall, every year, 3 credits, ABCF grading

MEC 535 Engineering Stress Analysis
Provides an overview of stress analysis for practicing engineers and scientists.
Spring, 3 credits, ABCF grading

MEC 536 Mechanics of Solids
A unified introduction to the fundamental principles, equations, and notation used in finite deformation of solid systems with emphasis on the physical aspects of the subject. Cartesian tensor representation of stress, principal values, finite strain, and deformation. Conservation of mass, momentum, and energy. Formulation of stress-strain relations in elasticity, and compatibility relations. The use of general orthogonal coordinate systems in equations governing solids. Principles of virtual displacement and virtual work.
Fall, 3 credits, ABCF grading

MEC 539 Introduction to Finite Element Methods
(Formerly Finite Element Methods in Structural Analyses.) Theory of finite element methods and their application to structural analysis problems. Matrix operations, force and displacement methods. Derivation of matrices for bars, beams, shear panels, membranes, plates, and solids. Use of these elements to model actual structural problems. Weighted residual techniques and extension of the finite element method into other areas such as heat flow and fluid flow. Laboratory sessions introduce use of the computer in solving finite element problems. Programs for the solution of force and displacement method problems are configured. A computer project consisting of the solution and evaluation of a structural problem is required.
Spring, alternate years, 3 credits, ABCF grading

MEC 540 Mechanics of Engineering Structures
An introduction to variational principles of mechanics and the development of approximation methods for the solution of structural mechanics problems. Linear and nonlinear theories of beams and thin plates are developed along with their framework for numerical solutions. An introduction of the general theory of structural stability is presented along with its application to buckling and initial postbuckling behavior of beams and plates.
3 credits, ABCF grading

MEC 541 Elasticity
Prerequisite: MEC 536 Spring, 3 credits, ABCF grading

MEC 543 Plasticity
Stress and deformation of solids: yield criteria and flow rules for plasticity deforming solids; the notion of a stable inelastic material; static and dynamic analysis of plastic bodies under mechanical and thermal loading; use of load bounding theorems and the calculation of collapse loads of structures; the theory of the slip-line field.
Prerequisite: MEC 541 Fall, alternate years, 3 credits, ABCF grading

MEC 545 Plasticity
Prerequisite: MEC 536 Spring, 3 credits, ABCF grading

MEC 550 Mechatronics
An introduction to the design, modeling, analysis, and control of mechatronic systems (smart systems comprising mechanical, electrical, and software components). Fundamentals of the basic components needed for the design and control of mechatronic systems, including sensors, actuators, data acquisition systems, microprocessors, programmable logic controllers, and I/O systems are covered. Hands-on experience in designing and building practical mechatronic systems are provided through integrated lab activities.
Fall, every year, 3 credits, ABCF grading

MEC 552 Mechanics of Composite Materials
The course is concerned with the analysis of layered composite materials subject to mechanical loads. Cartesian tensor calculus is used. Homogeneous anisotropic media are studied first. The effect of layering is then analyzed. Applications to plates and shell are studied and analytical methods of solution are given. Numerical analysis of composite solids is also considered using finite difference and finite element methods.
Prerequisite: MEC 536 Fall or spring, alternate years, 3 credits, ABCF grading

MEC 560 Advanced Control Systems
Analytical methods applied to the design of multivariable linear control systems. Introduction to linear system theory; linearization, solution of linear matrix differential equations, stability, controllability, observability, transformations to canonical forms. Formulation of control objectives. Deterministic state observer. Full-state feedback control based on pole assignment and linear quadratic optimization theory. Linear systems with stochastic inputs and measurement noise. The response of linear systems to random input; stochastic state estimator (Kalman filter); separation principle of stochastic control and estimation; system robustness.
Fall or spring, alternate years, 3 credits, ABCF grading

MEC 567 Kinematic Analysis and Synthesis of Mechanisms
Introduction, mechanism structure, basic concepts of mechanisms, canonical representation of motion. Kinematic analysis, algebraic method, vector-loop method, complex number method, spherical and spatial polygon method, matrix method, dual-number quaternion method, screw coordinate method, line coordinate method, motor algebra method, type synthesis, number synthesis, coupler curves, curvature theory path generation, finite displacement theory, rigid body guidance, function generation, computer-aided mechanisms analysis and synthesis.
Prerequisite: Permission of instructor Spring, 3 credits, ABCF grading

MEC 568 Advanced Dynamics
Newtonian and Lagrangian mechanics of rigid bodies; kinematics, inertia tensor, principle of momentum, principle of virtual work, potential and kinetic energy, equations of motion, extraction of information from the equations of motion, and application to engineering problems.
Fall, 3 credits, ABCF grading
MEC 570 Introduction to Engineering Tribology
Focus is on the fundamentals of tribology, the science of surfaces in relative motion, with an introduction to friction, lubrication, and wear. The basics of tribology science: engineering surfaces, contact mechanics, lubrication theory, wear processes and modeling, wear properties of materials, and tribology test methods will be covered. Analysis of tribological aspects of machine components and bearings. Industrial case studies will be presented to place the topics in context to industry and society.
Spring, every year, 3 credits, ABCF grading

MEC 571 Analysis and Design of Robotic Manipulators
Introduction to robot manipulators from the mechanical viewpoint, emphasizing fundamental principles of various mechanisms and design considerations. Kinematics on 2D and 3D manipulators; statics and dynamics; motion planning; control fundamentals; algorithms development; computer-graphics simulation of manipulators; current applications.
Prerequisite: Permission of instructor
Fall or spring, alternate years, 3 credits, ABCF grading

MEC 572 Geometric Modeling for CAD, CAM
Fall or spring, alternate years, 3 credits, ABCF grading

MEC 575 Introduction to Micro Electro-Mechanical Systems (MEMS)
An introduction to the fundamental knowledge and experience in the design and manufacture of microsystems. Emphasis will be placed on the methodologies for design, fabrication, and packaging of microsystems. An overview on fabrication and manufacturing technologies for producing microsystems will also be covered. Interdisciplinary nature of MEMS will be emphasized via various engineering principles ranging from mechanical and electrical to materials and chemical engineering. Introduction of the working principles of micro actuators, sensors, and transducers.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

MEC 576 Microfluidics and Microscale Heat Transfer
Topics: flow/control of liquids/gases at small length scales; deviation from classical fluid behavior; boundary conditions/scaling laws at small scales; microscopic flow of heat at small length- and time-scales; application to MEMS devices, heat transfer in microelectronics devices, ultra-fast laser processing.
Prerequisite: B.S. in engineering or Department approval
Fall, alternate years, 3 credits, ABCF grading

MEC 578 Reliability and Life Prediction of Electromechanical Systems
The modes of failure and the factors that play a role in the failure of mechanical components are presented. Failure modes and failure theories for brittle and ductile materials are introduced; special emphasis will be placed on the fatigue and fracture of materials. Distinctions will be drawn between the behavior of single crystal versus polycrystalline materials, and versus ductile and brittle materials. Reliability issues will be discussed regarding the design of series versus parallel systems.
Fall or spring, alternate years, 3 credits, ABCF grading

MEC 579 Optical Measurement
Introduction to optical measurement and its applications to the fields of solid mechanics, design and manufacturing, and thermal and fluid systems. Topics include fundamentals of optics, lasers, and detectors, dimensional and surface metrology, machine vision, measurement of temperature, concentration, and density, and optical techniques for stress analysis and nondestructive testing.
Spring, 3 credits, ABCF grading

MEC 580 Manufacturing Processes
Spring, 3 credits, ABCF grading

MEC 584 Quality Engineering
3 credits, ABCF grading

MEC 585 Total Quality Management
Concepts of TQM and quality improvement methods to attain world-class performance in business operations. Topics include policy deployment, process improvement methodology, daily work management, quality story methodology, six sigma, poka-yoke, ISO, Deming and Baldrige Awards criteria.
Spring, 3 credits, ABCF grading

MEC 591 Industrial Project in Opto Electro Mechanical Systems Engineering
A student carries out a detailed design of an industrial project in OEMS engineering. A comprehensive technical report of the project and an oral presentation are required.
Fall, 3 credits, ABCF grading

MEC 597 Graduate Research and Study in Manufacturing
Independent research or project in the area of manufacturing processes or systems.
Prerequisite: Students specializing in Manufacturing
1-6 credits, ABCF grading

MEC 599 Research
Fall, spring, and summer, 1-12 credits, S/U grading
May be repeated for credit

MEC 630 Special Topics in Fluid Mechanics
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.
3 credits, ABCF grading
May be repeated for credit

MEC 631 Special Topics in Heat Transfer
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.
3 credits, ABCF grading
May be repeated for credit

MEC 632 Special Topics in Statistical Mechanics
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.
3 credits, ABCF grading
May be repeated for credit

MEC 633 Special Topics in Thermodynamics
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.
3 credits, ABCF grading
May be repeated for credit

MEC 634 Advanced Topics in Kinematics and Dynamics of Machines
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.
3 credits, ABCF grading
May be repeated for credit

MEC 635 Advanced Topics in Nonlinear Dynamic Systems
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.
3 credits, ABCF grading
May be repeated for credit

MEC 636 Advanced Topics in Mechanical Vibration
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.
May be repeated for credit

MEC 637 Special Topics in Precision Engineering
The subject matter of each special topics course varies from semester to semester, depending on the interests of students and staff. Advanced topics and specialized topics will be discussed, particularly those of current interest.

3 credits, ABCF grading
May be repeated for credit

MEC 641 Fracture Mechanics
The mechanics of brittle and ductile fracture in engineering materials are studied. Major subjects are linear elastic fracture, elastic-plastic fracture, and fatigue crack analysis. Topics also include stress intensity factor, energy release rate, J-integ.
Prerequisite: MEC 536
Fall or spring, alternate years, 3 credits, ABCF grading

MEC 651 Advanced Finite Element Analysis
Prerequisites: MEC 541, MEC 539
Fall or spring, alternate years, 3 credits, ABCF grading

MEC 662 Advanced Vibration and Analysis
Principle and techniques of vibration analysis of structures and machines. Includes free and forced vibration responses of linear lumped-parameter, multiple dof systems; model analysis of distributed, continuous systems; non-linear vibration analysis; random vibrations.
Prerequisite: Permission of instructor
3 credits, ABCF grading

MEC 671 Optical Methods for Experimental Stress Analysis
Theory and applications of moire methods (in-plane, shadow, reflection, projection, and refraction moire techniques) for measuring static and dynamic deformation of 2D and 3D models, bending of plates and shells, and temperature distribution or refraction index change in fluids. Other topics: holographic interferometry, laser speckle interferometry, digital speckle photography, and current research activities of the field.
Fall or spring, alternate years, 3 credits, ABCF grading

MEC 691 Mechanical Engineering Seminar
This course is designed to expose students to cutting-edge research and development activities in mechanical engineering. Speakers are invited from both on and off campus.
Fall and spring, 0 credit, S/U grading
May be repeated

MEC 695 Mechanical Engineering Internship
Participation in off-campus engineering practice in private corporations, public agencies, or non-profit institutions. Students will be required to have faculty coordinator as well as a contact in outside organization, to participate with them in regular consultations on the project, and to submit a final report to both. A maximum of three credits can be accepted toward the M.S. degree.
Fall, spring, and summer, 1 credit, S/U grading
May be repeated for up to three credits

MEC 696 Special Problems in Mechanical Engineering
Conducted jointly by graduate students and one or more members of the faculty.
Prerequisite: Advisor's permission
1-6 credits, ABCF grading
May be repeated for credit

MEC 697 Practicum in Teaching I
Every T.A. must register for this course.
Fall, spring, 0 credit, S/U grading
May be repeated

MEC 698 Practicum in Teaching II
Practicum in teaching under faculty supervision.
1-3 credits, S/U grading
May be repeated for credit

MEC 699 Dissertation Research On Campus
Prerequisite: Advancement to candidacy
(G5); major portion of research will take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-12 credits, S/U grading
May be repeated for credit

MEC 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy
(G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

MEC 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy
(G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance

The School of Medicine consists of basic science and clinical departments that have the responsibility for preclinical and clinical instruction of its students, as well as University-wide responsibility to students in other schools on the campus. Basic science departments include Anatomical Sciences, Biochemistry and Cell Biology, Biomedical Engineering, Molecular Genetics and Microbiology, Neurobiology and Behavior, Oral Biology and Pathology (in conjunction with the School of Dental Medicine), Pathology, Pharmacological Sciences, and Physiology and Biophysics. Clinical departments include the departments of Anesthesiology, Dermatology, Emergency Medicine, Family Medicine, Medicine, Neurological Surgery, Neurology, Obstetrics and Gynecology, Ophthalmology, Orthopaedics, Pediatrics, Preventive Medicine, Psychiatry and Behavioral Science, Radiation Oncology, Radiology, Surgery, and Urology. In addition to instruction at the undergraduate and professional levels, these departments have major responsibility for graduate, postgraduate, and continuing education.

Graduate studies in basic science are closely coordinated with those in the division of biological sciences and are conducted under the general regulations of the Graduate Council and the dean of the Graduate School.

All questions concerning admission to the School of Medicine and requests for the Health Sciences Center Bulletin should be addressed to:

Office of Admissions
School of Medicine
Health Sciences Center
Stony Brook University
Stony Brook, NY 11794-8434
(631) 444-2113
The Molecular and Cellular Biology (MCB) graduate program offers a multidisciplinary course of study leading to the Ph.D. degree. Diverse biological systems of study from plants to humans are pursued in MCB research laboratories. These systems are used to investigate a variety of biological topics including Biological Membranes, Cancer, Cell Cycle, Development, DNA Replication, Gene Expression, Immune Response, Infectious Disease, Neurobiology, Protein Trafficking, Signal Transduction, and Structural Biology. The MCB program provides students with the opportunity to select an academic program in one of three specializations: Cellular and Developmental Biology, Immunology and Pathology, or Molecular Biology and Biochemistry. The goal of this approach is to provide the student with the widest range of research possibilities.

During the first year, students participate in several core courses that serve to build a scholastic foundation for further study. The core courses include Graduate Biochemistry, Molecular Genetics, and Cell Biology. In addition, students receive training to critically evaluate original research articles in a Journal Club/Readings course. Students can select an area of specialization at the time of enrollment or they can decide on a course of study during their first year. The program of study in Molecular Biology and Biochemistry includes Physical Biochemistry and any of a number of electives. Training stresses biochemical and structural approaches to solve biological problems. The program of study in Cellular and Developmental Biology includes a course in Developmental Biology and any of a number of electives. Emphasis is placed on the control mechanisms that define and regulate growing and developing systems. The program of study in Immunology and Pathology includes courses in Immunology and General Pathology. This area of specialization emphasizes the cellular and molecular basis of human disease to foster a bridge between basic and clinical research. Each of the specializations enhances knowledge within the field to ensure our graduates are well equipped for a successful career in research.

The MCB program involves students in ongoing research projects as soon as they arrive on campus. During the first academic year, students train in four different research laboratories to help in choosing a mentor for thesis dissertation. The first laboratory training, or rotation, is usually at Stony Brook University, but subsequent rotations can be performed at Cold Spring Harbor Laboratory or Brookhaven National Laboratory. The MCB program crosses departmental boundaries and institutions to offer the student thesis research training in nearly 100 different laboratories. A decision for a thesis advisor is generally made by the end of the first academic year and research studies will subsequently form the foundation of a Ph.D. thesis.

All students in the MCB program gain experience and skills in teaching and oral presentation of their research studies. During two semesters, students assist in teaching undergraduate laboratory or lecture courses. The teaching experience can include assistance in formulation/grading of examinations and individual tutoring sessions. The teaching experience includes communication skills and to learn about ongoing research of other students in different laboratories. In addition to student seminars, a number of faculty from outside the institution are invited for weekly seminars. These are opportunities to meet visiting scientists who are leaders in their field and to learn of their latest findings.

In the second year of the MCB program, students take a comprehensive qualifying exam. Following successful performance, students focus on their thesis research. In the third year, students prepare a written Ph.D. thesis proposal in consultation with their faculty thesis advisor. The proposal is defended orally before a proposal committee comprised of faculty selected by the student. Following successful defense of the proposal, the student advances to candidacy and the proposal committee along with the faculty advisor become the student’s Ph.D. thesis committee. The Ph.D. thesis committee meets at least once a year with the student to assess progress and discuss research strategies. For more information, visit the MCB Web site at www.grad.sunysb.edu/academics/brochures/mol cellular/contact.html

Facilities

The Biological Sciences Division and Health Sciences Center are well equipped for work in developmental and cellular biology. Individual faculty laboratories and central services provide a full array of state-of-the-art equipment. These include the Flow Cytometry Facility, the Cell Culture and Hybridoma Facility, the Transgenic Mouse Facility, the University Microscopy Imaging Center, and the Center for Analysis and Synthesis of Macromolecules. The Health Sciences Library contains a comprehensive collection of biomedical journals and books and is complemented by the Melville Library on the main campus.

Admission

In addition to the minimum requirements of the Graduate School, the following are suggested requirements:

A. A bachelor's degree with the following minimal preparation: mathematics through one year of calculus, chemistry (including organic chemistry and laboratory), general physics, and one year of biology (including laboratory);

B. A minimum grade point average of 3.0 (B) in undergraduate courses including science and mathematics courses;

C. Letters from three previous instructors;

D. A report of Graduate Record Examination (GRE) General Test scores;

E. Acceptance by both the Graduate Program in Molecular and Cellular Biology and the Graduate School.

In special cases, students not meeting requirements A and B may be admitted.
on a provisional basis. These students must act to remedy deficiencies within the first year according to the program's requirements.

Faculty

Distinguished Professors

Grollman, Arthur, Ph.D., M.D., 1959, Johns Hopkins Medical School: Mechanisms of chemical mutagenesis/carcinogenesis.

Lennarz, William, Ph.D., 1959, University of Illinois: Biochemistry and function of glycoproteins in cell-cell interactions.

Sternfels, Rolf, Ph.D., 1967, Harvard University: Chromatin structure and function in yeast; histone modifying enzymes.

Wimmer, Eckard, Ph.D., 1962, University of Göttingen, Germany: RNA virus genetics, replication, and pathogenicity; cellular virus receptors.

Professors

Benach, Jorge L., Ph.D., 1972, Rutgers University: Host response to bacterial infections.

Bingham, Paul M., Ph.D., 1979, Harvard University: Genetic control of development and gene expression in animals.

Bogden, Daniel F., M.D., 1977, Stanford University: Mitochondrial DNA; mitochondrial proteomics.

Brown, Deborah, Ph.D., 1987, Stanford University: Cholesterol/sphingolipid-rich membrane domains; role in endocytosis.

Bynum, David R., Ph.D., 1981, Dartmouth College: Director, Long Island Group Advancing Science Education, Stony Brook University.

Chen, Wen-Tien, Ph.D., 1979, Yale University: Proteases and integrins in cancer invasion, metastasis, and angiogenesis.

Citovsky, Vitaly, Ph.D., 1987, Hebrew University, Israel: Nuclear targeting and intercellular communication in plants.

Dean, Neta, Ph.D., 1988, University of California, Los Angeles: Protein glycosylation, fungal cell wall biosynthesis; fungal pathogenesis.

Deutsch, Dale, Ph.D., 1972, Purdue University: Metabolism and uptake of the endocannabinoids (anandamide and 2-AG).

Frohman, Michael A., M.D./Ph.D., 1986, University of Pennsylvania: Mammalian signal transduction development; vesicular trafficking; mitochondrial fusion diabetes.

Furie, Martha, Ph.D., 1980, Rockefeller University: Interactions among pathogenic bacteria, endothelium, and leukocytes.

Futcher, Bruce, Ph.D., 1981, Oxford University: Cell cycle control; microarrays; genomics.

Ghebrehiwet, Berhane, D.V.M./D.Sc., 1974, University of Paris, France: Biochemistry; role of complement C1q receptors during infection and inflammation.

Halegoua, Simon, Ph.D., 1978, Stony Brook University: Control of the neuronal phenotype and survival by growth factors using biochemical, molecular, and cell biological approaches.

Hayman, Michael, Ph.D., 1973, Institute for Medical Research, England: Viral/cellular oncogenes; differentiation of erythroid cells.

Hearing, Patrick, Ph.D., 1980, Northwestern University: Adenovirus-host cell interactions; adenosine virus assembly and vectors for gene therapy.

Holingsworth, Nancy, Ph.D., 1988, University of Washington, Seattle: Regulation of meiotic recombination in yeast.

Johnson, Roger A., Ph.D., 1968, University of Southern California, Los Angeles: Regulation of cell function by pro-nucleotide inhibitors of transmembrane signaling mechanisms.

Konopka, James, Ph.D., 1985, University of California, Los Angeles: Regulation of G protein coupled receptor signal transduction; morphogenesis in pathogenic yeast.

Levine, Joel M., Ph.D., 1980, Washington University: Cell-surface molecules of the developing nervous system.

London, Erwin, Ph.D., 1979, Cornell University: Membrane protein structure/translocation/folding; structure and function of sphingolipid/cholesterol rafts in membranes.

Malbin, Craig C., Ph.D., 1976, Case Western Reserve University: Signal transduction and gene regulation in differentiation and development; roles of G-proteins.

Marcu, Kenneth B., Ph.D., 1975, Stony Brook University: NF-kappaB kinase signaling in stress, immunity, and cancer; mechanisms of action of AID in adaptive immune responses.

McLaughlin, Stuart, Ph.D., 1968, University of British Columbia, Canada: Calcium/phospholipid second messenger system.

Miller, Todd W., Ph.D., 1989, Rockefeller University: The regulation and substrate specificity of tyrosine kinases.

Reich, Nancy L., Ph.D., 1983, Stony Brook University: Signal transduction and gene expression in response to cytokines and virus.

Reinitz, John, Ph.D., 1987, Yale University: Systems biology of development and transcription.

Scarlat, Suzanne, Ph.D., 1984, University of Illinois: Structure/function studies of G proteins and effectors.

Schechter, Nissim, Ph.D., 1971, Western Michigan University: Homeobox and filament proteins in neuronal differentiation, growth, and regeneration.

Shroyer, Kenneth, Ph.D., 1983, M.D. 1987, University of Colorado: Cancer biomarkers as diagnostic adjuncts in cervical pathology and cytopathology; cervical cancer and HPV.

Simon, Sanford R., Ph.D., 1967, Rockefeller University: Proteinases and their inhibitors in invasiveness inflammation and tumor metastasis; inhibition of bacterial metalloproteinases.

Smith, Steven O., Ph.D., 1985, University of California, Berkeley: Structure and function of membrane proteins.

Staros, James V., Ph.D., 1974, Yale University: Molecular mechanisms of transmembrane signaling.

Steigbigel, Roy T., M.D., 1966, University of Rochester: Immune dysfunction induced by HIV infection.

Taichman, Lorne B., M.D./Ph.D., 1971, University of Wisconsin: Cutaneous gene therapy.

Tonge, Peter J., Ph.D., 1986, University of Birmingham, England: Tuberculosis drug discovery; spectroscopic insights into enzyme mechanisms; GFP fluorescent and chromophore formation.

Tseng, Linda, Ph.D., 1968, University of North Dakota: Reproductive molecular endocrinology.

Associate Professors

Berrios, Miguel, Ph.D., 1983, Rockefeller University: Cell structure and function; the cell biology of DNA damage and repair.

Fleit, Howard B., Ph.D., 1980, New York University: Leukocyte Fc receptors; macrophage differentiation.

Ghazizadeh, Soosan, Ph.D., 1994, Stony Brook University: Epithelial stem cell biology; skin bioengineering and gene therapy.

Holdener, Bernadette, Ph.D., 1990, University of Illinois: Biochemical and genetic characterization of the role of chaperone, MEDS, in folding the LRP receptors during mouse embryonic development.

Kernan, Maurice, Ph.D., 1990, University of Wisconsin: Genetics of touch and hearing in Drosophila; ciliogenesis and ciliary signaling.
Kew, Richard B., Ph.D., 1986, Stony Brook University: Role of complement activation peptide C5a and mast cells in acute an chronic inflammation.

Leatherman, Janet, Ph.D., 1993, Johns Hopkins University: Cell-cycle control and DNA replication; fission yeast molecular biology.

Lin, Richard, M.D., 1988, University of California, San Francisco: Phosphoinositide 3-kinase signaling and cell growth.

Mackow, Erich R., Ph.D., 1984, Temple University: Research on hantavirus and rotavirus directed signaling responses and pathogenesis; viral regulation of cellular response.

McKinnon, David, Ph.D., 1987, John Curtin School of Medical Research, Australia: Molecular physiology of sympathetic neurons and cardiac muscle.

Moriya, Masaaki, Ph.D., 1981, Nagoya University, Japan: Cellular responses to DNA damage.

Neiman, Aaron, Ph.D., 1994, University of California, San Francisco: Vesicle trafficking and intracellular signaling in yeast.

Prives, Joa, Ph.D., 1968, McGill University, Canada: Cytoskeletal membrane interactions in muscle cell.

Quitschke, Wolfgang, Ph.D., 1983, Stony Brook University: Gene regulation of proteins associated with neurodegenerative diseases.

Simmerling, Carlos, Ph.D. 1994, University of Illinois, Chicago: Development of tools for efficient and simulation of chemical systems and using them to study the structure and dynamics of molecules involved in biological processes.

Spitzer, Eric D., M.D./Ph.D., 1985, Johns Hopkins University: Molecular biology of Cryptococcus neoformans.

Thanassi, David G., Ph.D., 1995, University of California at Berkeley: Virulence factors of pathogenic bacteria.

Thomasen, Gerald H., Ph.D., 1988, Rockefeller University: Empiric development mechanisms and their evolution.

Tsirka, Styliani-Anna, Ph.D., 1989, University of Thessaloniki, Greece: Neuronal-microglial interactions in the physiology and pathology of the central nervous system.

White, Thomas, Ph.D., 1994, Harvard University: Molecular biology and physiology of gap junction channels.

Wollmuth, Lonnie, Ph.D., 1992 University of Washington, Molecular mechanisms regulating excitatory synaptic transmission in the brain.

Zieve, Gary, Ph.D., 1977, Massachusetts Institute of Technology: Assembly/transport of sRNP particles.

Assistant Professors

Carrico, Isaac, Ph.D., 2003, California Institute of Technology: Site-specific protein labeling; glycoproteins.

Cohen, J. Craig, Ph.D., 1976, University of Mississippi: Organogenesis.

Colognoto, Holly, Ph.D., 2000, Rutgers University: Extracellular matrix in the brain; roles during development and during neurodegeneration.

Sirotnik, Howard, Ph.D., 1996, Albert Einstein College of Medicine: Vertebrate neural development and patterning.

Zong, Wei-Xing, Ph.D., 1999, University of Medicine and Dentistry of New Jersey: Molecular regulation of apoptotic and necrotic cell death.

Adjunct Faculty

Durn, John, Microbiologist, Ph.D., 1970, Rutgers University: Structure/function of bacteriophage T7 RNA polymerase.

Hannon, Gregory, Professor, Ph.D., 1992, Case Western Reserve University: Genetics of growth in mammalian cells and dsRNA-induced gene silencing.

Joshua-Tor, Leemor, Professor, Ph.D., 1991, The Weizmann Institute of Science Structural Biology: X-ray crystallography; molecular recongition; nucleic acid regulation; RNAi.

Krainer, Adriane, Professor, Ph.D., 1986, Harvard University: mRNA splicing; gene expression; RNA-protein interaction.

Lazebnik, Yuri, Professor, Ph.D., 1986, St. Petersburg State University, Russia: Molecular mechanisms of apoptosis.

Lowe, Scott, Professor, Ph.D., Massachusetts Institute of Technology: Modulation of apoptosis; chemoosensitivity; senescence by cancer genes.

Martienssen, Robert, Professor, Ph.D., Cambridge University, Plant genetics; transposons; development; gene regulation; DNA methylation.

Mills, Alea, Associate Professor, Ph.D., 1997, University of California, Cancer; development; aging; senescence; epigenetics.

Mittal, Vivek, Assistant Professor, Ph.D., 1994, Jawaharlal Nehru University: Id transcription factors; tumor-mediated neovascularization; transcription profiling; RNA interference; dendritic cells.

Muthuswamy, Senthil, K., Assistant Professor, Ph.D., 1995, McMaster University: Understanding cancer initiation using three-dimensional epithelial structures.

Setlow, Richard, Professor, Ph.D., 1947, Yale University: DNA damage and repair; carcinogenesis and mutagenesis in fish, light-induced malignant melanoma.

Spector, David L., Professor, Ph.D., 1980, Rutgers University: Spatial organization of gene expression.

Stenlund, Arne, Associate Professor, Ph.D., 1984, Uppsala University, Sweden: DNA replication of papillomaviruses.

Stillman, Bruce, Professor, Ph.D., 1979, Australian National University: DNA replication and chromatin assembly in human and yeast cells.

Studier, F. William, Professor, Ph.D., 1963, California Institute of Technology: Molecular genetics of phage T7: recombinant protein productions.

Tonks, Nicholas, Professor, Ph.D., 1985, University of Dundee, Scotland: Characterization of protein tyrosine phosphatases.

Van Aelst, Linda, Ph.D., Associate Professor, 1991, University of Leuven, Belgium: Role of ras in mammalian cell transformation.

Wigler, Michael, Professor, Ph.D., 1978, Columbia University: Genomics and cancer.

Number of teaching, graduate, and research assistantships, Fall 2008: 101

1) Department of Biochemistry and Cell Biology
2) Department of Molecular Genetics and Microbiology
3) Department of Neurobiology and Behavior
4) Department of Pharmacological Sciences
5) Department of Pathology
6) Department of Physiology and Biophysics
7) Department of Psychiatry
8) Department of Medicine
9) Department of Chemistry
10) Department of Oral Biology and Pathology
11) Department of Obstetrics and Gynecology
12) Department of Anatomical Sciences
13) Brookhaven National Laboratory
14) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1975
15) Cold Spring Harbor Laboratory
16) Department of Applied Math and Statistics
Requirements for the Ph.D. Degree

A. Course Requirements

Biochemistry and Molecular Biology Specialization

1. Molecular Genetics (MCB 503)
2. Graduate Biochemistry (MCB 520)
3. Membrane Biochemistry (MCB 517)
4. Cell Biology (MCB 656)
5. General Pathology (HBP 531)
6. Immunology (HBP 533)
7. Students in their first year rotate in four laboratories with the goal of selecting an environment for their thesis research.
8. Participation in Journal Club (HBP 500); Student Seminars (MCB 603/604); Visiting Scientists Seminars (MCB 601/602)
9. Enrollment in the first year in Ethics (GRD 500)
10. Enrollment in the third semester in Computational Methods in Biochemistry and Structural Biology (BSB 515)

Cell and Developmental Biology Specialization

1. Molecular Genetics (MCB 503)
2. Graduate Biochemistry (MCB 520)
3. Membrane Biochemistry (MCB 517)
4. Cell Biology (MCB 656)
5. Developmental Biology (MCB 657)
6. One approved elective graduate course
7. Students in their first year rotate in four laboratories with the goal of selecting an environment for their thesis research
8. Participation in Journal Club (MCB 531/532); Student Seminars (MCB 603/604); Visiting Scientists Seminars (MCB 601/602)
9. Enrollment in the first year in Ethics (GRD 500)
10. Enrollment in the third semester in Computational Methods in Biochemistry and Structural Biology (BSB 515)

Immunology and Pathology Specialization

1. Molecular Genetics (MCB 503)
2. Graduate Biochemistry (MCB 520)
3. Membrane Biochemistry (MCB 517)
4. Cell Biology (MCB 656)
5. General Pathology (HBP 531)
6. Immunology (HBP 533)
7. Students in their first year rotate in four laboratories with the goal of selecting an environment for their thesis research.
8. Participation in Journal Club (HBP 500); Student Seminars (MCB 603/604); Visiting Scientists Seminars (MCB 601/602)
9. Enrollment in the first year in Ethics (GRD 500)
10. Enrollment in the third semester in Computational Methods in Biochemistry and Structural Biology (BSB 515)

Students must achieve a B or better in all required courses and must maintain a B average in elective courses.

B. Qualifying Examination

At the beginning of the fourth semester, the student must pass a written qualifying examination.

C. Research Proposal

Following successful completion of the qualifying examination, the student writes a research proposal based on the probable area of the student's Ph.D. dissertation. The proposal is defended orally to a faculty examination committee that does not include the student's research advisor. The proposal examination normally takes place by the end of the fifth semester. After passing the proposal examination, the faculty committee and Ph.D. research advisor usually become the student's Ph.D. thesis committee and meet with the student at least once a year to follow his or her thesis progress.

D. Teaching Experience

All students are required to gain experience in teaching by assisting in laboratory sections, leading discussion sections, or helping to formulate and grade examination papers. The teaching experience may be in either undergraduate or graduate courses, and extends over a period of two semesters.

E. Advancement to Candidacy

When the above requirements have been satisfactorily completed, a recommendation for advancement to candidacy for the Ph.D. will be forwarded to the Graduate School.

F. Ph.D. Dissertation

During the second year, the student initiates a dissertation research project in the laboratory of a particular member of the program faculty. After the student has passed the proposition examination, a research committee is appointed to guide the dissertation research, and when the research nears completion, a dissertation examining committee is approved by the dean of the Graduate School.

G. Dissertation Defense

The dissertation defense, which completes the requirements for the Ph.D., consists of a public seminar presentation of the dissertation work followed by an oral examination before the dissertation examining committee.

H. Residence Requirement

The University requires at least two consecutive semesters of full-time graduate study. The demands of the course of study necessitate a longer period of residence.

Courses

MCB 500 Directed Readings in Molecular and Cellular Biology

Directed readings in topics of current interest, under supervision of a faculty sponsor. Prerequisite: Matriculation in graduate program or permission of instructor. Fall and spring, 1-3 credits, ABCF grading. May be repeated for credit.

MCB 503 Molecular Genetics

Introduces the classical work and current developments in lower and higher genetic systems. Covers gene structure and regulation in prokaryotic and eukaryotic organisms, mutational analysis and mapping, transposable elements, and biological DNA transfer mechanisms. Bacteriophage as well as lower and higher eukaryotic systems are used to illustrate aspects of molecular genetic structure and function. This course is offered as both MCB 503 and HBM 503. Prerequisite: Matriculation in graduate program or permission of instructor. Fall, 3 credits, ABCF grading.

MCB 509 Experimental Molecular and Cellular Biology

An introduction to modern biochemical research techniques. The student spends a half-term in the laboratory of each of four different members of the staff selected in consultation.
with the course director. In each laboratory the student participates in some aspect of the ongoing research pursued by the faculty member.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall, 1-4 credits, ABCF grading

MCB 510 Experimental Molecular and Cellular Biology
An introduction to modern biochemical research techniques. The student spends a half-term in the laboratory of each of four different members of the staff selected in consultation with the course director. In each laboratory the student participates in some aspect of the ongoing research pursued by the faculty member.

Prerequisite: Matriculation in graduate program or permission of instructor
Spring, 1 credit, ABCF grading

MCB 512 Physical Biochemistry
Theoretical principles and experimental methods used in the study of proteins and nucleic acids, e.g., spectroscopy, magnetic resonance, and diffraction.

Prerequisites: MCB 520 or undergraduate physical chemistry course, plus matriculation in graduate program or permission of instructor
Fall, 2 credits, ABCF grading

May be repeated for credit

MCB 517 Membrane Biochemistry
Examines the molecular architecture of membrane structure, organization, functions, and assembly of lipids and proteins in biological membranes. This course is also offered as BSB 517.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall, 1 credit, ABCF grading

May be repeated for credit

MCB 520 Graduate Biochemistry I
Several topics in modern biochemistry are treated at an advanced level. Topics covered will include protein structure, enzyme kinetics, and regulation of enzymes.

Prerequisite: Undergraduate biochemistry course, matriculation in graduate program, or permission of instructor
Fall, 3 credits, ABCF grading

MCB 529 Organellar Development
This course is concerned primarily with the development of the mitochondrion and the chloroplast. Subjects will include the biogenesis of these organelles and their relation to the interaction with the nucleus. Emphasis will be on genetic and biochemical analysis.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall, alternate years, 3 credits, ABCF grading

MCB 531 Graduate Seminar in Molecular and Cellular Biology
Seminars are given by graduate students on current literature in the fields of biochemistry, molecular biology, cell biology, or developmental biology.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall, 1 credit, ABCF grading

MCB 532 Graduate Seminar in Molecular and Cellular Biology
Seminars are given by graduate students on current literature in the fields of biochemistry, molecular biology, cell biology, or developmental biology.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall and spring, 1 credit, ABCF grading

MCB 599 Dissertation Research
Original investigation under the supervision of a member of the staff.

Prerequisite: Matriculation in graduate program or permission of instructor
May be repeated for credit

Spring, 1-12 credits, SIU grading

MCB 601 Colloquium in Molecular and Cellular Biology
A weekly series of talks and discussions by visiting scientists covering current research and thinking in various aspects of molecular and cellular biology. Required for all MCB graduate students. Attendance is mandatory. Visitors welcome.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall, 1 credit, SIU grading

MCB 602 Colloquium in Molecular and Cellular Biology
A weekly series of talks and discussions by visiting scientists covering current research and thinking in various aspects of molecular and cellular biology. Required for all MCB graduate students. Attendance is mandatory. Visitors welcome.

Prerequisite: Matriculation in graduate program or permission of instructor
Spring, 1 credit, SIU grading

MCB 603 Student Seminar in Molecular and Cellular Biology
Seminars given by graduate students on the progress of their own thesis research. Required of all students every term in which they are registered in Graduate Studies in Molecular Biology and Biochemistry. Attendance is mandatory. Visitors welcome.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall and spring, 1 credit, SIU grading

May be repeated once for credit

MCB 604 Student Seminar in Molecular and Cellular Biology
Seminars given by graduate students on the progress of their own thesis research. Required of all students every term in which they are registered in Graduate Studies in Molecular Biology and Biochemistry. Attendance is mandatory. Visitors welcome.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall and spring, 1 credit, SIU grading

May be repeated once for credit

MCB 605 Student Seminar in Molecular and Cellular Biology
Seminars given by graduate students on the progress of their own thesis research. Required of all students every term in which they are registered in Graduate Studies in Molecular Biology and Biochemistry. Attendance is mandatory. Visitors welcome.

Prerequisite: Matriculation in graduate program or permission of instructor
Fall and spring, 1 credit, SIU grading

May be repeated once for credit

MCB 606 Cell Biology
Introduction to the structural and functional organization of cells and tissues and to the way structure relates to function. Particular emphasis is placed on nuclear and chromosomal structure, signal transduction, protein translocation, the cytoskeleton, and the extracellular matrix. The interaction of cellular structures and components and their regulation is stressed as is the organization and interaction of cells in tissues. The course is comparative and includes examples of cells and tissues from vertebrates, invertebrates, plants, and prokaryotic systems.

Prerequisite: Matriculation in graduate program or permission of instructor
Spring, 1 credit, ABCF grading

MCB 657 Principles of Development
This course deals with developing systems at all levels from the morphological to the molecular. Illustrative material from both animal and plant kingdoms is used. Special attention is given to gametogenesis, genetic control of early development, transcriptional and translational control of protein synthesis, the role of cell division and cell movements, and cell-to-cell interactions in defining developing systems.

Prerequisite: MCB 656, matriculation in graduate program, or permission of instructor
Fall, 3 credits, ABCF grading

MCB 699 Dissertation Research
Fall, spring, and summer, 1-9 credits, SIU grading

May be repeated for credit

MCB 699 Dissertation Research Off Campus
Fall, spring, and summer, 1-9 credits, SIU grading

May be repeated for credit

MCB 700 Dissertation Research Off

MCB 700 Dissertation Research Off

Campus—Domestic
Campus—International
Campus—International

Prerequisites: Must be advanced to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Labor; matriculation in graduate program or permission of instructor
Fall, spring, and summer, 1-9 credits, SIU grading

May be repeated for credit

MCB 701 Dissertation Research Off
Campus—International

Prerequisites: Must be advanced to candidacy (G5); major portion of research must take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and be advised by an International Advisor; matriculation in graduate program or permission of instructor
Fall, spring, and summer, 1-9 credits, SIU grading

May be repeated for credit

MCB 701 Dissertation Research Off
Campus—International

Prerequisites: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the
second week of classes; the charge will only be removed if the other plan is deemed comparable; all international students must receive clearance from an International Advisor; matriculation in graduate program or permission of instructor
Fall, spring, and summer, 1-9 credits, S/U grading

MCB 800 Summer Research
Prerequisite: Matriculation in graduate program or permission of instructor
S/U grading
0 credit, S/U grading
May be repeated

BSB 515 Computational Methods in Biochemistry and Structural Biology
Computational methods used in sequence searching and analysis, bioinformatics, graphical analysis of proteins, and nucleic acids.
Prerequisite: This class is restricted to first-year BSB, HBM, and HBH Ph.D. students and second-year MCB Ph.D. students; exception requires approval from the course instructor
Fall, 1 credit, S/U grading

HBP 531 General Pathology
Introduces the nature and causes of disease, death, reaction to injury, and repair. Analyzes associated structural changes in cells and tissues, with reference to their functional correlates.
Prerequisites: Histology, gross anatomy, physiology, and biochemistry, prior or concurrent microbiology, or permission of instructor
Spring, 3 credits, ABCF grading

HBP 533 Immunology
Principles of immunology for graduate students in the biological sciences, including definition of antigens and antibodies, specificity of the immune response, immunoglobulin structure, the genetics of immunoglobulin synthesis, cellular cooperation in the immune response, hypersensitivity, tolerance immunogenetics. Open to advanced undergraduates.
Prerequisites: Advanced courses in biology and biochemistry and permission of instructor
Fall, 3 credits, ABCF grading

HBP 554 Advanced Immunology
Selected topics in immunology are discussed using original research literature as the central focus. Students present and discuss the literature in a seminar format.
Prerequisite: HBP 531 or 533 and permission of instructor
Spring, 2 credits, ABCF grading

HBP 561 Electron Microscopy for Experimental Pathologists
Uses electron microscope (EM), alone and in conjunction with other methodologies in studies of biological dysfunction. Special techniques include histochemistry, enzyme histochemistry, immunohistochemistry, diffraction, stereo-EM, and scanning EM. Design of protocols, preparation, and interpretation of data.
Prerequisite: Permission of instructor
Fall and spring, 2-6 credits, ABCF grading

HBP 580 Teaching Honors
Selected students whose performance in the basic required courses for the graduate program is in the top 10 percent conduct tutorials for first-year graduate students in the program and other students taking graduate courses for credit. The tutors are supervised and graded by program faculty of the graduate program. Successful completion of this course will make the students eligible to receive an “Honors in Teaching” on their transcript.
Prerequisite: Permission of instructor
Fall and Spring, 1 credit, ABCF grading

HBP 590 Seminars in Immunology
A series of monthly seminars focusing on research in progress by the participants, current journal articles in the field of immunobiology, and prepared reviews of specified areas in the general field.
Prerequisite: MCB graduate student
Fall and spring, 1 credit, S/U grading
Repeatable for credit
Molecular and Cellular Pharmacology (HBH)

Interim Chair: Michael A. Frohman, Center for Molecular Medicine CMM438, (631) 444-3050
Graduate Program Director: Styliana-Anna Tsirka, Basic Sciences Tower BST-8 Room 192, (631) 444-3859
Graduate Program Administrator: Beverly Campbell, Basic Sciences Tower BST-8 Room 140, (631) 444-3057 Fax: (631) 444-9749
E-mail: grad@pharm.stonybrook.edu; Web site: www.pharm.stonybrook.edu/Graduate_Program/Other/Home/

Degree awarded: Ph.D. in Molecular and Cellular Pharmacology

The faculty of the Department of Pharmacological Sciences, in conjunction with faculty in other departments at Stony Brook, offers the graduate program in Molecular and Cellular Pharmacology leading to the Ph.D. degree. Because the program emphasizes early research experience and provides a broad curriculum, students lay the foundation for subsequent independent research. Graduate research opportunities are provided in a broad range of areas including biochemical and molecular pharmacology, chemical pharmacology and toxicology, and cellular and physiological pharmacology. Students, in consultation with faculty advisors, pursue basic and elective courses and begin thesis research during the first two years of training. During this time, they participate in several research projects directed by faculty members associated with the program. Students then select a research advisor from the faculty and, upon completion of the qualifying exam, devote full effort to dissertation research. Students have the opportunity to perform research rotations and/or thesis research in any of 52 associated laboratories in Department of Pharmacological Sciences or other University departments or at Brookhaven National Laboratory and Cold Spring Harbor Laboratory. Further details may be obtained from the graduate program director.

Facilities

The Department of Pharmacological Sciences is the primary training facility for graduate studies in Molecular and Cellular Pharmacology. The Department occupies 32,000 square feet in the University’s Basic Sciences Tower and 5,000 square feet in the Graduate Chemistry Building. Faculty laboratories, including those faculty located in the recently opened Center for Molecular Medicine, are equipped for all types of modern molecular and cell biological, biochemical, neurochemical, chemical, biophysical, and toxicological research. Specialized facilities are provided for tissue culture, recombinant DNA work, ultracentrifugation, scintillation and gamma spectrometry, transgenic mouse research, electron microscopy, confocal microscopy, molecular modeling, gas and high-performance liquid chromatography, proteomics, nuclear magnetic resonance, X-ray crystallography, and mass spectrometry. Research activities are supported by various shops, University computing facilities, animal-care facilities, and media services. Excellent library facilities include the Health Sciences Library, the Pharmacological Sciences Library, and online resources, comprising of databases, e-books, and e-journals. Program faculty members currently receive more than $19 million in annual research support from federal and private agencies.

Admission

Admission to the Ph.D. Program in Molecular and Cellular Pharmacology

For admission to the graduate program in Molecular and Cellular Pharmacology, the following, in addition to the minimum Graduate School requirements, are normally required:

A. A bachelor’s degree in an appropriate field (biology, chemistry, biochemistry, microbiology, physics) with evidence of superior performance in science courses. Coursework in biochemistry, physical chemistry, and physiology is desirable;

B. Three letters of reference are required;

C. Graduate Record Examination (GRE) General Test scores are required, as is the TOEFL for foreign students. An advanced test in biochemistry, biology, chemistry, computer science, physics, or mathematics is desirable;

D. Students must be accepted by both the Department of Pharmacological Sciences and the Graduate School;

E. Students accepted into the graduate program receive stipend support and full tuition scholarships. The current stipend level (2008-2009) is $26,000 and includes health insurance coverage.

Faculty

Distinguished Professors

Grollman, Arthur P.,1 M.D., 1959, Johns Hopkins University: Chemical carcinogenesis and mutagenesis.

Malbon, Craig C., Ph.D., 1976, Case Western Reserve University: Wnt-frizzled signaling via G-proteins in development; analysis of signaling complexes.

Reich, Edward, M.D., 1956, Johns Hopkins University; Ph.D., 1962, Rockefeller University: Autocrine regulation; parasite biochemistry; design of new therapeutic systems.

Professors

Blishka, James, Ph.D.,1988, University of California, Berkeley: Molecular and cellular basis of bacterial-host cell interactions.

Bogenhagen, Daniel, M.D., 1977, Stanford University School of Medicine: Replication, transcription, and repair of mammalian mitochondrial DNA; mitochondrial proteomics.

Cohen, Ira S.,21 M.D., Ph.D., 1974, New York University: Electrophysiology of the heart.

Eisenberg, Moises, Ph.D., 1972, California Institute of Technology: Application of bioinformatics tools to study comparative gene organization.

Frohman, Michael A., Interim Chair, M.D., Ph.D., 1985, University of Pennsylvania: Neural differentiation and signal transduction.

Ghebrehiwet, Berhane,3 D.V.M., D.Sc., 1974, University of Paris VII: C1q receptor mediated cellular responses with particular emphasis on inflammation and microbial infection.

Haltiwanger, Robert, Ph.D., 1986, Duke University: Regulation of signal transduction by glycoproteins.

Iden, Charles R., Ph.D., 1971, Johns Hopkins University: Biomedical applications of mass spectrometry; proteomics; characterization of DNA adducts and DNA repair mechanisms; synthesis of modified oligodeoxynucleotides.
Johnson, Francis, Ph.D., 1954, University of Glasgow, Scotland: Synthesis of natural products; DoM reactions; antiviral agents; mechanism of action of carcinogens and mutagens; site-specific mutagenesis; DNA damage and mechanisms of action of DNA-repair enzymes.

McKinnon, David, Ph.D., 1987, Australian National University, Australia: Molecular physiology of neurons and cardiac muscle.

Miller, W. Todd, Ph.D., 1987, Rockefeller University: Signal transduction by tyrosine kinases.

Reich, Nancy C., Ph.D., 1983, Stony Brook University: Receptors in muscle cells.

Rigas, Basil, M.D., 1972; D.Sc. 1975, Athens University Medical School, Greece: NOS1AIDs in the prevention of colon cancer.

Said, Sami I., M.D., 1951, Cairo University, Egypt: Physiology and pharmacology of VIP and related neuropeptides, with special reference to their modulation of cell injury, inflammation, and cell death, and their potential as therapeutic agents.

Sampson, Nicole, Ph.D., 1990, University of California, Berkeley: Integrin receptor interactions in mammalian fertilization/enzymology of cholesterol oxidase.

Schecter, Nisson, Ph.D., 1971, Western Michigan University: Structure, function, and regulation of intermediate filament proteins and homeobox proteins during zebrafish neurogenesis.

Steigbigel, Roy, M.D., 1966, University of Rochester: HIV treatment and immunoreconstitution.

Tonge, Peter, Ph.D., 1986, University of Birmingham, England: Biological chemistry and enzyme mechanisms; quantitating substrate strain in enzyme-substrate complexes using vibrational spectroscopy; rational drug design.

Tsirka, Styliani-Anna (Stella) E., Graduate Program Director, Ph.D., 1989, University of Thessaloniki, Greece: Neuronal-microglial interactions in the physiology and pathology of the central nervous system.

Volkow, Nora D., M.D., 1981, National University, Mexico: Imaging studies of neuropharmacological agents; positron emission (PET) scanning.

Associate Professors
De los Santos, Carlos, Ph.D., 1987, University of Buenos Aires, Argentina: NMR solution structures of damaged nucleic acids and repair proteins.

Dewey, Stephen L., Ph.D., 1985, University of Iowa: Imaging neurotransmitter interactions with PET and fMRI.

Enikolopov, Grigori N., Ph.D., 1978, Institute of Molecular Biology, USSR Academy of Science: Stem cells; neurogenesis; development; signal transduction.

Simmerling, Carlos, Ph.D., 1994, University of Illinois, Chicago: Computational chemistry and structural biology; molecular dynamics of biological macromolecules.

Talmage, David, Ph.D., 1981, University of Minnesota: Interactions between retinoids and receptor tyrosine kinase signaling pathways.

Thomson, Gerald H., Ph.D., 1988, Rockefeller University: Vertebrate embryonic development.

Wollmuth, Lonnie, Ph.D., 1992, University of Washington: Molecular mechanisms of synaptic transmission.

Assistant Professors
Bowen, Mark, Ph.D., 1998, University of Illinois at Chicago: Single molecule spectroscopy; coordination of post-synaptic glutamate receptor signaling by the MAGUK family of scaffolds.

Crawford, Howard, Ph.D., 1993, University of Texas Southwestern Medical Center at Dallas: Pancreatic cancer.

Fu, Dax, Ph.D., 1995, Mayo Graduate School of Medicine: Biochemical and X-ray crystallographic studies of transmembrane active processes via membrane channels and transporters.

Garcia-Diaz, Miguel, Ph.D., 2003, University of Madrid, Spain: Structural enzymology of DNA/RNA transactions.

Nassar, Nicolas, Ph.D., 1992, European Molecular Biology Laboratory, Grenoble, France: Regulation of signaling proteins.

Rizzo, Robert, Ph.D., 2001, Yale University: Computational research projects in cancer, HIV/AIDS, influenza, and method development.

Takemaru, Ken-Ichi, Ph.D., 1997, Graduate University for Advanced Studies, Japan: Wnt signaling in development and disease.

Wei-Xing Zong, Ph.D., 1999, UMDNJ-Robert Wood Johnson Medical School, New Jersey: Molecular regulation of apoptotic and necrotic cell death.

Research Faculty
Berrios, Miguel, Associate Professor, Ph.D., 1983, Rockefeller University: Polypeptide structure of the cell nucleus; nuclear assembly and disassembly; mapping genomic DNA damage and repair assembly and disassembly; fertilization and pronuclear formation.

Du, Guangwei, Assistant Professor, Ph.D., 1999, Peking Union Medical College and Chinese Academy of Medical Sciences, China: Cellular morphogenesis and membrane trafficking.

Li, Feng-Qian, Assistant Professor, Ph.D., 1994, University of Advanced Studies/National Institute of Genetics, Japan: Function of signaling regulators involved in cell growth regulation, cancer biology and adipogenesis.

Moriya, Masaaki, Professor, Ph.D., 1981, Nagoya University, Japan: Cellular response to DNA damage.

Rosenquist, Thomas, Assistant Professor, Ph.D., 1989, University of Wisconsin-Madison: Genetic analysis of mammalian oxidative DNA damage repair.

Shibutani, Shinya, Professor, Ph.D., 1983, Toyo Medical and Pharmaceutical University, Japan: Mechanisms of translesion DNA synthesis.

Number of teaching, graduate, and research assistants, Fall 2008: 34

1) Joint appointment, Department of Medicine
2) Joint appointment, Department of Chemistry
3) Joint appointment, Department of Neurobiology and Behavior
4) Joint appointment, Department of Physiology and Biophysics
5) Joint appointment, Cold Spring Harbor Laboratory
6) Joint appointment, Brookhaven National Laboratory
7) Primary appointment with Department of Biochemistry and Cell Biology
The host laboratory for thesis research is typically selected from one of these three rotations.

C. Qualifying Exam
In the second year, students are required to write and orally defend a research proposal on a topic unrelated to their thesis research.

D. Thesis Proposal Examination
In the fall semester of the third year, students select a thesis committee including three program faculty and one extramural faculty member to evaluate their written thesis proposal and their oral defense of the proposal.

E. Advancement to Candidacy
Following completion of coursework, and satisfactory performance on the qualifying examination and research proposal examination, students will be recommended to the Graduate School for advancement to Ph.D. degree candidacy.

F. Ph.D. Dissertation
The research for the Ph.D. dissertation is conducted under the supervision of the thesis committee. Upon approval of the completed dissertation by this committee, a dissertation examining committee is appointed by the dean of the Graduate School. A formal public oral defense of the dissertation is scheduled, at which the student presents his or her findings and is questioned by members of the examining committee and by other members of the audience.

G. Teaching Requirement
It is expected that each graduate student completing a doctoral degree will have functioned as a teaching assistant during at least one semester of his or her graduate career (HBH 601).

H. Residence Requirement
The University requires at least two consecutive semesters of full-time graduate study. The demands of the program necessitate a longer period of residence.

Courses

HBH 501 Principles of Pharmacology

Review of anticoagulants and thrombolytic agents, antiparasitic, and drugs for the treatment of allergic conditions and gout. Includes discussion of specific cases taken from clinical practice and a presentation based on a set of selected readings. Crosslisted with BCP 401.

Fall, every year, 4 credits, ABCF grading

HBH 502 Advanced Principles of Pharmacology

Spring, every year, 4 credits, ABCF grading

HBH 510 Pharmacology: Principles and Practice
Introduces the basic principles of pharmacology and covers drugs with action in the autonomic and central nervous systems. Includes the discussion of specific cases taken from the clinical practice.

Fall, every year, 2 credits, ABCF grading

HBH 511 Pharmacology: Principles and Practice
Continuation of HBH 510. Covers the action of drugs acting in the cardiovascular, respiratory, gastrointestinal, renal, and endocrine systems, as well as anticoagulant, anti-inflammatory, anti-microbial, and anticancer agents. Includes the discussion of specific cases taken from the clinical practice.

Prerequisite: HBH 510; open only to students enrolled in the Physician Assistant Graduate Program

4 credits, ABCF grading

HBH 531 Principles of Medical Pharmacology
Basic principles that underlie actions of drugs on physiological processes with particular reference to their therapeutic and toxic actions. For medical and dental students.

Prerequisites: Physiology, biochemistry, permission of instructor, admission to graduate Health Sciences Center program

Modules 4-6, 5 credits, ABCF grading

HBH 545 Biochemical Laboratory Techniques
Introduces theoretical principles and experimental techniques used in modern biochemical research. Lectures and homework assignments explore topics in basic molecular and cellular techniques.

Prerequisites: Admission to graduate Health Sciences Center program

Fall, 1 credit, ABCF grading

May be repeated once for credit

HBH 546 Biochemical Laboratory Techniques
Continuation of HBH 545. Lectures and demonstrations present topics in chromatog-
raphy, mass spectrometry, protein sequencing, sedimentation, electrophoresis, ligand binding, basic pharmacological methods, and statistical analysis of data. Includes procedures for the safe handling of toxic chemicals and radioisotopes.

Prerequisites: Permission of instructor; admission to graduate Health Sciences Center program.

Spring, 1 credit, ABCF grading

May be repeated once for credit

HBH 553 Signal Transduction

The course will emphasize fundamental concepts in signal transduction (e.g., membrane-protein and protein-protein interactions, amplification of signals), and individual lectures will apply these concepts at each stage of cell signaling from the cell surface to the nucleus, where signal transduction leads to specific gene expression. Crosslisted as HBY 553 or HBH 553.

Prerequisites: Admission to graduate Health Sciences Center program.

Spring odd years, 3 credits, ABCF grading

HBH 560 Proposal Preparation in Regulatory Biology

A literature-based course focusing on major research areas in molecular and biochemical pharmacology. The first part of the course will expose students to a series of examples of recent grant proposals. The second part of the course will feature student presentations of their research proposals. Due to the coordination of this course with the Qualifying Exam, registration is limited to Pharmacology graduate students.

Fall and spring, 2 credits, ABCF grading

May be repeated once for credit

HBH 580 Selected Topics in Pharmacology

Student seminars and readings on topics arranged through consultation with staff.

Prerequisites: Full-time pharmacology graduate status

Fall and spring, 0 to 1 credit, ABCF grading

May be repeated for credit

HBH 590 Pharmacology Seminars

Advanced research seminars by staff and visiting lecturers.

Prerequisites: Full-time pharmacology graduate status

Fall and spring, 0 to 1 credit, S/U grading

May be repeated for credit

HBH 599 Graduate Research in Pharmacological Sciences

Original research projects under faculty supervision.

Prerequisites: Full-time pharmacology graduate status

Fall, spring, and summer, 0-12 credits, ABCF grading

May be repeated up to nine times for credit

HBH 601 Practicum in Teaching Pharmacology

Practical experience and instruction in the teaching of pharmacology carried out under faculty orientation and supervision.

Prerequisites: Full-time pharmacology

HBH 631 Principles of Drug Action

This course is designed to provide a quantitative understanding of the basic principles by which drugs interact with living systems at the cellular and organismal levels. Topics include the mechanisms of drug transport through membranes, interaction of drugs with receptors and binding proteins, drug distribution, biotransformation of drugs, enzymes of stage I and stage II metabolism, cytochrome p450 gene families and regulation of p450 gene expression, mechanisms of renal excretion of drugs and metabolites, pharmacokinetics of constant drug infusions and intermittent dosing regimens, and applications of pharmacokinetic principles to protein and mRNA induction and turnover. Students apply pharmacological principles in a series of problem-solving exercises.

Prerequisites: Admission to a graduate Health Sciences Center program

Fall or spring, 1 credit, ABCF grading

HBH 632 Molecular Interactions of Drug Structures

The course provides an overview of the most current approaches to analyze and understand the interaction between a drug and its target and how this information is used for the design and development of new drugs. The detailed structural analysis of drug target interactions by X-ray crystallography and NMR spectroscopy as a basis for the design of new drugs will be discussed on the basis of very recent examples. Advanced computer simulation techniques will be discussed and will include the use of molecular mechanics energy functions to optimize biomolecular structures, predict ligand binding modes and energetics.

Prerequisites: Admission to a graduate Health Sciences Center program

Fall or spring, 1 credit, ABCF grading

HBH 633 Physiological Action of Drugs

Selected applications of drugs used in clinical medicine, illustrating current concepts and problems at the intersection of pharmacological basic science and therapeutic treatment. Settings to include the management of diabetes, metabolic diseases, and cardiac disease.

Prerequisites: Admission to a graduate Health Sciences Center program

Fall or spring, 1 credit, ABCF grading

HBH 634 Organ Physiology and Pharmacology

The goals of this class are to provide a general introduction to the normal physiology of the cardiovascular/blood, respiratory, gastrointestinal, and muscle systems at the cellular, tissue, organ, and organ systems levels. Additionally students learn how normal function may be changed by disease and pharmacology.

Prerequisites: Permission of instructor

1 credit, ABCF grading

HBH 635 New Concepts in Chemotherapy

This course compares mechanisms of action of drugs used for antibacterial and anti-cancer chemotherapy. The lecture material stresses how selective toxicity is achieved in each case with either cell death or inhibition of cell growth as the ultimate mechanism. Original research papers are discussed on mechanisms whereby cells develop resistance to chemotherapy and novel strategies to overcome this resistance.

Prerequisites: Admission to graduate Health Sciences Center program

Fall, 1 credit, ABCF grading

HBH 636 Drug Discovery and Drug Interactions

An advanced series of lectures and student presentations will develop a basic understanding of modern methods of drug discovery and drug receptor interactions. Topics include the structural and physiological factors essential for drug action, quantitative structure activity relationships, and unintended toxicities produced by drug substances.

Prerequisites: Admission to graduate Health Sciences Center program

Fall, 1 credit, ABCF grading

HBH 655 Neuropharmacology

An advanced course for graduate students interested in developing an understanding of neuropharmacology and research on this topic. Following a general introduction to the nerve cell structure, synaptic and chemical transmission, three themes receptors, receptors as channels, and G-protein-coupled receptors are developed. Recent advances in cell and molecular biology provide the framework for instruction and discussion. This course is offered as both HBH 655 and BNB 656.

Prerequisites: Admission to graduate Health Sciences Center program

Spring, even years, 3 credits, ABCF grading

HBH 699 Dissertation Research On Campus

Original investigation undertaken as part of the Ph.D. program under supervision of thesis adviser and committee.

Prerequisite: Advanced to candidacy (G5); permission of thesis advisor; major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab; full-time pharmacology graduate status

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

HBH 700 Dissertation Research Off Campus-Domestic

Prerequisite: Must be advanced to candidacy (G5). Major portion of research will take place off-campus, but in the United States and/or U.S. provinces. Please note, Brookhaven National Labs and the Cold Spring Harbor Lab are considered on-campus. All international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor; full-time pharmacology graduate status

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit
HBH 701 Dissertation Research Off Campus-International
Prerequisite: Must be advanced to candidacy (G5). Major portion of research will take place outside of the United States and/or U.S. provinces. Domestic students have the option of the health plan and may also enroll in MEDEX. International students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed. International students who are not in their home country are charged for the mandatory health insurance. If they are to be covered by another insurance plan they must file a waiver be second week of classes. The charge will only be removed if other plan is deemed comparable. All international students must receive clearance from an International Advisor; full-time pharmacology graduate status
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

HBH 800 Full-Time Summer Research
Full-time laboratory research projects supervised by staff members.
Prerequisites: Full-time pharmacology graduate status
Summer, 0 credit, S/U grading
May be repeated
Molecular Genetics and Microbiology (HBM)

Chair: Jorge Benach, Life Sciences Building Room 280, (631) 632-4225
Graduate Program Director: Janet Hearing, Life Sciences Building Room 2508, (631) 632-8778
Graduate Program Coordinator: Kathryn Bell, Life Sciences Building Room 130, (631) 632-8812

Degree awarded: Ph.D. in Molecular Genetics and Microbiology

Graduate study in Molecular Genetics and Microbiology offers a diversified course of study leading to the Ph.D. degree. The major areas of study are the basic mechanisms of viral and bacterial pathogenesis, cell growth, signal transduction, and the molecular mechanisms of cancer.

Studies are directed toward an understanding of cell biology, molecular genetics, and microbial pathogenesis and are designed to prepare a student to become an effective research scientist.

The student prepares for a program of study in consultation with an advisory committee composed of faculty members active in several research areas. A research advisor, selected by the student at the end of the first year of study, then joins the advisory committee. The individualized program aims to develop breadth of understanding in the basic disciplines through active participation in laboratory research, coursework, and seminars.

Facilities

The Department of Molecular Genetics and Microbiology occupies the second floor of the Life Sciences Building. Program faculty members’ laboratories are also located on the first and second floors of the Centers for Molecular Medicine (CMM) and within other departments at Stony Brook University, Brookhaven National Laboratory, Cold Spring Harbor Laboratory, and the Feinstein Institute for Medical Research. Approximately 47,000 square feet of research space are available within the Department of Molecular Genetics and Microbiology. Each research laboratory is fully equipped and, in addition, the Department provides access to a variety of communal central facilities and services. These include a cell culture and hybridoma facility, microinjection facility, glassware washing and sterilization facility, analytical equipment lab, deconvolution microscopy facility, environmental rooms, darkrooms, and fermentor facility. Major items of equipment are organized into these central facilities, which are readily available to trainees. The CMM, a new state-of-the-art research and teaching facility, serves as a physical and intellectual bridge between investigators in the adjacent Life Sciences Building and the nearby University Health Sciences Center. The Health Sciences Library and Barry S. Coller Learning Center, located in the Health Sciences Center, contains collections of biological and medical books and journals presently totaling 262,000 volumes, including more than 3,200 journal titles. In addition, the Health Sciences Library provides access to more than 2,300 full-text electronic journals. Other campus libraries include the Frank Melville Jr. Memorial Library.

Admission

Predoctoral trainees in Molecular Genetics and Microbiology are admitted to the Graduate School of Stony Brook University by application to the program. The final decision concerning admissions is made by the Dean of the Graduate School, and the candidate is officially notified by letter from the Dean’s office. In addition to the minimum Graduate School requirements, the following are taken into account:

A. Undergraduate performance in science courses;
B. Percentile on the Graduate Record Examination (GRE) General Test;
C. Three letters of recommendation

The program does not require, but prefers to see, evidence of research activity as an undergraduate. Whenever possible, prospective students are invited to Stony Brook for interviews with the program faculty.

All students who are accepted into the Molecular Genetics and Microbiology program are accepted with full support. The level of support for 2008-2009 is $26,000 per calendar year plus full tuition scholarship. Health insurance is provided for all students.

Faculty

Professors

Benach, Jorge, Acting Chair, Ph.D., 1971, Rutgers University: Pathogenesis of spirochetal infections and their host responses.

Associate Professors

Hearing, Janet C., Ph.D., 1984, Stony Brook University: Molecular analysis of Epstein-Barr virus latent cycle DNA replication.

Leatherwood, Janet, Ph.D., 1993, Johns Hopkins University: Cell cycle control of DNA replication.

Bliska, James B., Ph.D., 1987, University of California, Berkeley: Molecular and cellular basis of bacterial-host interactions.

Carter, Carol A., Ph.D., 1972, Yale University: HIV and retroviral assembly and replication.

Fune, Martha, Ph.D., 1980, Rockefeller University: Interactions among endothelial cells, leukocytes, and pathogenic bacteria.

Futcher, Bruce, D.Phil., 1981, University of Oxford: Control of cell division in eukaryotic cells.

Hearing, Patrick, Ph.D., 1980, Northwestern University: Viral molecular genetics; eukaryotic transcriptional regulation; gene therapy.

Konopka, James B., Ph.D., 1985, University of California, Los Angeles: G-protein coupled receptor signal transduction; fungal pathogenesis (Candida albicans).

Marcu, Kenneth, Ph.D., 1975, Stony Brook University: Immunoglobulin gene expression and recombination; regulation and mechanisms of action of the inhibitor of NF-κB kinase (IKK) complex.

Reich, Nancy, Ph.D., 1983, Stony Brook University: Signaling switches in gene expression by hormones or viral infection.

Steigbigel, Roy, M.D., 1966, University of Rochester School of Medicine: Treatment of HIV infection.

Wimmer, Eckard, Ph.D., 1962, University of Gottingen, Germany: The molecular biology of poliovirus replication and the molecular basis of picornaval pathogenesis.

Acting Chair

Janet Hearing, Life Sciences Building Room 250B, (631) 632-8778

Chair:

Jorge Benach, Life Sciences Building Room 280, (631) 632-4225

Graduate Program Director:

Janet Hearing, Life Sciences Building Room 2508, (631) 632-8778

Graduate Program Coordinator:

Kathryn Bell, Life Sciences Building Room 130, (631) 632-8812
Thanassi, David, Ph.D., 1995, University of California, Berkeley: Secretion of virulence factors by bacterial pathogens; pilus biogenesis by uropathogenic *E. coli*.

Assistant Professors

Adjunct Faculty

Research Faculty

Number of teaching, graduate, and research assistants, Fall 2007: 25

1) Joint appointment, Department of Pathology
2) Joint appointment, Department of Biochemistry and Cell Biology
3) Joint appointment, Department of Medicine
4) Joint appointment, Department of Pediatrics
5) Joint appointment, Department of Urology
6) Joint appointment, Department of Surgery
7) Brookhaven National Laboratory
8) Cold Spring Harbor Laboratory
9) The Feinstein Institute for Medical Research
10) Department of Medicine
11) Department of Chemistry
12) Department of Periodontics
13) Department of Biochemistry and Cell Biology
14) Department of Pathology
15) Department of Physiology and Biophysics

Degree Requirements

Requirements for the Ph.D. in Molecular Genetics and Microbiology

The predoctoral training program offers its students the opportunity to study questions in virology, bacteriology, immunology, biochemistry, and cell and developmental biology utilizing the experimental approaches of the molecular biologist and geneticist. Instruction and course planning involve faculty members from the Department of Molecular Genetics and Microbiology and selected members from the Departments of Biochemistry and Cell Biology, Medicine, Pathology, Physiology and Biophysics, and Pharmacology, and from three outside institutions, Cold Spring Harbor Laboratory, Brookhaven National Laboratory, and The Feinstein Institute for Medical Research. The general philosophy of the program is that a successful research career in the diverse and heterogeneous area of molecular biology requires a broadly based background, familiarity with at least all of the above areas, and a frame of mind that is receptive to new approaches.

The Department of Molecular Genetics and Microbiology has an active seminar program of outside speakers who present topics relevant to molecular genetics and microbiology, and there is a yearly retreat in which ongoing research in the Department and recent progress in the field are presented and discussed. This retreat is held early in the fall to introduce new students to the faculty, to other students, and to the...
areas of ongoing research within the Department. The Department also presents a colloquium each fall on human diseases, with outstanding researchers from throughout the world presenting their current work on the selected topic. Students in the program are encouraged to attend all of these programs as part of their training.

In addition to the minimum requirements of the Graduate School, the following are required:

A. Course Requirements

It is the policy of the Department of Molecular Genetics and Microbiology that a student must obtain a grade of B or higher in each course. Any course with a final grade below 3.0 must be retaken.

First Year

Fall

- MCB 520 Graduate Biochemistry I
- HBM 503 Molecular Genetics
- HBM 509 Experimental Microbiology (laboratory rotations)
- HBM 690 Microbiology Seminar
- MCB 517 Biomembranes
- BSB 515 Computational Methods in Biochemistry and Structural Biology

Spring

- HBM 522 Biology of Cancer (offered in alternate years)
- MCB 656 Cell Biology
- HBM 510 Experimental Microbiology (laboratory rotations)*
- HBM 690 Microbiology Seminar
- HBM 692 Experimental Methods in Molecular Genetics and Microbiology
- GRD 500 Integrity in Science

*Students rotate through three different laboratories over the course of their first year. At the end of that year, students must identify and enter the laboratory in which they will conduct their dissertation research.

Second Year

Fall

- HBM 640 Molecular Mechanisms of Microbial Pathogenesis
- HBP 533 Immunology
- HBM 599 Graduate Research

HBM 690 Microbiology Seminar
HBM 691 Readings in Microbiology Literature

Spring

- HBM 522 Biology of Cancer (offered in alternate years)
- HBM 599 Graduate Research
- HBM 690 Microbiology Seminar

B. Qualifying Exam

After the successful completion of all required courses, the student must pass a written qualifying examination.

C. Dissertation Proposal Exam

Within 16 months of passing the qualifying exam, each student submits a written proposal of his or her dissertation research (similar to an NIH grant proposal) and orally defends the proposal before his or her dissertation committee shortly thereafter.

D. Advancement to Candidacy

After successfully completing of all required and elective courses, the written comprehensive exam, and the dissertation proposal exam, the student will be recommended to the Graduate School for advancement to candidacy.

E. Attendance and Participation in Student Seminar

Both before and after being advanced to candidacy, the student is expected to participate actively in the program’s student seminar series.

F. Ph.D. Dissertation

The research for the Ph.D. dissertation is conducted under the supervision of the dissertation committee, which is appointed by the program and approved by the Dean of the Graduate School. A formal public oral defense of the dissertation is scheduled, at which the student presents his or her findings and is questioned by members of the dissertation committee and other members of the audience. A closed oral examination before the dissertation committee follows the seminar.

G. Teaching Practicum

It is expected that each graduate student completing a doctoral degree will have functioned as a teaching assistant during at least two semesters of his or her graduate studies.

H. Publication Requirement

All students must be the first author of at least one publication of original research in order to graduate.

Courses

HBM 503 Molecular Genetics
Introduces the classical work and current developments in lower and higher genetic systems. Covers gene structure and regulation in prokaryotic and eukaryotic organisms, mutational analysis and mapping, transposable elements, and biological DNA transfer mechanisms. Bacteriophage as well as lower and higher eukaryotic systems are used to illustrate aspects of molecular genetic structure and function. This course is offered as both MCB 503 and HBM 503.

Prerequisite: Matriculation in graduate program or permission of instructor

Fall, 3 credits, ABCF grading

HBM 509 Experimental Molecular Genetics and Microbiology
An introduction to modern microbiological research. The selection of laboratories is made in consultation with the student’s advisory committee. By taking part in ongoing projects the student will learn experimental procedures and techniques and become acquainted with research opportunities in the Department.

Prerequisites: Matriculation in a graduate program and permission of the graduate studies director and the lab director

Fall, 1-8 credits, S/U grading

HBM 510 Experimental Molecular Genetics and Microbiology
An introduction to modern microbiological research. The selection of laboratories is made in consultation with the student’s advisory committee. By taking part in ongoing projects the student will learn experimental procedures and techniques and become acquainted with research opportunities in the Department.

Prerequisites: Matriculation in a graduate program and permission of the graduate studies director and the lab director

Spring, 1-8 credits, S/U grading

HBM 511 Introduction to Biophysical Chemistry
Introduces the chemical principles and techniques needed for the study of biological macromolecules. Topics to be covered include solution chemistry, chemical thermodynamics, binding and dissociation equilibrium, denaturation phenomena, spectroscopy, and hydrodynamics. This course is intended to prepare non-Chemistry majors for more advanced work in biophysics.

3 credits, ABCF grading

May be repeated for credit

HBM 522 Biology of Cancer
A short course with the emphasis on cancer as a disease of man. Lectures address human cancer as seen by the clinician and as basic research relates to human disease. This course provides students with a link between courses in cell and molecular biology and the
application of this basic information to tumor management.

Spring, even years, 1 credit, ABCF grading

HBM 531 Medical Microbiology

Information derived from molecular and experimental cellular biology is presented to provide a foundation for understanding the basic aspects of the growth, regulation, structure, and function of viruses and prokaryotic and eukaryotic cells. The properties of the infectious agents are correlated to human diseases caused by these agents. Laboratory experiments demonstrate basic techniques to identify and quantitate microorganisms.

Prerequisite: Permission of instructor; matriculation as a Stony Brook medical or dental student

Fall, 1-4 credits, ABCF grading

May be repeated for credit

HBM 599 Graduate Research in Molecular Genetics and Microbiology

Original investigations under faculty supervision.

Prerequisite: Permission of instructor

Fall and spring, 1-9 credits, ABCF grading

HBM 640 Molecular Mechanisms of Microbial Pathogenesis

This course covers the principles and molecular mechanisms of pathogenesis of a selected group of the best understood viral and bacterial pathogens. A major focus of the course relates to pathogen modification of host extracellular and intracellular signalling events, as well as pathogen-host interactions pertaining to the innate, humoral, and cellular responses to infection. The material is presented by invited lecturers who are leaders in their fields. This course is directed to graduate students, postdoctorate and medical fellows, and advanced medical students, who are contemplating careers in infectious disease research.

Prerequisite: HBM, BMO 503, and BMO 520

3 credits, ABCF grading

HBM 690 Molecular Genetics and Microbiology Literature Seminar

A weekly meeting devoted to current work in the Department. Enrolled students present seminars each week throughout the term.

Prerequisite: Permission of instructor

Fall and spring, 1 credit, S/U grading

May be repeated up to ten times for credit

HBM 691 Readings in Molecular Genetics and Microbiology Literature

Readings in microbiology literature covering areas of molecular biology and genetics.

Prerequisite: Permission of instructor

Fall, 1 credits, ABCF grading

May be repeated for credit

HBM 692 Experimental Methods in Molecular Genetics and Microbiology

The goal of this course is to introduce students to the rationale underlying the wide array of new methods in biology, as well as to promote the critical analysis of scientific literature. Lectures will be given about various scientific methods and approaches, and jour-

nal articles relating to the concepts introduced will be assigned. A separate discussion section will be held to review and critique the articles, to be led by the students.

Prerequisite: Must be registered in the HBM Program

1 credit, ABCF grading

May be repeated for credit

HBM 699 Dissertation Research On Campus

For the student who has been advanced to candidacy. Original research will be under the supervision of the thesis advisor and advisory committee.

Prerequisite: Advancement to candidacy (G5); permission of thesis advisor; major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

HBM 700 Dissertation Research Off Campus–Domestic

Prerequisites: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor; matriculation in graduate program or permission of instructor

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

HBM 701 Dissertation Research Off Campus–International

Prerequisites: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor; matriculation in graduate program or permission of instructor

Fall, spring, and summer, 1-9 credits, S/U grading

May be repeated for credit

HBM 800 Full-Time Summer Research

Full-time laboratory research projects supervised by staff members.

Prerequisites: Permission of instructor and full-time graduate student status

0 credit, S/U grading

May be repeated
Music (MUS)

Chair: Daniel Weymouth, Staller Center Room 3310, (631) 632-7330
Graduate Program Director: Judith Lochhead, Staller Center Room 3307, (631) 632-7330

Degrees awarded: M.A. in Music History and Theory; M.A. in Ethnomusicology; M.A. in Composition; M.M. in Music Performance; Ph.D. in History and Theory; Ph.D. in Ethnomusicology; Ph.D. in Composition; D.M.A. in Music Performance

The Department of Music offers programs which normally lead to the Master of Arts degree and the Doctor of Philosophy degree with graduate programs in Music History and Theory, in Ethnomusicology, and in Composition. The Department also offers programs which normally lead to the Master of Music degree and the Doctor of Musical Arts degree in Music Performance.

Stony Brook’s programs have grown out of an unusual partnership between the academy and the conservatory. The Department of Music has a distinguished and well-balanced faculty in the areas of music history, theory, ethnomusicology, composition, and performance. The degree programs are designed to favor interaction among musical disciplines that have traditionally been kept separate. For example, the performance programs at Stony Brook all have an academic component. Graduate courses typically have a healthy mix of students from all areas. A number of courses are taught by two or more faculty members, examining topics from several disciplinary viewpoints. Several examine music in a broader social context, drawing on such disciplines as ethnomusicology, cultural studies, and feminist theory. Interdisciplinary studies are central to the educational philosophy of the Department.

The Department encourages the development of professional competence in more than one area of musical study. For students at the doctoral level who propose to do serious work both in performance and in some other area, a variety of options are available, including double degrees.

The music of the 20th and 21st centuries is a particular emphasis of both the performance and academic programs, but other areas are also amply represented. Students can choose seminars from a broad spectrum of topics, ranging from medieval music theory to popular music. Performing opportunities include Baroque Chamber Ensemble, Chamber Music, Jazz Ensemble, Contemporary Chamber Players, Camerata Singers, Stony Brook Symphony Orchestra, and Opera Workshop.

Facilities

Stony Brook’s Staller Center for the Arts includes an acoustically excellent theatre-concert hall and a more intimate recital hall. The music building contains a full range of rehearsal and teaching facilities, over 70 practice rooms and studios for graduate students, and more than 40 Steinway grand pianos. A fully equipped electronic and computer music studio complex provides advanced facilities for electronic and computer music composition. Within the Department, students have access to computing resources in the graduate student computing lounge, as well as the e-media SINC site (run by Instructional Computing), which has multimedia software and hardware. The Department also has a collection of early instruments, including several harpsichords and organs, a consort of viols, and Renaissance wind instruments. The music library contains an extensive research collection of books, periodicals, scores, microfilms, and recordings, and includes an excellent state-of-the-art listening facility.

Admission

Admission to the M.A./Ph.D. Program at the Master’s Level

The following are required for admission to the Graduate Program in Music History and Theory, in Ethnomusicology, and in Composition leading to an M.A. and/or Ph.D. degree, in addition to the requirements of Music and the Graduate School.

A. A bachelor’s degree from a recognized institution;
B. Official transcripts of undergraduate records;
C. A minimum average of B in undergraduate music courses;
D. Three letters of recommendation from persons familiar with the student’s work;
E. Examples of undergraduate work:
 1. For History and Theory and Ethnomusicology applicants, essays in music research, analysis, theory, or criticism
 2. For Composition applicants, musical scores and recordings
 F. Results of the Graduate Record Examination (GRE) General Test;
 G. Acceptance by both the Department of Music and the Graduate School.

Applicants are invited to submit any other evidence of their abilities in support of their application for admission, such as recordings of music performances or the score on the GRE Area Test in music.

All students entering the M.A. program will be examined in the following areas:

1. Ear training
2. Basic keyboard skills
3. The harmonization of a chorale in four voices
4. The composition of a passage in two-part counterpoint in either 16th-century or 18th-century style
5. The history of music (for History and Theory and Ethnomusicology students only)

The examinations in harmony and counterpoint will be sent to students after they have been admitted in the spring. The other examinations will be given during the week before the beginning of classes.

Students who are found deficient in any of the above areas will be required to take appropriate courses in the first year of study to remedy the deficiencies.

Admission to the M.M./D.M.A. Program at the Master’s Level

The following are required for admission to the M.M. Program in Performance, in addition to the requirements of the Graduate School:

A. A bachelor’s degree from a recognized institution;
B. Official transcripts of undergraduate records;
C. An audition in the major field of performance: Students residing at a distance from the University may
gain provisional acceptance by sending a recorded audition. Audition dates, usually designated for February, are announced by the Department mid-fall. These dates, as well as specific requirements for auditions, are posted at the Departmental Web site.

D. Letters of recommendation from the former principal teacher and at least two other persons familiar with the student’s work;

E. While acceptance into the program is based primarily upon excellence in performance, the program contains a significant academic component. Applicants are therefore required to submit two examples of their work in music history or music theory, such as papers completed as coursework in either area.

F. Acceptance by both the Department of Music and the Graduate School.

Entering students will be examined in ear training and foreign languages (for students with prior foreign language experience) during the week before the beginning of classes, and will be placed in the appropriate courses.

Admission to the Ph.D. Program
See Admission to the M.A./Ph.D. Program, above. In addition, a master’s degree, usually in the pertinent area of competence, is required. As evidence of ability to carry on doctoral work in the area of specialization, applicants should submit examples of recent work as follows:

1. For Composition: recordings and scores

2. For History and Theory and Ethnomusicology: essays that demonstrate a breadth of knowledge in two or more of the following areas: music history, theory, ethnomusicology, analysis, or criticism

Applicants who plan to include study in performance as a part of their degree program should follow the audition procedure outlined under Admission to the D.M.A. Program, below. Students who intend to work in a secondary area of specialization must demonstrate to the pertinent faculty competence commensurate with a master’s degree at a distinguished level in that area.

Students who do not possess the Master of Arts degree in music from Stony Brook will be asked to demonstrate achievement commensurate with that degree by the end of the first year of study by taking the relevant M.A. comprehensive examination.

Entering students who have not already done so must successfully complete the appropriate advisory examinations described under Admission to the M.A./Ph.D. Program. Any remedial work must be completed by the end of the first year of study.

Although most students will move directly from the master’s to the doctoral level of the M.A./Ph.D. program, successful completion of the Stony Brook M.A. degree does not guarantee acceptance into the Ph.D.-level program.

Students wishing to continue on must indicate their intention to do so, in a formal letter, to reach the graduate program coordinator by January 15 for fall admission. This should be accompanied by two letters of recommendation from Stony Brook faculty. To demonstrate the ability to continue on at the doctoral level, students must submit appropriate examples of work: master’s papers for History and Theory, and Ethnomusicology; the master’s composition portfolio for Composition. Students may also elect to finish with the M.A. degree.

Admission to the D.M.A. Program
See Admission to the M.M./D.M.A. Program, above. In addition, a master’s degree, usually in the pertinent area of performance, is required. Applicants must audit in person before a faculty committee. Audition dates, usually designated for February, are announced by the Department mid-fall. These dates, as well as specific requirements for auditions, are posted at the Departmental Web site.

Students who do not possess a Master of Music degree from Stony Brook must demonstrate a level of achievement in ear training, and demonstrate preparation in music history and theory, commensurate with the M.M. requirements. Voice students who do not possess a Master of Music degree from Stony Brook must also satisfy the piano proficiency and foreign language requirements of the Stony Brook M.M. degree in voice. Harpsichord students who do not have a Stony Brook M.M. must also satisfy the foreign language requirement of the Stony Brook M.M. in harpsichord.

Applicants who plan to include a secondary area of specialization in Composition, Ethnomusicology, or History and Theory within their D.M.A. program must submit examples of work in the proposed secondary area and must demonstrate to the pertinent faculty competence commensurate with a master’s degree at a distinguished level in that area. Students who are accepted in a secondary area of specialization must pass the appropriate advisory examinations described under Admission to the M.A. program. Any remedial work must be completed by the end of the first year of study.

Although most students will move directly from the master’s to the doctoral level of the M.M./D.M.A. program, successful completion of the Stony Brook M.M. degree does not guarantee acceptance into the D.M.A.-level program. Students wishing to continue on must indicate their intention to do so, in a formal letter, to reach the graduate program coordinator by January 15 for fall admission. This should be accompanied by two letters of recommendation from Stony Brook faculty. To demonstrate the ability to continue on at the doctoral level, students must play a personal audition. Students may also elect to finish with the M.M. degree.

Faculty

Professors

Anderson, Ray, Visiting Professor, Director of Jazz Studies, Empire State College: Jazz studies and jazz improvisation.

Fuller, Sarah, Ph.D., 1969, University of California, Berkeley: Medieval and Renaissance music; history of music theory.

Kalish, Gilbert, B.A., 1956, Columbia University: Piano; chamber music; 20th-century piano repertoire.

Lawton, David, Ph.D., 1973, University of California, Berkeley: Opera workshop; 19th-century studies.

Lochhead, Judith, Graduate Program Director, Ph.D., 1982, Stony Brook University: Theory and history of recent music; phenomenology and music; performance and analysis.

Silver, Sheila, Ph.D., 1976, Brandeis University: Composition and analysis.

Winkler, Peter,^1 Graduate Program Director, M.F.A., 1967, Princeton University: Composition; theory and history of popular music; analysis.

Associate Professors

Goldstein, Perry,^2 Coordinator of Musicianship, Ph.D., 1986, Columbia University: Composition and analysis.

Semegen, Daria, Director of the Electronic Music Studio, M.Mus., 1971, Yale University: Composition; electronic music; composition, history, and aesthetics of electronic music.

Sugarman, Jane,^3 Ph.D., 1993, University of California, Los Angeles: Ethnomusicology; music of Southeastern Europe and the Middle East; gender issues.

Weymouth, Daniel, Chair, Director of the Computer Music Studio, and Co-Director, Laboratory for Technology in the Arts, Ph.D., 1992, University of California, Berkeley: Composition; analysis; computer music; multimedia and performance technologies.

Assistant Professors

Calzagagno, Mauro, Ph.D., 2000, Yale University: 16th- and 17th-century music; madrigal; opera; Monteverdi; performance studies.

Minor, Ryan, Ph.D., 2005, University of Chicago: 19th-century music; choral music; Brahms; Wagner; opera.

Moehn, Frederick, Ph.D., 2001, New York University: Musicology; ethnomusicology.

Schedel, Margaret, D.M.A., 2007, University of Cincinnati, College Conservatory of Music: Composition; digital music and art.

Sloeger, Benjamin, Ph.D., 2007, Harvard University: 20th-century music; history of theory; Debussy; music and technology.

Performing Artists in Residence

Bonazzi, Elaine, B.Mus., Eastman School of Music: Voice; vocal repertoire.

Kim, Soovin, 1999, Bachelor of Music, Curtis Institute: Violin; chamber music.

Morelli, Frank, D.M.A., Juilliard School of Music: Bassoon; chamber music.

Murdock, Katherine, B.Mus., 1977, Boston University: Viola; chamber music.

Powell, Michael, B.Mus., 1973, Wichita State University: Trombone; chamber music.

Willard, Jerry, student of Sophocles Papas: Guitar; lute.

Wincenc, Carol, M.M., 1972, Juilliard School of Music: Flute; chamber music.

Quartet-in-Residence

The Emerson String Quartet: In fall 2002, the celebrated Emerson String Quartet became the quartet-in-residence at Stony Brook.

This prestigious ensemble presents a series of concerts, chamber music instruction, and workshops at the University every year.

Finckel, David, Mus.D., 1995, Middlebury College: Cello; chamber music.

Directors

Deaver, Susan, Director of the University Orchestra, D.M.A., 1994, Manhattan School of Music: Conducting.

Engel, Bruce, Director of the University Wind Ensemble, M.M., 1974, Juilliard School of Music: Conducting.

Number of teaching, graduate, and research assistants, Fall 2005: 71 (full or partial support)

1) Recipient of the President's Award for Excellence in Teaching, 1984
2) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1977
3) Recipient of the President's Award and the State University Chancellor's Award for Excellence in Teaching, 1997
4) Recipient of the President's Award and the State University Chancellor's Award for Excellence in Teaching, 1995

Degree Requirements

General Requirements for the M.A. Degree

Thirty graduate credit hours (exclusive of those in MUS 501 Compositional Skills of Tonal Music, MUS 505 Foundations of Musicianship, and MUS 591 Practicum in Teaching) chosen in consultation with the student’s advisor. A student must achieve an overall 3.0 grade point average to receive a degree. The program must include:

1. MUS 501 Compositional Skills of Tonal Music, to be taken during the fall semester of the first year of study. Qualified students may be exempted from this course through a placement exam that will be given in the summer before they begin the program.

2. MUS 502 Proseminar in Tonal Analysis, to be taken during the spring semester of the first year of study. Students who are well prepared in analysis may be exempted from this requirement by examination. (Not required for ethnomusicologists.)

3. MUS 505 Foundations of Musicianship, and MUS 506 Graduate Musicianship, to be taken during the first year of study. Qualified students may be exempted from these courses through a placement exam given at the beginning of the fall semester.

If a course in a department or program other than Music is taken toward the degree, approval from the graduate studies committee must be obtained.

*Note: All graduate students whose programs have a foreign language requirement (M.A. in Music History and Theory, M.A. in Ethnomusicology, Ph.D., D.M.A., and M.M. in harpsichord) must take the appropriate foreign language exam during their first semester of residence. Students who fail the examination must take an appropriate language course or retake the examination (depending on the program) after demonstrating evidence of formal preparation (such as a course or private tutoring).

Specific Requirements for the M.A. Degree, Graduate Program in Music History and Theory

A. Course Requirements

In addition to the general course requirements for the M.A. degree listed above, the M.A. in Music History and Theory requires:

1. MUS 500 Introduction to Music Research

2. MUS 503 Music in the 20th and 21st Centuries

3. At least two courses from the group MUS 541-555 (Special Topics Courses)
4. At least two courses chosen from the following courses in theory and analysis: MUS 538, MUS 557, MUS 559

B. Foreign Languages

A reading knowledge of French and German is required. One exam must be taken at the beginning of the first semester of study and the other at the beginning of the second semester.

C. Comprehensive Examinations

Written and oral examinations in the history of music and in the analysis of pre-assigned compositions.

D. Research Paper

A substantial essay, normally one the student has written as part of the coursework, is required. The paper should be submitted no later than the third week of the semester in which the student expects to receive the degree.

Specific Requirements for the M.A. Degree, Graduate Program in Ethnomusicology

A. Course Requirements

In addition to the general course requirements for the M.A. degree listed above, the M.A. in Composition requires:

1. MUS 500 Introduction to Music Research
2. MUS 537 Research Methods in Ethnomusicology
3. MUS 539 Proseminar in Ethnomusicology
4. At least two courses in musics of a world area (MUS 536)
5. At least two courses in the cross-cultural study of music (at least one must be MUS 541; the other may be 541, 542, 538, or selected topics from 555)

B. Foreign Languages

A reading knowledge of one major European language other than English: French, German, Italian, or Spanish (second language to be completed at Ph.D. level).

C. Comprehensive Examinations

Written examinations on the history of ethnomusicological theory and on the analysis of world music repertoires.

D. Research Paper

A substantial essay, normally one the student has written as part of the coursework, is required. The paper should be submitted no later than the third week of the semester in which the student expects to receive the degree.

Specific Requirements for the M.A. Degree, Graduate Program in Composition

A. Course Requirements

In addition to the general course requirements for the M.A. degree listed above, the M.A. in Composition requires:

1. A course in the history of music, normally MUS 503, Music in the 20th and 21st Centuries or MUS 507, Studies in Music History
2. MUS 504 Analysis of Music of the 20th and 21st Centuries; students who are well prepared in 20th-century analysis may be exempted from this course by examination and must substitute an advanced course in 20th-century theory or analysis (for example, MUS 557, Topics in Theory, or MUS 559, Topics in Analysis, when either of these courses is devoted to a 20th- or 21st-century topic)
3. MUS 515 The Fundamentals of Electronic Music
4. MUS 516 Electronic Music Workshop or MUS 517 Introduction to Computer Music
5. MUS 523 Advanced Composition, to be taken every semester of residence

B. Comprehensive Examination

Written examination in the analysis of pre-assigned compositions is required.

C. Compositions

Students must satisfy the Departmental requirement that they have written compositions of sufficient quality and variety during the period of study after admission to the Graduate School. Fair copies of all these compositions must be submitted to the graduate program committee as they are completed. The last day for graduate students to submit theses and dissertations, as specified in the academic calendar, will be the final deadline for all works to be submitted.

Note: There is no foreign language requirement for the M.A. in Composition. However, students should be aware that a reading knowledge of French, German, Italian, or Spanish is required for the Ph.D. in Composition.

Requirements for the M.M. Degree

A. Course Requirements

Thirty graduate credit hours (exclusive of those in MUS 501 Compositional Skills of Tonal Music, MUS 505 Foundations of Musicianship, and MUS 591 Practicum in Teaching) chosen in consultation with the student's advisor. A student must achieve a 3.0 overall grade point average or better to receive a degree. Up to 15 credits in individual study of the major instrument or voice may be counted toward the degree. None of the remaining 15 degree credits may be in individual study of another instrument or voice.

The program must include at least one course in music history (MUS 503 or 507) and one course in music theory (MUS 502, 504, 508, 514, 515, 517, or 521). Students who can demonstrate adequate preparation may take more advanced courses to fulfill this requirement.

Students who play orchestral instruments are required to enroll in MUS 565, Stony Brook Symphony Orchestra, every semester of full-time residence. Students who are registered part-time are required to participate in the Stony Brook Symphony Orchestra on a part-time basis. Under extraordinary circumstances a student may petition to have this requirement waived on a per-concert basis; a memorandum outlining policies and procedures for such a waiver is available from the Department of Music's Graduate Office. Students in voice are required to enroll in MUS 566, Camerata Singers, or MUS 579, Opera Workshop, for two semesters. Additional courses to fulfill this requirement may be waived at the request of either the conductor or the major teacher.

Participation in the accompaniment pool is required of all pianists and harpsichordists during each semester of full-time residence. Students in harpsichord are expected to participate in Baroque Chamber Ensemble for two semesters. All students except those in the conducting programs must be enrolled in MUS 571 (lessons) during each semester of full-time residence. All full-time performance students are required to take MUS 590 (Practicum course).
in Professional Skills) each semester.

All students are required to enroll in a formal chamber music course during the first two semesters of residency: MUS 573 Chamber Music, MUS 584 Baroque Chamber Ensemble, MUS 595 Chamber Players, MUS 596 Contemporary Chamber Players, or MUS 568 Jazz Ensemble.

If a course in a department other than Music is taken toward the degree, approval from the graduate studies committee must be obtained.

B. Ear Training

MUS 505, Foundations of Musicianship, and MUS 506, Graduate Musicianship, must be taken during the first year of study. Qualified students may be exempted from these courses through a placement exam given at the beginning of the fall semester.

C. Piano Proficiency

Students in voice and choral conducting are required to take the piano proficiency examination upon entering the program. Those who do not pass the examination must take appropriate courses and pass the examination before the degree will be granted.

D. Jury Examinations

Jury examinations are offered each semester. Students must take one jury examination, generally the semester before the degree recital.

For students in harpsichord, the examinations will include continuo realization.

E. Foreign Language

Knowledge of French or German is required of students in harpsichord. The requirement is satisfied by taking and passing the exam given by the relevant Stony Brook language departments during the advisory exam period before the first semester of study. Students who do not pass the examination must take the courses recommended by the relevant language department and achieve a grade of B or higher. Students who have not had any previous foreign language study must take a year of college-level elementary foreign language courses and achieve a grade of B or higher to satisfy the requirement.

F. Public Recital

The student’s major teacher and academic advisor must determine whether or not the recital is of passing quality.

If unable to attend the recital in person, the major teacher or academic advisor may hear a recording of it.

Requirements for the Doctor of Philosophy Degree, Contract Toward Candidacy

A plan of study in the form of a working contract toward candidacy will be drawn up by the student and a directing committee early in the student’s first semester. The directing committee will consist of the student’s advisor and at least two other faculty members. The graduate program director will appoint the directing committee and will designate its chair, who shall not be the student’s advisor. The committee may include faculty members from outside the Department when appropriate. Final approval of the contract, and of any revisions that may be necessary, rests with the graduate studies committee.

The design of the program is to be developed around the requirements given below, and the contract should specify such terms as the core of courses to be taken, the length of full-time residence, and the schedule and subject areas of various examinations including the preliminary examination. The terms of the contract should normally be completed within two or three years, depending upon the scope of the program. Successful completion of relevant master’s requirements is assumed for the Ph.D. degree; see Admission to the Ph.D. Program.

A. Work in the Student’s Area(s) of Specialization

Progress during residence in the program will be demonstrated to the directing committee in the following ways:

1. Evidence of advanced scholarly and creative work:
 a) Students in History and Theory or Ethnomusicology: The presentation of a number of essays demonstrating proficiency in various aspects of musicological research, theoretical studies, analysis, or criticism. The essays may have been prepared as part of coursework.
 b) Composition students: The presentation of a number of musical compositions demonstrating fluency in working with a variety of contemporary performance media.

2. A field exam demonstrating knowledge of scholarship and repertoire in the broad field of study that will situate dissertation research.

3. A public colloquium. The topic will be determined by the student, in consultation with his or her directing committee. For composers, the lecture or colloquium must be on a topic of significant interest in music of the 20th or 21st century. See section B, paragraph 2 below.

Students who propose to do work in performance as an integral part of the program must, in addition, present at least two recitals showing mastery of a broad range of musical styles.

B. Work in the Area of 20th- and 21st-Century Music

Competence is to be demonstrated to the directing committee through the following:

1. An essay dealing with 20th- or 21st-century music from a historical, theoretical, critical, or analytical point of view.

2. A public lecture or colloquium on a topic of significant interest in 20th- or 21st-century music. See the description of MUS 696.

To satisfy the requirement, composers must complete both the essay and the lecture or colloquium. Historians and theorists and ethnomusicologists may satisfy the requirement either with the essay or with the lecture or colloquium.

C. Foreign Language

Reading knowledge of German and French for students in History and Theory is required. For students in Ethnomusicology, a reading knowledge of a second language in addition to that completed for the M.A. is required; this will usually be a language for field research. For Composition students, reading knowledge of one language (from French, German, Italian, or Spanish) is required. (See M.A. language requirements, above.) The contract toward candidacy may specify further or alternate language proficiency depending on the area of the dissertation, subject to the approval of the graduate studies committee.

D. Teaching

A minimum of two semester-long courses or the equivalent, at least
one of which shall be an introductory college course in musicianship, theory, or literature, is required. Students must also participate in the seminar on the teaching of music for a minimum of one semester.

E. Advancement to Candidacy

After completing the terms of the contract, a student is eligible for advancement to candidacy. To be advanced, the student must:

1. Submit a prospectus outlining the nature and aims of the dissertation.

2. Pass a preliminary examination that will demonstrate preparation in his or her special competence. For historians and theorists and ethnomusicologists, the examination will be focused on a detailed prospectus and bibliography for the dissertation. For composers, the examination will cover the composer's musical craft and aesthetics, as revealed in the contract pieces (copies of which must be provided to the graduate program director), and the projected thesis composition.

F. Dissertation

The dissertation shall be a significant original work of scholarship or composition. Approval of the dissertation will rest upon a formal oral defense, which is also a public colloquium on the dissertation work, to be conducted by the dissertation committee.

Requirements for the Doctor of Musical Arts Degree with a Concentration in Performance, Doctoral Contract

A plan of study in the form of a working doctoral contract will be drawn up by the student and a directing committee early in the student’s first semester. The directing committee will consist of the student’s performance advisor (major teacher) and a member of the academic faculty, to be appointed by the graduate program director. The committee may include additional faculty members from within or outside the Department if appropriate. Final approval of the contract, and of any revisions that may be necessary, rests with the graduate studies committee.

The design of the program is to be developed around the requirements given below, and the contract should specify the core of courses to be taken; the length of full-time residence; and the schedule and substance of various recitals, essays, and examinations. The term of the contract should normally be completed within two years of full-time residence.

A. Work in the Student’s Area of Specialization

Progress during residence in the program will be demonstrated to the directing committee through the presentation of four recitals, not including the doctoral degree recital, showing mastery of a broad range of musical styles. Two of these must be solo recitals, unless otherwise specified by the directing committee. Three of these recitals must be presented before the student can advance to candidacy; the fourth may be presented after advancement to candidacy. Students who propose to work in a second area of specialization should see section J below.

Students in the choral conducting program present three recitals, not including the doctoral degree recital. Two of these recitals must be completed before the students can advance to candidacy.

B. Academic Coursework and the D.M.A. Research Essay

During the first year of residency, students must take two academic courses and receive a grade of B or better in each. One course must be a history course from the group: MUS 503, 507, 535, 536, or any numbered MUS 539-555. The other must be an analysis or theory course from the group: MUS 502, 504, 538, 557, or 559. Students will develop one of the term papers generated in these two academic courses into the D.M.A. Research Essay. After conferring with the academic advisor on which paper to use for the research paper, the student must enroll in MUS 696, Doctoral Essay Tutorial, during the third term of residency to develop and revise the original course term paper.

C. Public Lecture-Recital

A colloquium illustrated by live performance, the lecture-recital may deal with performance problems, historical or analytical matters, or with interpretative or critical issues. The music performed in the lecture-recital may also appear on one of the doctoral recital programs, but not in the final doctoral recital. Students must enroll in MUS 696, Doctoral Colloquium, and present the lecture-recital during that semester.

D. Work in the Area of 20th- and 21st-Century Music

The recitals, described above in section A, should include a substantial amount of music from the 20th and 21st centuries (the equivalent of at least one full recital’s worth) including recent and challenging works. The lecture-recital may also be devoted to music of the 20th and 21st centuries.

E. Foreign Language

Proficiency in one or more foreign language is required for the D.M.A. degree. There are two types of requirements: (1) knowledge equivalent to a year’s college-level study or (2) reading knowledge. Depending on the program, the student may have to satisfy one or both types of requirements.

Choral conducting students and harpsichord students must demonstrate knowledge equivalent to a year’s college-level study of any two of the following languages: French, German, or Italian.

Instrumental students other than harpsichordists must demonstrate knowledge equivalent to a year’s college-level study of any one of the following languages: French, German, Italian, or Spanish.

Equivalency is determined by passing the exam given by the language departments at Stony Brook University. Students with prior language experience should take the exam given by these departments during the advisory exam period before the first semester of study. Students who do not pass the examination must take the courses recommended by the relevant language department during the first year of residency and achieve a grade of B or higher. Students who have not had any previous foreign language study must take a year of college-level elementary foreign language courses and achieve a grade of B or higher to satisfy the requirement. The graduate review courses FRN 500, GER 500, and ITL 500 will not satisfy the Department of Music’s foreign language requirement for the DMA degree.

Harpsichord students must demonstrate knowledge equivalent to a year’s college-level study of any two of the following languages: French, German, or Italian.

Voice Students: Since the study of foreign languages is central to a
singer's craft, the foreign language requirement for singers is more demanding than it is for instrumentalists. Voice students must demonstrate knowledge equivalent to a year's college-level study of all three of the following languages: French, German, and Italian. Students with prior language experience should take the exam given by Stony Brook language departments during the advisory exam period before the first semester of study. Students who do not pass the examination must take the appropriate courses and achieve a grade of B or higher to satisfy the requirement.

Voice students must also demonstrate a reading knowledge of any two of the following languages: French, German, Italian, or Russian. Reading knowledge is determined solely by the Department of Music Translation Exam.

For all D.M.A. programs, the foreign language requirement must be satisfied in a timely manner, preferably by the end of the first year of study. In any case, all language requirements must be satisfied before advancement to candidacy, except in programs where more than one language is required. In these programs only, all but one language requirement must be satisfied before advancement; the remaining language may be satisfied after advancement to candidacy.

The contract toward candidacy may specify further or alternate language proficiency depending upon the proposed plan of study, subject to the approval of the graduate studies committee.

F. Teaching

A minimum of two semester-long courses, either or both of which may comprise individual lessons, ensemble coaching, or classroom teaching, is required. In certain cases, this requirement may be met by private teaching or teaching at another institution (see the graduate program director for details.)

G. Practicum in Professional Skills

A professional performing musician, who is more likely than ever before to assemble a career and a livelihood from a wide variety of music-related activities, needs a wide variety of practical skills, not all of which can be acquired in formal courses or even necessarily within the confines of the academy. Thus, every full-time D.M.A. student in residence must register for MUS 690 Practicum in Professional Skills. This course covers practical training in activities related to the professional work of a performing musician, including solo and ensemble performance, teaching, internships, and related work, both on campus and off campus.

H. Orchestra/Accompaniment

Students who play orchestral instruments are required to enroll in MUS 565, Stony Brook Symphony Orchestra, every semester of full-time residence. Students who are registered part-time are required to participate in the Stony Brook Symphony Orchestra on a part-time basis. Under extraordinary circumstances, a student may petition to have this requirement waived on a per-concert basis; a memorandum outlining policies and procedures for requesting such a waiver is available from the Department of Music's Graduate Office. Students in voice are required to enroll in MUS 566, Camerata Singers, or MUS 579, Opera Workshop, for two semesters. This requirement may be waived at the request of either the conductor or the major teacher. Pianists and harpsichords are required to participate in the accompaniment pool during each semester of full-time residency.

I. Chamber Music

All students are required to enroll in a formal chamber music course during the first two semesters of residency: MUS 573 Chamber Music, MUS 584 Baroque Chamber Ensemble, MUS 595 Chamber Players, MUS 596 Contemporary Chamber Players, or MUS 568 Jazz Ensemble. Students in the choral conducting program should fulfill this requirement by conducting chamber music (see Professor Timothy Mount for details).

J. Secondary Area of Specialization

Students who propose to do advanced work in Composition, History and Theory, or Ethnomusicology as an integral part of the program must do one or both of the following:

1. Present a number of musical compositions demonstrating fluency in working with a variety of contemporary performance media.
2. Present a number of essays demonstrating proficiency in various aspects of musicological research, theoretical studies, analysis, or criticism. The essays may have been prepared as part of coursework.

K. Doctoral Jury Examinations

A preliminary doctoral jury will be played during the first full year of residency. A second, 20-minute jury examination will be taken at the end of the period of residency covered under the contract toward candidacy. Both juries must be passed as a condition for advancement to candidacy.

L. First-Year Academic Review

To be in good standing, D.M.A. students must have taken the two academic courses required (History and Theory) by the end of the first year of the program, and must have taken the foreign language proficiency exam, or be in the appropriate language course, by the beginning of the second semester. The graduate program director will monitor the academic progress of D.M.A. students by asking all academic advisors to submit contract checklists in February of each year.

M. Advancement to Candidacy

The student may advance to candidacy after completion of the following requirements:

1. Three of the four public recitals (see Requirement A).
2. Completion of Requirements B through M. In programs which require more than one language, all but one language.

Advancement to candidacy is granted by the Graduate School upon recommendation from the Departmental graduate program director.

N. Completion of the Doctoral Contract

The Doctoral Contract will be completed after presentation of the fourth public recital (see Requirement A), and completion of any remaining language requirement (see Requirement E).

O. Doctoral Degree Recital Examination

After the doctoral contract is completed, the student must:

1. Submit a program of the proposed doctoral degree recital, bearing the signature of the major teacher, to the graduate program director and graduate studies committee for approval. The program must not include works previously performed to satisfy other graduate degree requirements.
2. Submit a doctoral examination prospectus, approved by both members of the directing committee, that focuses on significant analytical, historical, and interpretative aspects of the works to be performed. The prospectus will serve as the basis of the doctoral examination. Students may request a sample prospectus and should review the Oral Exam Guidelines prior to the exam (this document is available from the graduate coordinator).

3. Appear before an examining committee to demonstrate mastery of the doctoral degree recital program and of areas pertinent to the works to be performed. The doctoral degree recital examination normally takes place within one year after advancement to candidacy.

P. Doctoral Degree Recital

The doctoral degree recital should be performed after the degree recital examination has been passed. It must demonstrate a distinguished, professional level of performance and be presented on campus, except under extraordinary circumstances for students in Choral Conducting. A recording of this recital, along with the prospectus, is submitted to the Graduate program and the doctoral examination recording of this recital, along with the prospectus, is submitted to the Graduate School and is eventually deposited in the University library.

Courses

MUS 500 Introduction to Music Research
Team-taught by members of the History and Theory faculty, the course offers an introduction to musical research techniques, bibliography, and methodologies through a series of two-week units covering a wide range of topics of current concern in musical scholarship. Recent topics have included sketches and critical editions, interdisciplinary studies, issues in theory and analysis, and popular music studies. Students prepare short projects and/or presentations for each unit.

Fall, 3 credits, ABCF grading

MUS 501 Compositional Skills of Tonal Music
An intensive course in chorale harmonization and counterpoint. Enrollment limited to 12. MUS 501 may not be included in the courses taken in fulfillment of degree requirements.

Fall, 3 credits, ABCF grading

MUS 502 Proseminar in Tonal Analysis
The application of various techniques of analysis to tonal works. Rhythmic, harmonic, linear, thematic, and other elements of musical structure are considered.

Prerequisite: Preparation equivalent to MUS 501 is assumed.

Spring, 3 credits, ABCF grading

MUS 503 Music in the 20th and 21st Centuries
An intensive course in contemporary musical styles, focusing on historical problems. Seminar reports and research papers on works of major significance.

Fall, 3 credits, ABCF grading

MUS 504 Analysis of Music of the 20th and 21st Centuries
Detailed analyses of various works that are representative of the significant compositional systems of recent music.

Fall, 3 credits, ABCF grading

MUS 505 Foundations of Musicianship
An intensive workshop in the skills of sight singing and dictation of tonal melodies, rhythm, and diatonic harmony. Repertoire is drawn from diverse styles and periods. Qualified students may be exempted from this course through a placement exam given at the beginning of the fall semester.

Fall, 2 credits, ABCF grading

MUS 506 Graduate Musicianship
An intensive workshop in the development of musicianship skills in advanced tonal and atonal music. The course includes dictation in a variety of harmonic, melodic, and rhythmic categories and prepared singing and sight-singing of complex tonal and atonal melodies (in bass, alto, tenor, and treble clef). Qualified students may be exempted from this course through a placement exam given at the beginning of the fall semester.

Fall and spring, 2 credits, ABCF grading

MUS 507 Studies in Music History
Concentrated study of the works of a single composer, or of repertories that represent single compositional tendencies in Western music. Recent topics have included Mozart, Moniuszko, Goethe's Faust and the symphonic tradition, Bach cantatas, virtuosity, Stravinsky, music and nationalism, and introduction to popular music studies. Not more than eight credits of MUS 507, 508, and 509 combined may be counted toward the degree.

Fall and spring, 3 credits each semester, ABCF grading

May be repeated for credit

MUS 508 Studies in Composition and Theory
Study of contemporary or traditional compositional techniques or styles, including both analysis and exercises in writing. Not more than eight credits of MUS 507, 508, and 509 combined may be counted toward the degree.

Fall or spring, 1-3 credits, ABCF grading

May be repeated for credit

MUS 509 Performance Studies
Study of an instrument or voice as a supplement to other work in a graduate music program. This course is designed for students who require piano study to pass the piano proficiency requirement, and for students not in a performance degree program who wish to study voice or an instrument. Not more than eight credits of MUS 507, 508, and 509 combined may be counted toward the degree.

Prerequisite: Audition

Fall and spring, 1-3 credits, ABCF grading

May be repeated for credit

MUS 513 Workshop in Instrumentation and Orchestration
Studies in writing for specific instruments and ensembles through practical exercises and examination of the repertory. Faculty and student performers discuss the capabilities of their instruments and perform and discuss exercises written for the class.

Fall or spring, 3 credits, ABCF grading

MUS 514 Audio Engineering
Technical fundamentals of audio engineering for the serious practitioner, with primary emphasis on sound reinforcement and recording arts. The course focuses on measurement and critical listening, and investigates the basic operational theory of principal devices and systems.

Prerequisite: Permission of instructor

Spring, 3 credits, ABCF grading

MUS 515 The Fundamentals of Electronic Music
A short survey of the history and literature of the medium is followed by study of the pertinent background in theoretical acoustics and practical engineering. Students are instructed in the basic techniques of electronic sound production and modification.

Fall, 3 credits, ABCF grading

MUS 516 Electronic Music Workshop
Individual short experimental works or specific assignments. Uses of electronic music equipment.

Prerequisite: MUS 515 or the equivalent

Spring, 3 credits, ABCF grading

MUS 517 Introduction to Computer Music
A hands-on introduction to the uses of computers in the creation and performance of music. Topics include software synthesis, computer manipulation of musical data and MIDI instruments and their use, and interactive performance. There is a brief survey of the history, literature, and repertoire of the field.

Prerequisite: Music major or permission of the instructor

Spring, 3 credits, ABCF grading

MUS 518 Advanced Projects in Computer Music
Advanced projects, individual or collaborative, in computer music.

Prerequisite: MUS 517 and permission of instructor

Fall and spring, 1-3 credits, ABCF grading

May be repeated for credit

MUS 523 Advanced Composition
Individual projects for graduate students in composition.

Fall and spring, 2-6 credits, ABCF grading

May be repeated for credit

MUS 535 Lecture-Workshop in the Performance of Baroque Music
An examination of problems confronting the performer of music from the period ca. 1600-1750, from both musicological and practical
points of view. The basso continuo, its function and realization; phrasing and articulation; ornaments, notated and improvised; period instruments; aspects of notation; bibliography. The course meets in lecture for two hours each week with a third hour devoted to the coaching of a rehearsal or performance of music prepared by members of the class.

Fall or spring, alternate years, 3 credits, ABCF grading

MUS 536 Area Studies in Ethnomusicology
Examination of the music of a selected world area, combining musical analysis with a consideration of historical, social, and performance contexts. Recent topics have included Brazilian music from 1822 to the present; music, politics, and society in Eastern Europe; and a century of Middle Eastern musics.

Fall or spring, alternate years, 3 credits, ABCF grading

MUS 537 Research Methods in Ethnomusicology
A practicum covering both the theoretical foundations and practical components of ethnomusicological field research and analysis. Emphasis is on designing and undertaking a small musical ethnography, and on exploring practical, ethical, ontological, and epistemological aspects of ethnomusicological research. Weekly readings and a final project.

Fall, 3 credits, ABCF grading

MUS 538 Phenomenological Approaches to Music Analysis
Concepts from phenomenological philosophy are used as a basis for the study of music from various periods and cultures, with an emphasis on recent music in the Western classical tradition. Readings include Heidegger, Husserl, and later writings in phenomenology; philosophies of space and time; and music theoretic studies by Clifton, J. Kramer, Lewin, and others.

Fall or spring, alternate years, 3 credits, ABCF grading

MUS 539 Proseminar in Ethnomusicology
An introduction to the field of ethnomusicology as practiced in Europe and North America over the past century. Theoretical and methodological approaches in ethnomusicology are examined as they relate to major periods in the history of ethnomusicological disciplines.

Fall, 3 credits, ABCF grading

MUS 540 Studies in Cultural Historiography
This course is intended to promote the student’s knowledge and reflection about the study of the history of the arts as history. It is organized on the following topics: origins and philosophical foundations of the modern historical consciousness; the nature of historical knowledge and explanation; historiographic models; and origins, philosophical foundations, and genres of historical musicology.

Fall or spring, alternate years, 3 credits, ABCF grading

MUS 541 Topics in the Cross-Cultural Study of Music
Examination of a topic of current interest in the cross-cultural study of music. Readings from various intellectual traditions in the humanities and social sciences provide a context within which to appraise recent research in ethnomusicology, historical musicology, and popular music studies, and to formulate possible directions for future research. Representative topics include music and gender, music and the media, music and power, and performance and performers.

Fall or spring, 3 credits, ABCF grading

MUS 542 Ethnomusicology and Social Theory
An introduction to major schools of social theory as they may be applied to the analysis of music and related performance forms. Theoretical writings in sociology, anthropology, philosophy, cultural studies, and related fields will be paired with case studies that situate musical creation, performance, and dissemination within the unfolding of societal processes.

Fall or spring, alternate years, 3 credits, ABCF grading

MUS 543 Topics in Medieval Music
Study of a focused area in medieval music, such as the works of Guillaume de Machaut, transmission processes, and the Notre Dame repertory.

Fall or spring, 3 credits, ABCF grading

MUS 547 Topics in Baroque Music
Historical problems in music of the Baroque era. Recent topics have included German Passion settings, theories of expression and representation, and musical rhetoric.

Fall or spring, 3 credits, ABCF grading

MUS 549 Topics in 18th-Century Music
Investigation of critical, analytical, and historical issues in 18th-century music, such as the interpretation of sketches and fragments, counterpart teaching in the 1790s, and the music of Mozart.

Fall or spring, 3 credits, ABCF grading

MUS 553 Topics in 19th-Century Music
Introduction to major schools of social theory as they may be applied to the analysis of music and related performance forms. Theoretical writings in sociology, anthropology, philosophy, cultural studies, and related fields will be paired with case studies that situate musical creation, performance, and dissemination within the unfolding of societal processes.

Fall or spring, alternate years, 3 credits, ABCF grading

MUS 555 Topics in 20th-Century Music
Focused study of selected issues in music of the 20th century. Recent topics have included primitivism and primiticism; quotation, borrowing, and collage; the music of Roger Sessions; and the Second Viennese school.

Fall or spring, 3 credits, ABCF grading

MUS 557 Topics in Theory
Study of the writings of music theorists from the Middle Ages through the present day in the context of contemporary repertoires. Recent topics have included modal theory as a model for melodic construction; efforts to adapt modal theory to polyphonic practice; rhythm in theory and practice; theories of tonality from Rameau to Schenker; theoretical approaches to post-tonal and 12-tone music; and theories of timbre and texture.

Fall or spring, 3 credits, ABCF grading

MUS 559 Topics in Analysis
Intensive analytical study of selected works and exploration of analytical problems. Recent topics have included analysis and performance, melody, Xenakis and Ligeti, Beethoven’s late quartets, Berg’s Lulu, spectral music, and the string quartet since 1945.

Fall or spring, alternate years, 3 credits, ABCF grading

MUS 563 Advanced Choral Conducting A
Advanced training in preparing and conducting choral works. Students spend a semester in score study, receive individual private instruction, and are expected to participate in the rehearsing of the University Chorus, the University Chorale, and the Chamber Singers. Open only to students enrolled in graduate conducting programs.

Fall and spring, 1-2 credits, ABCF grading

MUS 564 Advanced Choral Conducting B
Advanced training in preparing and conducting choral works. Not open to students enrolled in the graduate conducting programs. Prerequisite: Instructor consent

Fall and spring, 3 credits, ABCF grading

MUS 565 Stony Brook Symphony Orchestra
Study and performance of orchestral works from the Baroque period to the present.

Fall and spring, 1-2 credits, ABCF grading

MUS 566 Camerata Singers
Study and performance of choral works for chamber chorus from all periods of music history.

Fall and spring, 1 credit, ABCF grading

MUS 567 Master Class in Orchestral Repertory
Study of orchestral parts for sections (brass, strings, woodwinds) or for individual instruments. The course emphasizes overall ensemble skills and audition preparation. Different sections directed toward specific groups. See the course listing for offerings in any particular semester.

Fall and spring, 1-2 credits, ABCF grading

MUS 568 Jazz Ensemble
Study and performance of works for jazz ensemble from the early 20th century to the present.

Fall, 1-2 credits, ABCF grading

MUS 569 Performance Problems in 20th-Century Music
A study of performance skills required in new music, with emphasis on polyrhythms,
compositional rhythms, control of tone color and dynamics, and the understanding of new methods of notation. Exercises and the study of selected 20th-century works.
Fall, 2 credits, ABCF grading

MUS 570 Introduction to the History and Performance of the String Bass in Jazz
Study of the historical development of the string bass in jazz and related improvised musics through a selection of readings and listening projects. Practical assignments will include making transcriptions of classic records and then learning to play them on bass, employing the time-proven method of “copying the masters.”
1-2 credits, ABCF grading

MUS 571 Advanced Instruction in Instrument or Voice
Individual guidance in technique and repertoire, with 30 practice hours required each week. Each student is required to perform at least one solo piece per semester, unless excused by the instructor in a written note to the Department’s graduate program committee.
Fall and spring, 1-6 credits, ABCF grading

MUS 572 Improvisation
Practical study of the skills and sources of musical improvisation, including playfulness, emotion, courage, concentration, risk, instrumental and vocal technique, patience, and trust. Improvisational skills will not be limited to any single musical style. All students will be required to improvise vocally or instrumentally.
Fall, 1-2 credits, ABCF grading

MUS 573 Chamber Music
Chamber ensembles such as the string quartet, wind quintet, solo vocal ensemble, two-piano team, and other special groups meet, each under the direction of a member of the performance faculty, for the study of works from the repertories of the respective groups, with particular attention given to the music of the 20th and 21st centuries. Required: Presence at coaching sessions, at least three hours per week of uncoached rehearsal, and at least one performance per semester.
Fall and spring, 1-2 credits, ABCF grading

MUS 574 Master Class in Solo Repertory for Instrument or Voice
Performance techniques and problems in works for instrument or voice, drawn from all historical periods. The instructor is a teacher of the specific instrument in each case, except that his or her section may be open to students of certain other instruments with his or her permission. Not offered each semester in every instrument.
Fall and spring, 1-2 credits, ABCF grading

MUS 575 Master Class in Solo Repertory before 1750
Exploration of instrumental repertory in the 17th and 18th centuries.
Fall or spring, alternate years, 2 credits, ABCF grading

MUS 576 Master Class in Performance Pedagogy
Guidance and supervision in the teaching of an instrument or voice.
2 credits, ABCF grading

MUS 577 Master Class in Performance Pedagogy
Study and performance of scenes and complete operas from the standard and 20th-century repertories. An interdisciplinary approach involving the Departments of Music and Theatre Arts.
Fall and spring, 1-2 credits, ABCF grading
May be repeated for credit

MUS 579 Opera Workshop
A thorough study of the rules of pronunciation and International Phonetic Alphabet transcription in a major language of the voice repertory: Italian, French, or German. Special attention to lyric projection of the language as it relates to voice production, listener comprehension, and musical values. Course work includes coaching in appropriate song and operatic literature. The specific language studied rotates from semester to semester.
Fall and spring, 1-2 credits, ABCF grading
May be repeated for credit

MUS 580 Vocal Diction
Continuation of MUS 581: Further exploration of techniques and repertoire.
Prerequisite: Piano major or strong keyboard background
Spring, alternate years, 2 credits, ABCF grading

MUS 581 Harpsichord for Pianists (Beginning)
Fundamentals of harpsichord techniques, touch, and repertoire for students already possessing a keyboard background.
Fall, alternate years, 2 credits, ABCF grading

MUS 582 Harpsichord for Pianists (Advanced)
Continuation of MUS 581: Further exploration of techniques and repertoire.
Prerequisite: Piano major or strong keyboard background
Spring, alternate years, 2 credits, ABCF grading

MUS 583 Continuo Realization
Practical and theoretical instruction in figured bass realization, based on the study of vocal and instrumental scores from 1600-1750. Required of students in harpsichord. Open, with consent of the instructor, to other qualified students who have some knowledge of figured bass realization.
Fall or spring, alternate years, 2 credits, ABCF grading

MUS 584 Baroque Chamber Ensemble
Study and performance of instrumental and vocal music, 1600-1750. Participants work from scholarly editions and original sources whenever possible and have the possibility of performing on replicas of early instruments. A concert is given at the end of the class term. Acceptance by audition.
Fall and spring, 1 credit, ABCF grading
May be repeated for credit

MUS 585 Early Music Performance Practice
Study and implementation of Renaissance and Baroque performance practices. Areas include brass ensemble music and lute and guitar repertories.
Fall and spring, 2 credits, ABCF grading
May be repeated for credit

MUS 586 Contemporary Chamber Players
Specially appointed chamber groups, such as the Graduate String Quartet, the Graduate Piano Trio, etc., which work under the direction of a member of the performance faculty and present concerts and workshops at the University and elsewhere.
Fall and spring, 3 credits, ABCF grading
May be repeated for credit

MUS 587 Master Class in Baroque Chamber Ensemble
Study and performance of instrumental ensemble music of the 17th and 18th centuries.
Fall or spring, alternate years, 2 credits, ABCF grading

MUS 588 Baroque Chamber Ensemble
Study and performance of instrumental and vocal music, 1600-1750. Participants work from scholarly editions and original sources whenever possible and have the possibility of performing on replicas of early instruments. A concert is given at the end of the class term. Acceptance by audition.
Fall and spring, 1 credit, ABCF grading
May be repeated for credit

MUS 589 Practicum in Professional Skills
Practical training in activities related to the professional work of a performing musician, including teaching, solo and ensemble performance, conducting, internships, and related musical work, both on and off-campus. Required of all full-time students in the M.M. performance program. All off-campus activities in fulfillment of this course must be approved by the graduate program director, who acts as supervisor for this course.
Fall, spring, and summer, 1-3 credits, S/U grading
May be repeated for credit

MUS 590 Practicum in Teaching
Instruction in the Department under the supervision of the faculty. (MUS 591 may not be included in the courses taken in fulfillment of degree requirements.)
Fall and spring, 1-3 credits, S/U grading
May be repeated for credit

MUS 591 Practicum in Teaching
Instruction in the Department under the supervision of the faculty. (MUS 591 may not be included in the courses taken in fulfillment of degree requirements.)
Fall and spring, 1-3 credits, S/U grading
May be repeated for credit

MUS 592 Seminar on the Teaching of Music
Discussion of fundamental problems in teaching music. Topics may include the explanation of musical processes; communication to non-professionals; and integration of aspects of performance, theory, history, and analysis with one another. Required of all students who teach one of the introductory undergraduate courses in musicianship, theory, or literature; to be taken during the first semester of teaching.
Fall, 1 credit, S/U grading
May be repeated for credit

MUS 593 Practicum in Performance
Individual instruction and/or coaching for professional performing experience.
Fall and spring, 0-1 credit, S/U grading
May be repeated for credit

MUS 594 Practicum in Performance
Individual instruction and/or coaching for professional performing experience.
Fall and spring, 0-1 credit, S/U grading
May be repeated for credit

MUS 595 Chamber Players
Specially appointed chamber groups, such as the Graduate String Quartet, the Graduate Piano Trio, etc., which work under the direction of a member of the performance faculty and present concerts and workshops at the University and elsewhere.
Fall and spring, 3 credits, ABCF grading
May be repeated for credit

MUS 596 Contemporary Chamber Players
The study and performance of music of the 20th and 21st centuries for ensemble, ranging from duo to larger conducted groups. Repertoire includes 20th-century classics as well as new works, including compositions written by Stony Brook students. A full schedule of public performances takes place.
Prerequisite: Permission of instructors
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

MUS 597 Jazz Ensemble
Study and performance of works for jazz ensemble.
Prerequisite: Permission; audition required
Fall and spring, 0-1 credit, ABCF grading
May be repeated for credit
MUS 599 Independent Studies
Individual studies under the guidance of a faculty member. Each student must submit to the graduate studies committee of the Department a written prospectus of the work he or she intends to pursue, with the amount of credit proposed, together with the written endorsement of the prospective instructor. Approval of the graduate studies committee is required; hence this material should be submitted as soon as possible, and in any case within the first two weeks of the semester (or the first week of a summer session). May be repeated for credit. 0-16 credits, ABCF grading

MUS 615 Seminar in Electronic Music Composition
Individual compositions of substantial proportions in electronic or concrete music media. Prerequisite: Open only to qualified students in a music degree program. MUS 516 or the equivalent. May be repeated for credit. Fall and spring, 3 credits, ABCF grading

MUS 623 Directed Study in Composition
Intended for doctoral students in composition. May be repeated for credit. Fall and spring, 1-12 credits, ABCF grading

MUS 661 Directed Study in Conducting
Intended for doctoral students in conducting. May be repeated for credit. Fall and spring, 1-12 credits, ABCF grading

MUS 671 Directed Study in Instrumental and Vocal Performance
Intended for doctoral students in instrumental and vocal performance. May be repeated for credit. Fall and spring, 1-12 credits, ABCF grading

MUS 690 Advanced Practicum in Professional Skills
Practical training through activities related to the professional work of a performing musician, including teaching, solo and ensemble performance, internships, and related musical work, both on-campus and off-campus. Required for all full-time students in the D.M.A. performance program. All off-campus activities in fulfillment of this course must be approved by the graduate program director, who acts as a supervisor for this course. May be repeated for credit. Fall, spring, and summer, 1-3 credits, S/U grading

MUS 695 Doctoral Essay Tutorial
Development of an essay in music history or analysis to satisfy the essay requirement of the Doctor of Musical Arts degree. Students may enroll in this course only after completing the required graduate seminars or preseminars (see program requirements) with a grade of “B” or better, in both the seminar and the essay to be developed. Prerequisite: MUS 502, 503, 504, 507, 535, 537-555, 557, or 559. May be repeated for credit. Fall and spring, 1-2 credits, ABCF grading

MUS 696 Doctoral Colloquium
Students are required to enroll in MUS 696 in the semester in which the Ph.D. colloquium or the D.M.A. lecture-recital is given. The instructor, chosen in consultation with the directing committee, acts as an advisor or tutor, and signals to the graduate program committee that the colloquium or lecture-recital may be given. Fall and spring, 1 credit, S/U grading

MUS 697 Directed Reading
Intended for preparation for the preliminary examinations and related requirements. May be repeated for credit. Fall and spring, 1-12 credits, S/U grading

MUS 699 Dissertation Research On Campus
Intended for work in the area of the dissertation. Prerequisite: Must be advanced to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab. May be repeated for credit. Fall, spring, and summer; Prerequisite: G5 Standing; 1-12 credits, S/U grading

MUS 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor. May be repeated for credit. Fall, spring, and summer; Prerequisite: G5 Standing; 1-9 credits, S/U grading

MUS 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor. May be repeated for credit. Fall, spring, and summer; Prerequisite: G5 Standing; 1-9 credits, S/U grading

MUS 800 Summer Research
Students who receive support for summer research must register for this course, which gives them full-time status. 0 credit, S/U grading

MUS 850 Summer Teaching
Students who receive support for summer teaching must register for this course, which gives them full-time status. 0 credit, S/U grading
Neuroscience (NEU)

Chair: Lorna Role, Life Sciences Building Room 518, (631) 632-8616
Graduate Program Director: Lonnie Wollmuth, Life Sciences Building Room 520, (631) 632-8630
Graduate Administrator: Diane Godden, Life Sciences Building Room 520, (631) 632-8630

Degree awarded: Ph.D. in Neuroscience

The graduate program in Neuroscience, in the College of Arts and Sciences, offers doctoral training in the rapidly expanding field of neuroscience. Through coursework and independent research, students are trained to approach research problems in neuroscience with a broad perspective. Expertise in the areas of molecular and biochemical control of development, properties of receptors and ion channels in relation to cellular physiology, the cellular basis of integrative functions, and the structural basis for communication among neurons are available to all students in the program. Graduate students will receive in-depth research training in molecular, biochemical, physiological, behavioral, or anatomical sciences. In addition, the program offers unique opportunities to draw from one or more of these disciplines through multidisciplinary, cosponsored research projects. A program of highly interactive faculty and students provides an exciting focus for research training.

Facilities

Program faculty are located in the Life Sciences Building, Centers for Molecular Medicine, and Health Sciences Center on the Stony Brook campus and at Brookhaven National Laboratory and the Cold Spring Harbor Laboratory. Molecular facilities provide for analysis of protein and DNA biochemistry, including microsequencing, peptide mapping, synthesis of oligonucleotides and peptides, cellular transfection, and production of transgenic animals. Wide-ranging facilities for cellular and integrative electrophysiology exist for studies on dissociated neurons, brain slice preparations, neurons in situ, and genetically engineered cells in culture. Imaging facilities permit anatomical reconstruction, fluorescence measurements, and the use of ion-sensitive indicators on both conventional and confocal microscopes. An image analysis core is linked to a scanning and transmission electron microscopy facility.

Admission

Students are expected to fulfill basic requirements of the Graduate School: a bachelor's degree from a recognized university, a grade point average corresponding to B or higher, evidence of the capacity to do satisfactory graduate work as evidenced by scores on the Graduate Record Examination (GRE), and the recommendations of three former instructors. In addition, all international students must score a minimum of 600 on the Test of English as a Foreign Language (TOEFL). The program in Neuroscience has the following additional requirements: one year of calculus, physics, and chemistry, and demonstrated proficiency in biological sciences. Deficiencies in the program requirements do not preclude admission and special consideration will be made to promising applicants.

Faculty

Distinguished Professors

Professors

Brink, Peter, Ph.D., 1976, University of Illinois: Electrotonic synapses.

Frohman, Michael, Ph.D., M.D., 1985, University of Pennsylvania: Regulation of cytosis and cell shape by signaling proteins.

Matthews, Gary G., Ph.D., 1975, University of Pennsylvania: Cellular and molecular neurobiology of the retina.

McKinnon, David, Ph.D., 1987, Australian National University: Molecular control of neuron firing properties.

McLaughlin, Stuart, Ph.D., 1967, University of British Columbia, Canada: Biophysics of signal transduction.

Morin, Lawrence P., Ph.D., 1974, Rutgers University: Neural control of mammalian circadian rhythms.

Yazulla, Stephen, Ph.D., 1971, University of Delaware: Synaptic circuitry of the vertebrate retina.

Associate Professors

Kernan, Maurice, Ph.D., 1990, University of Wisconsin: Drosophila mechanosensory transduction; differentiation of sensory cilia and sperm.

Kritzer, Mary, Ph.D., 1989, Yale University: Sex differences in cortical microcircuity.

Siegel, Howard, Ph.D., 1996, Albert Einstein College of Medicine: Molecular genetics of vertebrate neural patterning.

Solomon, Irene C., Ph.D., 1994, University of California, Davis: Neural control of respiratory motor output and fast oscillatory rhythms.

Talavage, David A., Ph.D., 1981, University of Minnesota: Neuregulin signaling and synaptic homeostasis.

Tsiroka, Styliani-Anna E., Ph.D., 1989, University of Thessaloniki: Neuronal-microglial interactions in the physiology and pathology of the central nervous system.

Wollmuth, Lonnie, Graduate Program Director, Ph.D., 1992, University of Washington: Molecular mechanisms of synaptic transmission.

Assistant Professors

Colognato, Holly, Ph.D., 1999, Rutgers University: Molecular mechanisms that control oligodendrocyte function during nervous system development and during disease.
Adjunct Faculty

Cline, Hollis, 7 Ph.D., 1985, University of California, Berkeley: Molecular control of neuronal plasticity.

Dubnau, Josh, 7 Ph.D., 1995, Columbia University: Genetic dissection of memory in Drosophila.

Enikolopov, Grigori, 7 Ph.D., 1978, Academy of Russia: Nitric oxide; neuron differentiation; survival.

Gifford, Andrew N., 6 Ph.D., 1989, St. Andrews University, Scotland: Pharmacology of brain receptors and neurotransmitter release.

Huang, Z. Josh, 7 Ph.D., 1994, Brandeis University: Development and plasticity of the neocortical GABAergic circuits.

Mainen, Zachary, 7 Ph.D., 1995, University of California, San Diego: Neural coding and computations underlying rodent olfactory-guided behavior.

Thanos, Peter, 7 Ph.D., 1997, Eastern Virginia Medical School: Behavioral neuropharmacology and neuroimaging of addiction (including alcohol, drugs, and food) and ADHD.

Tully, Tim, 7 Ph.D., 1981, University of Illinois: Genetic basis of memory.

Zador, Anthony, 5 M.D., 7 Ph.D., 1994, Yale University: How does the cortex solve the cocktail party problem?

Number of teaching, graduate, and research assistants, Fall 2007: 32

1) Primary appointment with Pediatrics
2) Primary appointment with Pharmacology
3) Primary appointment with Physiology and Biophysics
4) Primary appointment with Psychiatry
5) Primary appointment with Psychology
6) Primary appointment with Brookhaven National Laboratory
7) Primary appointment with Cold Spring Harbor Laboratory

Degree Requirements

Requirements for the M.A. Degree

The graduate program in Neuroscience normally does not accept a student whose goal is an M.A. degree. In exceptional instances, a student already in the program may be awarded an M.A. degree upon completion of an approved course of study, including 30 graduate credit hours, a preliminary examination, a research thesis, and the minimum requirements of the Graduate School.

Requirements for the Ph.D. Degree

A. Course Requirements

1. Core courses in neuroscience (BNB 561, BNB 562, BNB 563, BNB 564). A four-semester series taught by members of the program; the student is introduced to a broad variety of topics. These will be taken in the fall and spring semesters of the first and second years.

2. Laboratory Rotations in Neuroscience (BNB 555). A two-semester course in the fall and spring semesters of the first year. Students conduct research rotations in laboratories of three program members and present oral reports on their research.

3. Writing Neuroscience (BNB 551). This course is taught in the fall semester of the first year. It provides training in the basics of scientific communication, with a strong emphasis on writing and revision. Practical exercises are designed to give experience and feedback in commonly needed aspects of scientific writing.

4. Advanced Neurobiology and Behavior Seminar (BNB 697). Seminar presentations delivered by faculty, students, associates, and visiting speakers.

5. Electives. At least two additional graduate-level courses in various biological, physical, or mathematical sciences must be selected by the student in consultation with the student’s advisor. Students may take additional elective courses if they desire.

B. Comprehensive Examination

At the end of the second year of study, each student must take a comprehensive examination. The examination consists of the preparation and defense of a written proposal in the area and on the topic in which the student expects to do their thesis research.

C. Advancement to Candidacy

The faculty will recommend a student to the Graduate School for advancement to candidacy upon satisfactory completion of all course requirements and the comprehensive examination.

D. Ph.D. Dissertation

A dissertation that constitutes an original and significant contribution to the field of neuroscience is required for the Ph.D. The work must be of a quality acceptable for publication in a recognized scientific journal. At the end of the first year, students normally initiate a dissertation research program in a program faculty's laboratory. After advancement to candidacy, the student and advisor will assemble an advisory committee to guide the dissertation research. Upon completion of the dissertation research, the student will present a seminar based on the dissertation. Following this the student will be given an oral examination on the dissertation research and related areas by the dissertation committee.

E. Teaching Requirements

To gain experience in teaching, the program requires that all students serve as teaching assistants during the first two years of study. Usually, TA assignments are to courses taught by the program faculty. Assignments are made to minimize impact on research productivity in the second year of study.

F. Residence Requirement

The University requires at least two consecutive semesters of full-time study. The demands of the course of study necessitate a longer period of residence.

G. Academic Standing

All students must maintain a 3.0 grade point average at all times. Due to the importance of BNB 561-564 as the basis for advanced study in Neuroscience, students who have a grade of less than a B in these courses must repeat them satisfactorily prior to taking the comprehensive examination. Any student who fails to receive a grade of B or better in more than one required course will be reviewed for possible termination from the program. Research (BNB 599 and 699) is graded on a satisfactory/unsatisfactory basis. Any student who receives a grade of U in a research course will be reviewed for possible termination from the program.
Courses

BNB 531 Advanced Neurobiology
Advanced seminar course centered around a topic to be determined. Examples include neurochemistry, membrane biophysics, neuronal plasticity, synaptic mechanisms, molecular neurobiology, developmental neurobiology. Students are expected to read original literature and deliver oral presentations of material. Prerequisite: Permission of instructor F, 3 credits, ABCF grading

BNB 551 Writing Neuroscience
Seminar course for doctoral students in Neuroscience providing practical instruction in written communication in Neuroscience. Topics include writing effective abstracts, cover letters, figure captions, and grant-specific aims, among others. Prerequisite: Admission to graduate program in Neuroscience or permission of instructor F, 1-2 credits, ABCF grading

BNB 552 Neurobiological Techniques
A series of laboratory exercises designed to give students hands-on experience in the basic laboratory techniques of contemporary neuroscience. Includes intracellular and extracellular recording, neuronal tissue culture, neuroanatomical techniques, and integrative physiology. F, every year, 3 credits, ABCF grading

BNB 555 Laboratory Rotations in Neuroscience
Course for doctoral students in Neuroscience in which students participate in three formal laboratory rotations in program faculty laboratories during the first year. Students make oral presentations for each rotation. Instruction is provided in how to organize and present material in a seminar format, including the proper use of visual aids. Enrollment restricted to students in the graduate program in Neuroscience. F, every spring, 1-3 credits, S/U grading May be repeated once for credit

BNB 560 Laboratory in Neuroanatomy
This course consists of a series of laboratory exercises and supplemental lectures providing an overview of the structural organization of the nervous system. The mammalian nervous system and its sensory, motor, and cognitive components are emphasized. Laboratories include examination of whole brains and histological sections, and some hands-on experience with basic neuroanatomical techniques. Computer programs illustrating the three-dimensional and circuit organization of the human brain are also used. Prerequisites: BIO 221 or equivalent and permission of instructor F, 2 credits, ABCF grading

BNB 561 Introduction to Neuroscience I
First of a two-semester core course introducing students to basic principles of neuroscience. The major focus is cellular and molecular neuroscience. Topics covered include the ionic basis of resting potentials and electrical excitability, the structure, function and molecular biology of voltage- and ligand-gated ion channels, exocytosis, cellular networks, and gene regulation. F, 3 credits, ABCF grading

BNB 562 Introduction to Neuroscience II
Second of two-semester core course introducing students to basic principles of neuroscience. The major focus is systems neuroscience. Topics covered include analyses of all major sensory systems, motor systems, and systems mediating higher order, cognitive functions in the nervous system. Fall, 4 credits, ABCF grading

BNB 563 Advanced Topics in Neuroscience I
This course includes one to three separate modules taught by different faculty on focused topics in neuroscience, typically focusing on synaptic plasticity and development. F, 1-3 credits, ABCF grading

BNB 564 Advanced Topics in Neuroscience II
This course includes one to three separate modules taught by different faculty on focused topics in neuroscience. Spring, F, 1-3 credits, ABCF grading

BNB 565 Developmental Neuroscience
A modular course introducing concepts in the development of the nervous system. Topics can include neuroembryology, neuronal differentiation, synapse formation, and specificity and plasticity of connections in vertebrates and invertebrates. Fall, 1 credit, ABCF grading

BNB 599 Research
Original investigation undertaken with supervision of a member of the staff. F, 1-12 credits, S/U grading May be repeated for credit

BNB 655 Neuropharmacology
An advanced course for graduate students interested in developing an understanding of neuropharmacology and research on this topic. Following a general introduction to the nerve cell structure, synaptic and chemical transmission, three themes receptors, receptors as channels, and G-protein-coupled receptors are developed. Recent advances in cell and molecular biology provide the framework for instruction and discussion. This course is offered as both HBH 655 and BNB 655. Prerequisites: Admission to graduate Health Sciences Center program Spring, even years, 3 credits, ABCF grading

BNB 697 Advanced Neurobiology and Behavior Seminar
Seminar presentations delivered by faculty, associates, students, and visiting speakers. F, 1 credit, S/U grading May be repeated for credit

BNB 699 Dissertation Research On Campus
Original investigations undertaken as part of the Ph.D. program under the supervision of the dissertation committee. Prerequisite: Must be advanced to candidacy (G5); major portion of research must take place off campus, at Cold Spring Harbor Lab or Brookhaven National Lab Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

BNB 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

BNB 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor Fall, spring, and summer, 1-9 credits, S/U grading May be repeated for credit

BNB 800 Summer Research
0 credit, S/U grading May be repeated for credit
The School of Nursing is one of five professional schools within the Health Sciences Center. The mission of the School of Nursing is to provide accessible high-quality undergraduate, graduate, and related nursing education to diverse geographically dispersed students through innovative programs that reflect current trends and promote professional growth to address global health care concerns.

Three degree programs are offered: a Bachelor of Science with a major in nursing; a Master of Science; and Doctor of Nursing Practice (DNP). The undergraduate curriculum prepares basic baccalaureate and registered nurse students to become knowledgeable participants in the delivery of comprehensive health care in hospitals and other health care agencies. The graduate program prepares students for advanced practice roles as nurse practitioners/clinical nurse specialists in adult health, primary acute and critical care, child health, perinatal/women’s health/psychiatric/mental health, family health/primary care, and as nurse midwives. Principles of evidence-based practice for vulnerable populations and health care policy development are inherent components of the educational programs.

Graduate Degrees Awarded
Master of Science specialties:
• Adult Health: Primary, Acute, and Critical Care
• Child Health
• Nurse Midwifery
• Perinatal/Neonatal Health
• Perinatal/Women’s Health
• Psychiatric/Mental Health Nursing
• Family Health Nursing

Doctor of Nursing Practice

Advanced Graduate Certificates Awarded
• Advanced Graduate Certificate as an Adult Health Nurse Practitioner
• Advanced Graduate Certificate as a Child Health Nurse Practitioner
• Advanced Graduate Certificate as a Nurse Midwife
• Advanced Graduate Certificate as a Perinatal/Women’s Health Nurse Practitioner
• Advanced Graduate Certificate as a Neonatal Nurse Practitioner

• Advanced Graduate Certificate as a Community/Mental Health Nurse Practitioner
• Advanced Graduate Certificate as a Family Health Nurse Practitioner

Master’s Completion Programs
• Certified Nurse Midwives

Certified Nurse Practitioners and/or Certified Nurse Midwives may apply to a Master’s Completion Program in their specialty.

Further information may be obtained from:
Kathleen Bratby, M.S.N., R.N.
Assistant Dean for Students
Stony Brook University School of Nursing
Health Sciences Center Level 2
Stony Brook, NY 11794-8240
(631) 444-3200, Fax (631) 444-6628
www.nursing.stonybrook.edu
The graduate program in Oral Biology and Pathology, within the Health Sciences Center, offers a program of study and research leading to the M.S. and Ph.D. degrees. A separate track is available for dental graduates who wish to pursue a combined Ph.D.-General Dentistry or Clinical Specialty degree. Programs of study are also available to individuals with a Ph.D. or a clinical degree (dental or medical) desiring further postdoctoral research training or experience. The M.S. curriculum is of approximately two years’ duration and is particularly suited for those dental graduates who wish to obtain further basic science training before entering or while obtaining a clinical specialty. The graduate program in Oral Biology and Pathology is also of particular interest to industrial-based scientists seeking additional training and advanced degrees. While the Department is interested in all aspects of oral biology, active programs of research presently being conducted include the following: development, metabolism, and control of the oral microflora on the teeth and various epithelial surfaces including those of the mouth, skin, and vagina; oral putrefaction, malodor, and gingivitis; pathogenesis of periodontitis; interrelationship between systemic and oral diseases; mechanisms and therapy of dental hypersensitivity; ultrastructure and metabolism of healthy and diseased periodontal tissues with an emphasis on remodeling and matrix metalloproteinas; chemistry and crystallography of the biological calcium phosphates; biology of epithelial growth and differentiation; epithelial gene therapy; mechanisms of epidermal and oral carcinogenesis; wound repair; sebocyte biology; biology of skin and mucosal grafting; acquired and innate immunity; inflammation and fibrosis. Further details may be obtained from the graduate program director.

Facilities

The Department of Oral Biology and Pathology currently occupies 18,000 square feet of research space. Facilities include scanning electron microscope; computerized micro hardness tester; isotope counters and preparative and analytical ultracentrifuges; infrared, atomic absorption, ultraviolet/visible spectrophotometers; a mass spectrophotometer; an ophthalmometer; gas and high-pressure liquid chromatography systems; high-voltage, particle-free flow, and polyacrylamide gel electrophoresis systems; computer equipment of various types; fluorescence densitometer, spectrophotometer, and microscopes of various types; microdensitometer; automated colony counter; amino acid analyzer; 75-liter steam sterilizable fermenter; autoclaves and ethylene oxide sterilizer; tumor virus tissue culture facility; specialized anaerobic bacteriology, animal, and clinical laboratories; extensive tissue culture facilities especially for growth of keratinocytes, fibroblasts, and other cell types.

The Living Skin Bank, which will provide a core facility for the production of clinical-grade cell-based therapies, is housed in the Department of Oral Biology and Pathology, under the direction of Marcia Simon. Research laboratories are available in the Dental Care Center for clinical research projects. Graduate students have access to the University central computer facility as well as high-speed Ethernet links connecting the Department to e-mail, Medline, and the Internet through servers located in the University Hospital.

Admission

In addition to the minimum Graduate School requirements, the following are required:

A. A bachelor's degree and grade point average of 3.3 in the sciences and 3.0 overall are required for admission into either the M.S. or Ph.D. program in Oral Biology and Pathology;

B. In addition to original transcripts, applicants are required to submit three letters of recommendation and proof of satisfactory performance on the General Aptitude and Advanced parts of the Graduate Record Examination (GRE);

C. All applicants are carefully screened by the credentials committee of the Department. Interviews and discussions are arranged with faculty members and graduate students where possible;

D. Formal approval for acceptance into the program is given by the Graduate School.

Faculty

Distinguished Professors

Kleinberg, Israel, Chair, D.D.S., 1952, University of Toronto, Canada; Ph.D., 1958, University of Durham, Newcastle upon Tyne, England: Identification of peptides and salivary factors involved in the growth and metabolism of oral mixed bacterial populations; pharmacological application of salivary components in the control of dental caries and oral malodor; mechanisms of dental plaque formation; control of microbial populations (oral, gastrointestinal, vaginal) with growth factors and growth inhibitors; new diagnostic techniques and therapeutics, technology transfer.

Professors

Ryan, Maria E., D.D.S., 1989, Ph.D., 1998, Stony Brook University; Cert. Periodontics, 1993, University of Connecticut: Connective tissue biology; the role of growth factors in connective tissue metabolism; diagnostic technology as it applies to preventative and therapeutic measures in dentistry; host modulatory therapies.
ORAL BIOLOGY AND PATHOLOGY

Simon, Marcia, Graduate Program Director and Director of the Living Skin Bank, Ph.D., 1981, Brandeis University: Biology of oral and cutaneous epithelial and mesenchymal cells, retinoid metabolism and the control of differentiation, wound healing, development and assessment of products for treatment of chemical and thermal burn injury.

Associate Professors
Ghazizadeh, Soosan, Ph.D., 1994, Stony Brook University: Epithelial stem cell biology; hair follicle development; immunological responses in gene therapy; cutaneous gene therapy.
Walker, Stephen G., M.Sc., 1987, University of Guelph, Canada; Ph.D., 1994, University of British Columbia, Canada: Analysis of the cell surface proteins and carbohydrates of Treponema pectinovorum and how these molecules interact with the environment. (T. pectinovorum is an anaerobic spirochete that flourishes in the diseased periodontal pocket of humans and may contribute to periodontitis).

Assistant Professors

Adjunct Professors
Cutler, Christopher, D.D.S., 1986, Emory University School of Dentistry, Ph.D., 1990, Emory University School of Medicine; Certificate of Periodontics, 1990, Emory University School of Post-graduate Dentistry: Innate immunity, inflammation, pathogenesis of chronic periodontitis, dendritic cells/langerhans cells, anaerobic microbiology, Porphyromonas gingivalis.

Professors Emeritus
Kaufman, Hershall W., D.M.D., 1963, Ph.D., 1967, University of Manitoba, Canada: Calcium phosphate chemistry as it relates to dental hypersensitivity, dental caries, and calculus formation and prevention; rheological properties of saliva and their relation to oral health; design, management, and statistical analysis of clinical research trials.
McNamara, Thomas F., Ph.D., 1959, Catholic University of America: Microbial etiology of dental caries and periodontal disease; immune mechanisms involved in dental pathogenesis; viral infection in oral microorganisms; significance of secretory IgA in caries prevention.
Pollock, Jerry J., M.Sc., 1966, University of Toronto, Canada; Ph.D., 1969, Weizmann Institute of Science, Rehovot, Israel: Salivary host defense systems; free radicals, antioxidants and nutritional therapy in dental and systemic disease.
Ramamurthy, Nungavarm S., Research Professor, M.V.Sc., 1965, University of Agra, India; Ph.D., 1970, University of Manitoba, Canada: Collagen synthesis and remodeling in healthy and systemic disease; leukocyte metabolism and chemotaxis in diabetes; regulation of mammalian metallo-proteinases (MMPS) and development of synthetic inhibitors for MMPS.

Research Faculty
Gao, Jay G., Ph.D., 1989, Institute of Genetics, Fudan University, China Shanghai: Cutaneous and hepatic retinoid metabolism, regulation of lipolysis and lipogenesis.
Jasvir, Grewal, Ph.D., 1997, Post Graduate Institute of Medical Education and Research, Chandigarh, India: Studies on the kinetics of cellular immune response in experimental cysticercosis in pigs infected with Taenia solium.

Clinical Adjunct Faculty
Cooper, Barry, D.D.S.
Goren, Arthur, D.D.S.
Kittay, Irving, D.D.S.
Phelan, Joan, D.D.S.
Westbay, George, D.D.S.
Wolf, Mark, D.D.S., Ph.D.
Xu, Ling, D.D.S., Ph.D.

Degree Requirements
In addition to the minimum degree requirements of the Graduate School, the following are required:
A. All students must complete all or part of the Oral Biology and Pathology Oral Systems course. M.S. students must, in addition, complete two graduate courses selected from offerings within and outside the Department. Ph.D. students are generally required to complete four to six course offerings at the graduate level.

B. To advance to Ph.D. candidacy, the student must pass an advancement-to-candidacy examination. To do this, the student must prepare a detailed written proposal in the format of a National Institutes of Health research grant application. A public seminar is presented by the student to members of his or her advisory committee, the Department, and the University community at large, in which the student defends the proposal. This is followed by a further defense by the student before his or her advisory committee. A determination for advancement to candidacy is then made and forwarded to the Graduate School for official approval.

C. The candidacy examination is used to examine the student’s ability to handle the intellectual and communicative processes involved in carrying out independent research.

D. An original research thesis is required for completion of both the M.S. and Ph.D. degrees. For the Ph.D. degree, the format of the thesis defense is similar to the advancement-to-candidacy examination in that the student defends his or her thesis in a public seminar followed by a second examination by the student’s dissertation committee. For the M.S. degree, the student defends the thesis to the student’s dissertation committee. A public defense of the thesis is not required. If recommended for approval, this determination is submitted to the Graduate School, which makes the final decision to award the degree.

E. Each student has the opportunity to engage in various aspects of the teaching program of the Department, and a major effort is made to assist students to attend and present papers at various scientific meetings.
Courses
HDO 500 Biology of the Oral Mineralized Tissues
This course deals with the basic chemistry, crystallography, ultrastructure, and metabolism of the calcium phosphates involved in the formation and physiological and pathological resorption of the various mineralized tissues found in or associated with the oral cavity (enamel, dentin, cementum, bone). Ectopic calculus formation will be examined.
Prerequisites: HDO 560, 561, 562, and 563 or their equivalent
Fall and spring, 3 credits, ABCF grading

HDO 501 Oral Biology I
Deals with the molecular structure, biochemistry, and physiology and developmental anatomy of the systems constituting the oral apparatus. Covers the embryological development of the face and oral cavity, the biology of the oral mucous membranes, and the biology of the dental mineralized tissues. Thirty-one course hours. 0 credit, ABCF grading

HDO 510 Salivary Metabolism and Secretion
Consideration is given to the normal and abnormal structure and function of the glandular systems found in the oral cavity. The composition, regulation, and functions of the secretions from the major and minor salivary glands will receive particular attention.
Prerequisites: HDO 560, 561, 562, and 563 or their equivalent; permission of instructor
Fall and spring, 3 credits, ABCF grading

HDO 520 Oral Microbial Systems
Consideration is given to the structural composition, metabolism, and environmental relationships of the bacterial systems formed and in association with the oral hard and soft tissues. Specific and mixed bacterial populations, such as those resident on extra-oral mucosal surfaces and the skin and their role in oral disease will be dealt with.
Prerequisite: HDO 560, 561, 562, and 563 or their equivalent
Fall and spring, 3 credits, ABCF grading

HDO 530 Molecular Biology and Pathology of the Periodontium
This course deals with the ultrastructure and biochemical composition of the periodontal tissues, remodeling of the extracellular matrix with an emphasis on the role of metalloproteinases; the microbial interrelations with the organic and inorganic components of the periodontal tissues, the biochemical dynamics of gingival inflammation and wound healing, and the metabolic processes responsible for the composition and flow of gingival crevicular fluid.
Prerequisites: HDO 560, 561, and 563 or their equivalent
Fall and spring, 3 credits, ABCF grading

HDO 535 Epithelial Keratinization and Differentiation
The course examines the growth and differentiation of stratified squamous epithelia. Particular emphasis is placed on molecular events involved in the differentiation program. Consideration is also given to mechanisms involved in cutaneous disorders.
Prerequisites: Permission of instructor; HBP 531 suggested; students must have had a background in cellular biochemistry

HDO 550 Oral Diagnostics and Therapeutic Technology, Lectures, and Laboratory Techniques
Recent advances in the use and development of research technology for the early diagnosis and treatment monitoring of oral and systemic disease. Special attention is paid to the principles of technology transfer including patents and patenting; searching of online databases is a key component. The course includes relationships of dry mouth to salivary physiology, diabetes, and drug medications; salivary film measurements, wetting of oral surfaces, visco-elasticity and lubricity; the use of the Periotron and enzyme assays for the diagnosis of gingivitis and periodontal disease; instrumentation used in sensitive teeth measurement and evaluation of treatment effectiveness using oral compositions and iontophoresis; oral candidiasis and denture stomatitis and early detection and causes of dental caries; oral malodor measurements including use of the Halimeter and its use in the formulation of oral compositions. Application to clinical practice and clinical studies is covered.
Prerequisites: HDO 560, 561, 562, and 563 or their equivalent; permission of instructor
Fall and spring, 3 credits, ABCF grading

HDO 560 Oral Biology and Pathology I
The first of four comprehensive courses on molecular structure, biochemical and physiological function, developmental anatomy and pathology of the various systems that constitute the oral apparatus. Covers the embryological development of the face and oral cavity and the biology and pathology of the oral mineralized tissues.
Prerequisites: Undergraduate degree in basic science; permission of instructor
Fall and spring, 3 credits, ABCF grading

HDO 561 Oral Biology and Pathology II
The second of four comprehensive courses on molecular structure, biochemical and physiological function, developmental anatomy and pathology of the various systems that constitute the oral apparatus. Covers the biology and pathology of the periodontal structures.
Prerequisites: Undergraduate degree in basic science; permission of instructor
Fall and spring, 3 credits, ABCF grading

HDO 562 Oral Biology and Pathology III
This course is the third of four comprehensive courses on molecular structure, biochemical and physiological function, developmental anatomy, and pathology of the various systems that constitute the oral apparatus. The course consists of the following two units of instruction: (1) the biology and pathology of the salivary glands and their products and (2) the biology and pathology of the periodontal structures.
Prerequisites: Undergraduate degree in basic science; permission of instructor
Fall and spring, 3 credits, ABCF grading

HDO 563 Oral Biology and Pathology IV
This course is the last of four comprehensive courses on molecular structure, biochemical and physiological function, developmental anatomy and pathology of the various systems that constitute the oral apparatus. Covers the biology and pathology of the oral sensory systems and the biology and pathology of oral motor systems.
Prerequisites: Undergraduate degree in basic science; permission of instructor; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HDO 590 Research Projects in Oral Biology and Pathology
Individual laboratory projects closely supervised by faculty members to be carried out in their research laboratories.
Prerequisite: Enrollment in a master's or doctoral program
3 credits, ABCF grading
May be repeated up to five times for credit

HDO 595 Oral Biology and Pathology
A continuation of HDO 501 covering the biology of the dental supporting tissues, the biology of the salivary glands and their products, and the microbiology of the oral cavity. Eighty-four course hours
Prerequisites: HDO 501
6 credit, ABCF grading

HDO 599 Graduate Research
Original investigations undertaken with supervision of a faculty member.
1-12 credits, ABCF grading
May be repeated up to five times for credit

HDO 601 Oral Biology II
An advanced study of HDO 501 covering the biology of the dental supporting tissues, the biology of the salivary glands and their products, and the microbiology of the oral cavity.
30 credit hours
Prerequisite: Must be advanced to candidacy

HDO 690 Oral Biology and Pathology Seminars
Research seminars by students, staff, and visiting scientists.
Prerequisites: Permission of instructor
Fall and spring, 1 credit, ABCF grading
May be repeated up to ten times for credit

HDO 695 Oral Biology and Pathology Teaching Practicum
Practice instruction in the teaching of oral biology and pathology at the undergraduate level carried out under faculty orientation and supervision.
Prerequisite: Permission of instructor
3 credits, ABCF grading

HDO 699 Thesis Research Oral Biology and Pathology
Dissertation research.
Prerequisites: Advancement to candidacy
Fall, spring, and summer, 1-9 credits, ABCF grading
May be repeated for credit

HDO 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy

283
Major portion of research will take place off-campus, but in the United States and/or U.S. provinces. Please note, Brookhaven National Lab and Cold Spring Harbor Lab are considered on-campus. All international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.

Fall, spring, summer, 1-9 credits, S/U grading
May be repeated for credit

HDO 701 Oral Biology III
A continuation of HDO 601, covering the oral motor and sensory systems. Twenty-six course hours.
Prerequisites: HDO 601
0 credit, ABCF grading

HDO 702 Oral Pathology
Covers the clinical and histopathologic manifestations of acquired, inherited, and neoplastic diseases of the human oral cavity. Includes benign and malignant tumors of bone, odontogenic, and non-odontogenic cysts and tumors, mucosal and salivary gland diseases, and oral manifestations of systemic diseases. Sixty-two course hours.
Prerequisites: HDO 601
0 credit, ABCF grading

HDO 703 Oral Pathology Conference I
Clinicopathologic case presentations and development of differential diagnosis skills. Sixteen course hours.
Prerequisite: HD 702
0 credit, ABCF grading

HDO 704 Translational Oral Biology
Covers the biochemical, physiological, microbiological, and electronic principles involved in a variety of techniques used as aids in the diagnosis of oral diseases. Thirty-seven course hours.
Prerequisite: HDO 601
0 credit, ABCF grading

HDO 705 Oral Medicine
Introduces the principles of patient care related to stomatologic and dermatologic disease, neurologic abnormalities, hematologic disturbances, and the medically compromised patient. Sixteen course hours.
Prerequisites: HDO 701
0 credit, ABCF grading

HDO 707 Clinical Pharmacology
Covers pharmacology in dental practice emphasizing clinical usage of antibiotics, sedatives, tranquilizers, and analgesics. Drug interactions and side effects are discussed. Eighteen course hours.
Prerequisite: HD 608
0 credit, ABCF grading

HDO 803 Oral Pathology Conference II
Clinicopathologic case presentations and development of differential diagnosis skills. Eleven course hours.
Prerequisites: HDO 702, HDO 703
0 credit, ABCF grading

HDO 805 Summer Research
Prerequisite: Admission to graduate Health Sciences Center program
S/U grading

HDO 821 Year IV Clinic: Oral Diagnostics
The clinical continuation of HDO 704 in which the principals of oral diagnostics are applied to patient care. Thirty-six course hours.
Prerequisites: HDO 704
0 credit, ABCF grading
The Department of Philosophy, in the College of Arts and Sciences, offers programs leading to the Master of Arts in Philosophy and to the Doctor of Philosophy.

The doctoral program offers a rare opportunity to integrate the study of the history of philosophy with an exploration of contemporary philosophical methods and to apply an interdisciplinary approach to the framing and treatment of philosophical problems. The Department of Philosophy is the sponsor of a Transatlantic Philosophical Collegium that offers advanced students opportunity for extended study at the University of Wuppertal. Departmentally based, funded exchanges with the University of Tübingen and the University of Paris give students further opportunity to study abroad.

There are three general aims of the doctoral program:

1. To cultivate and make explicit the values and principles of the principal contemporary styles of philosophical reasoning;
2. To investigate the areas between philosophy and other disciplines that involve methodological, conceptual, and historical exchanges between philosophy and these other disciplines;
3. To provide an understanding of the history, major figures, and diverse problems of philosophy.

M.A. in Philosophy Curriculum and Degree Requirements

For the master’s degree, a student must take 30 course credits, i.e., the equivalent of ten courses. Some of these courses are listed below. The full list will be revised from time to time; of the 30 credits, six can be taken as independent study.

In addition, three credits are to be earned by registering for an M.A. thesis, to be directed by a Stony Brook Philosophy faculty member.

Advanced Graduate Certificate (AGC) in Art and Philosophy (ArtPHIL)

The Art and Philosophy (ArtPHIL) Advanced Graduate Certificate is a 15-credit (minimum) program designed to provide an interdisciplinary concentration in art theory and criticism, aesthetics, art history, visual arts, and contemporary continental philosophy for students already enrolled (full-time) in a Stony Brook graduate degree-granting program (Ph.D., M.F.A., M.A. in fields such as Art History and Criticism, Studio Art, Philosophy, or a related discipline such as Comparative Literature, Cultural Studies, Music, Theater, English, Hispanic Languages, etc.). ArtPHIL graduate courses are regular seminars, offered primarily by the Departments of Philosophy and Art. To satisfy program requirements, courses must be approved by the ArtPHIL Program Director. All ArtPHIL students must take the joint seminar offered by two faculty members, one in Philosophy and the other in Art.

For students enrolled in an ARH or PHI graduate program, nine of the 15 credits must be earned outside the home graduate program. The six credits earned toward the graduate degree in the home department may be applied toward the ArtPHIL Graduate Certificate. Students enrolled in Stony Brook graduate programs other than ARH or PHI should consult with their home departments to determine whether credits earned for the ArtPHIL AGC can be applied to the primary graduate degree program.

For complete admission requirements, approved courses, and enrollment forms in the ArtPHIL AGC program, please visit http://ms.cc.sunysb.edu/~hsilverman/ArtPHIL/ArtPHIL.htm. Students interested in the ArtPHIL program are advised to seek enrollment early in their primary degree program. To discuss program details and enrollment procedures, contact Prof. Hugh J. Silverman, ArtPHIL Program Director, at Hugh.Silverman@stonybrook.edu

Admission to the Ph.D. and M.A. Programs in Philosophy

For admission to the doctoral and master's programs in Philosophy, the following are normally required:

A. A bachelor’s degree with a major in Philosophy;

B. Some knowledge of the history of philosophy and of contemporary modes of thought is highly desirable; deficiencies in these areas may require the student to undertake special work;

C. An official transcript of undergrad-
uate record and of any work completed at the graduate level;

D. Letters of recommendation from three previous or current instructors;

E. Submission of a philosophical essay (which may be a paper written for a previous course);

F. Graduate Record Examination (GRE) General Test scores;

G. Acceptance by both the Department of Philosophy and the Graduate School.

Faculty

Distinguished Professors
Casey, Edward S., Ph.D., 1967, Northwestern University: Aesthetics; phenomenology; philosophy of psychology.
Howard, Richard, Ph.D., 1970, University of Texas: Political and social philosophy; Marxism.
Ihde, Don, Ph.D., 1964, Boston University: Phenomenology; philosophy of technology; hermeneutics.

Distinguished Service Professor

Distinguished Teaching Professor
Grim, Patrick, B. Phil., 1975, University of St. Andrews, Scotland; Ph.D., 1976, Boston University: Logic; ethics; computer modeling; contemporary analytic philosophy.

Professors
Allison, David B., Ph.D., 1974, Pennsylvania State University: Contemporary European philosophy.
Crease, Robert, Ph.D., 1987, Columbia University: Philosophy of science; aesthetics.
Kittay, Eva, Ph.D., 1978, City University of New York: Philosophy of language; philosophy and literature; feminism.
Kuspit, Donald B., D.Phil., 1960, University of Frankfurt, Germany; Ph.D., 1971, University of Michigan: Art criticism; 20th-century art; northern Renaissance art.
Miller, Clyde Lee, Ph.D., 1974, Yale University: History of philosophy.
Nolan, Rita D., Ph.D., 1965, University of Pennsylvania: Philosophy of language; theory of knowledge; philosophy of psychology.
Silverman, Hugh J., Ph.D., 1973, Stanford University: Continental philosophy (hermeneutics, deconstruction, and postmodern theory); aesthetics and cultural theory; contemporary European philosophies, literatures, and cultures; history of ideas; literary theory.

Simpson, Lorenzo, Ph.D., Yale University: Contemporary continental philosophy (hermeneutics and critical theory); philosophy of the social sciences; philosophy of science and technology; neopragmatism and post-analytic philosophy; philosophy and race.
Spector, Marshall, Ph.D., 1963, Johns Hopkins University: Philosophy of science; philosophy of technology; environmental issues.
Welon, Donn, Ph.D., 1973, Southern Illinois University: Phenomenology and epistemology; philosophical psychology; contemporary German philosophy.
Williams, Peter, Ph.D., 1973, Harvard University: Philosophy of law; ethics.

Associate Professors
Cormier, Harvey, J., Ph.D., 1992, Harvard University: American philosophy; William James and pragmatism; philosophy and culture.
De Lauretis, Allegra, Ph.D., 1982, University of Frankfurt: Greek philosophy; Hegel.
Edwards, Jeffrey, B., Ph.D., 1987, Universitat Marburg, Germany: History of philosophy; Kant; modern philosophy.
Manchester, Peter, Ph.D., 1972, Graduate Theological Union: Greek philosophy; Heidegger.
Mar, Gary, Ph.D., 1985, University of California, Los Angeles: Logic; philosophy of mathematics; contemporary analytic philosophy; philosophy of religion.
Rawlinson, Mary C., Ph.D., 1978, Northwestern University: 19th-century philosophy; Hegel; aesthetics and literary theory; philosophical psychology; philosophy of medicine.

Assistant Professor
O'Byrne, Anne, Ph.D., 1999, Vanderbilt University.

Number of teaching, graduate, and research assistants, Fall 2007 40
1) Joint appointment, Department of Art
2) Joint appointment, Department of Comparative Studies
3) Joint appointment, Community and Preventive Medicine
4) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1977
5) Recipient of the State University Chancellor's Award for Excellence in Teaching, 1978

Degree Requirements
Requirements for the Ph.D. Degree in Philosophy
The doctoral program is designed to be completed in five years of full-time work. The Graduate School regulations prescribe a minimum of two semesters of full-time enrollment. In addition to the minimum degree requirements of the Graduate School, the following are required:

A. Seminars
Seminar coursework will be required from the following three areas: history of philosophy, interface studies, and contemporary philosophy. Each of the three areas has a minimum number of required courses. The student will also take at least two additional seminars in one of the three areas to fulfill the concentration of studies requirement.

1. Three seminars in the history of philosophy from four groups of courses concentrating on ancient philosophy, medieval/Renaissance philosophy, modern philosophy, and 19th-century philosophy. These courses will feature an intensive writing component. For those students wishing to pursue a concentration of studies in the history of philosophy, a minimum of two additional courses may be taken from these areas or from seminar studies directed to special topics in the history of philosophy (which draw upon specific authors, texts, themes, or problems from the history of philosophy).

2. Two interface seminars in interdisciplinary areas between philosophy and another discipline pertaining to the natural sciences, to the social sciences, or to the humanities. This requirement may be met either by taking interdisciplinary seminars team-taught by philosophy faculty with faculty from another discipline or by taking regular graduate courses in another discipline. Two additional courses from this category may be taken to fulfill concentration requirements.
3. Five seminars in contemporary philosophy are required. Two seminars in the preeminent styles or modes of philosophy are required: one in continental philosophy (PHI 630) and one in analytic philosophy (PHI 631). These two seminars will explore the methods, presuppositions, and operational modes of the contemporary philosophy involved. Two additional seminars, chosen from a list of subjects, must be taken to fulfill the basic requirement. Two more seminars from the contemporary category may be taken to fulfill concentration requirements.

4. A practicum in the teaching of philosophy. This involves a supervised teaching seminar, along with additional teaching experience in the undergraduate program.

5. A prospectus seminar taken in the spring semester of the third year. The primary goal will be to produce a dissertation proposal.

6. An overall average grade of B or better is required, with no more than six credits of B grades counting toward the degree.

B. General Requirements

1. The student must pass an examination in the history of philosophy. Although the student may take the exam any number of times prior to the deadline, the examination must be passed by the end of the second year. The history of philosophy examination is constructed and read by the faculty History of Philosophy Committee.

2. The student must submit an essay, judged acceptable by a committee, in one of the areas of contemporary philosophy.

3. The student must submit an essay, judged acceptable by a committee composed of at least one Philosophy faculty member and a faculty member from the relevant second discipline, in one area of interface studies.

General reviews of student progress based upon a portfolio (courses taken, courses completed, grades, faculty evaluations of seminar work, sample papers, teaching evaluations, and performance in the above general requirements) will be undertaken at the end of the first and third years and in the second year after the deadline for passing the history of philosophy examination. The second-year review is the milestone requirement of the program. These reviews will assess the progress of students and determine qualifications for continuance or noncontinuance in the program.

The graduate program director will guide students in planning their program of studies to assure that general requirements are completed prior to their advancement to candidacy.

C. Ph.D. Candidacy

Official Ph.D. candidacy is attained when, in addition to the requirements listed above, a student fulfills the following competency requirements:

1. Competence in symbolic logic. Sufficient knowledge of concepts and notations of first-order logic for understanding and applying them to problems in philosophy. A grade of B or better in an undergraduate symbolic logic course is normally adequate evidence of competence.

2. Competence in a foreign language. This is shown by translating a previously untranslated philosophical article (or the equivalent) or by writing a research paper including a translation of substantial philosophical passages.

3. Competence to undertake a dissertation project. This is shown by (a) a prospectus (10 to 15 pages) outlining projected study, expected findings, and relevant arguments and evidence (e.g., bibliography), and (b) an oral defense of the projected study before a faculty examining committee.

Upon the recommendation of the examining committee and the graduate program director that the dissertation project be initiated, the student becomes a candidate for the Ph.D.

D. Dissertation

After advancement to candidacy, the student will concentrate on a dissertation (the written results of specialized study and research) under the supervision of a dissertation committee. After the dissertation is completed, it is read by a committee of four members, consisting of the director, two other members of the philosophy faculty, and one faculty member from outside the Department who has specialized in related areas. Before final approval can be granted, the student must present the results of the dissertation research at an oral examination convened for that purpose by the Department and open to interested faculty members and graduate students. If the dissertation defense is successful, the candidate is recommended to the University for the Doctor of Philosophy degree.

Doctoral students may be awarded the M. A. degree upon completion of the minimum coursework offerings for a total of 30 graduate credits of coursework.

Course Requirements

Requirements for the Doctoral Program in Philosophy

I. History Courses

Three of the four history courses marked with an asterisk (*) are required, plus two additional courses for a concentration in the history of philosophy. History courses will feature an intensive writing component.

II. Interface Studies Seminars

Two seminars, selected from either team-taught interface seminars or graduate seminars in another discipline, will fulfill the basic interface requirement. For a concentration in Interface Studies two additional seminars must be taken (from among team-taught or approved non-philosophy graduate seminars).

III. Contemporary Philosophy Seminars

The two seminars marked with an asterisk (*) are required. Three additional seminars chosen from the remaining list of contemporary philosophy seminars must be taken to fulfill the basic requirement. Two more seminars may be chosen to fulfill concentration requirements.

IV. Independent and Directed Studies

Courses

Detailed course descriptions for the master’s and doctoral program are available from the Philosophy Department office each semester. Please refer to the current undergraduate and Graduate Class Schedules for specific semester offerings.

PHI 500 Feminist Theories

This course is designed to introduce students to the most recent developments in feminist theory, covering different currents as well as traditions. The seminar may focus on moral and political questions, the intersection between the social and the psychological, or culture and representation as it is negotiated in different cultural media (film, literature,
PHI 501 Theories of Race
This course is designed to introduce the student to different currents of analyses of race and racism. It focuses particularly on the relationship between philosophy and the development, legitimacy, and legitimation of racial categories. The seminar may focus on moral and political philosophy, questions of epistemology or metaphysics, the intersections between the social and the psychological, or culture and representations of raced subjects as they are negotiated in different cultural media (film, literature, architecture, music, etc.).

Fall, 3 credits, ABCF grading
May be repeated for credit

PHI 503 Theories of Ethnicity
This course focuses on the category of ethnicity. Using an inter-cultural, comparative, and historical approach, it seeks to expose the student to the uses and misuses of this category. The category of ethnicity will also be studied in conjunction with questions relating to individual identity, national, cultural, and civilizational identities. Ethnicity, like race and gender, is one of the most fundamental markers of identity. Using interdisciplinary and comparative methods and perspectives, ethnicity’s role in the constitutions of identities will be studied.

Fall, 3 credits, ABCF grading
May be repeated for credit

PHI 504 Intersections of Race, Ethnicity, and Gender
This course, which is analogous to an honors senior seminar, seeks to integrate into a productive dialogue the different methods, traditions, and perspectives used to analyze race, ethnicity, and gender, while also juxtaposing and comparing the similarities and differences between them. The approach, as in the whole program, will be interdisciplinary and comparative.

Fall, 3 credits, ABCF grading
May be repeated for credit

PHI 505 Core Course in Philosophy and the Arts: History of Aesthetic Theory
The basic course will investigate some of the most important and influential theories of art in the West from Plato to the present. Readings and discussion in depth of major figures will make up the content of the course: e.g., Plato, Aristotle, Kant, Hegel, Schopenhauer, Nietzsche, Heidegger, Collingwood, Langer, Merleau-Ponty, Derrida. The focus throughout will be on central issues in aesthetics such as imitation, truth, beauty, expression, emotion, and imagination.

Fall, and spring, every year, 3 credits,
ABCF grading
May be repeated up to nine times for credit

PHI 506 Art and Its Problems
A consideration of basic problems in the creation and appreciation of art. What is the creative process? Who is the artist? How is art to be compared with other symbolic forms (e.g., language, science, technology)? What does art offer that philosophy does not, and vice versa? In what ways does the gender or racial identity of the artist affect the creation of the work? What are the cultural, social and political dimensions of the art work and its reception?

3 credits, ABCF grading
May be repeated for credit

PHI 507 Aesthetic System
A concentrated reading of a single major work, with attention both to its detailed structure and to its larger significance. Candidates for such reading include Aristotle’s Poetics, Kant’s Critique of Judgement, Hegel’s lectures on The Philosophy of Art, Adorno’s Aesthetic Theory, Collingwood’s Principles of Art, Langer’s Feeling and Form, Dewey’s Art as Experience, Heidegger’s “The Origin of the Work of Art”, and Danto’s Transfiguration of the Commonsplace.

Fall, every year, 3 credits, ABCF grading
May be repeated for credit

PHI 508 Contemporary Issues in the Arts
With an eye on artworks accessible in the public sphere—museums, galleries, concerts, readings, dance performances, film—philosophical questions will be raised: Why these works now? How do they compare with their predecessors? What do they portend for the future of art? Visits to the sites and performances of such works will be integrated into an ongoing discussion of the issues they raise within the context of aesthetic theory—and what new theories they suggest.

3 credits, ABCF grading
May be repeated for credit

PHI 509 Special Seminar in Aesthetics
This is an advanced seminar in aesthetics that focuses on a single question that arises in the philosophy of art. This question may be approached through the writings of a single author, or else by consulting texts of several thinkers (including practicing artists as well as philosophers). Examples of such questions would be: What is the place of form in art? How does emotion figure into the creation and appreciation of art? To be taught on the main campus by a regular faculty member. Ideally, this course would be taken during the second year of master’s degree work at Stony Brook Manhattan.

Fall, spring, every year, 3 credits, ABCF grading
May be repeated for credit

PHI 512 Contemporary Moral Issues
This examination of the radical nature of traditional moral theory in its contemporary applications will look at the ideas of Mill, Kant, and Aristotle as variations on traditional Judeo-Christian moral theory. Students will write short papers on contemporary moral issues as these are portrayed in short fiction.

3 credits, ABCF grading

PHI 535 Political Philosophy
This course will take up classics of political philosophy and discuss contemporary social life and ideologies in the light of the theoretical frameworks they have achieved. Readings and assignments will be drawn from such exemplary works as Plato’s Republic, Aristotle’s Politics, Machiavelli’s The Prince, Hobbes’s Leviathan, Locke’s Second Treatise of Government, and Marx’s Communist Manifesto.

3 credits, ABCF grading

PHI 533 Philosophy of Education
The purpose of the course is to develop curricula which not only bridge educational gaps but which also develop within all students a sense of civil responsibility toward community issues and problems. This course critically examines such issues of ethnicity and race, family systems, affirmative action, and multiculturalism through the vehicle of Asian American studies.

3 credits, ABCF grading

PHI 555 Perspectives on the Person
The focus of this course will be the question of how the results of current research are related to our understanding of human development and whether they require us to revise our understanding of what a person is. Readings from classic philosophical texts, such as Plato, Locke, Hume, and from contemporary research in philosophy, psychology, and other relevant sciences will be used. Offered as both CBI 588 and PHI 555
3 credits, ABCF grading

PHI 562 Concepts and Methods in Evolutionary Biology
The course aims at achieving two related objectives: first, to provide graduate students in Ecology and Evolution, other biology departments, as well as Philosophy, with a basic understanding of the varied methods (both experimental and statistical) that make up the body of evolutionary quantitative biology. The focus will be in particular on quantitative genetics and its interface with more modern approaches, including QTL mapping, bioinformatics, and the various “omics” (genomics, proteomics, etc.). Second, students will become familiar with the fundamental concepts of philosophy of science, in particular as they relate to the conceptual analysis of the ideas that shape modern evolutionary and ecological theory. In this respect, the focus will be both on philosophical concepts such as falsificationism, induction, deduction, hypothesis testing, and the nature of evidence, as well as on the meaning of key ideas in evolutionary ecology, like natural selection, genetic drift, and constraints.

Spring, alternate years, 3 credits, ABCF grading

PHI 571 American Philosophy: Philosophical Foundations of American Politics
Readings from Emerson, C.S. Peirce, G.H. Mead, W. James, G. Santayana, J. Dewey, J.H. Randall, and J. Buscher will give the student a grasp of the classical American tradition in philosophy and the plural strands that go to make it up, such as: the turn from idealism to semioticism, neo-realism and critical realism, pragmatism and pragmatism, the historical interest and the social interest, individualism and voluntarism, and the centrality of art and science in human affairs.

3 credits, ABCF grading
PHI 572 Oriental Philosophy
3 credits, ABCF grading

PHI 575 Philosophy of Religion
Several aspects of the Judeo-Christian tradition raise philosophical questions worthy of further reflection and consideration. The first is the relation of religious faith to other sorts of knowledge and commitment: is religious belief more like belief in scientific experts or more like belief in one's spouse? A second is what sort of God is worth believing in and whether we can talk intelligibly about the deity. The third is whether and how any God worth believing in could be compatible with the obvious ills of our world. Note: Ability to read and write material that is abstract and complex, but rewarding.
3 credits, ABCF grading

PHI 576 Ethics and Values
3 credits, ABCF grading

PHI 582 Philosophy of Art
The purpose of this course is to encourage students to explore and enrich their aesthetic experience through reading, analyzing, discussing, and writing about various theories put forth by philosophers in the western tradition. Among topics to be considered are representation, expression, form, the aesthetic attitude, beauty, taste, criticism and interpretation of art, and the relation of art to other areas of experience. The course does not assume previous familiarity with philosophy or art; however, it does assume an intellectual commitment to the examination of difficult ideas. This course is offered as both CEI 573 and PHI 582.
3 credits, ABCF grading

PHI 583 Directed Readings
1-6 credits, ABCF grading

PHI 584 Directed Research
1-6 credits, ABCF grading

PHI 590 Directed Readings
1-6 credits, S/U grading

PHI 594 Directed Research
1-6 credits, S/U grading

PHI 599 Master's Thesis Research
3 credits, ABCF grading
May be repeated once for credit

History of Philosophy Seminars

PHI 600 Ancient Philosophy
3 credits, ABCF grading

PHI 601 Medieval and/or Renaissance Philosophy
3 credits, ABCF grading

PHI 602 Modern Philosophy
3 credits, ABCF grading

PHI 603 19th-Century Philosophy
3 credits, ABCF grading

PHI 604 Special Topics in the History of Philosophy
3 credits, ABCF grading
May be repeated for credit

Interfere Seminars

PHI 610 Philosophy and the Arts
3 credits, ABCF grading

PHI 611 Philosophy and Literature
3 credits, ABCF grading

PHI 612 Philosophy and Psychology
3 credits, ABCF grading

PHI 613 Philosophy and Politics
3 credits, ABCF grading

PHI 614 Philosophy and Linguistics
3 credits, ABCF grading

PHI 615 Philosophy and Feminism
3 credits, ABCF grading

PHI 616 Philosophy and Technology
3 credits, ABCF grading

PHI 617 Philosophy and Environmental Studies
3 credits, ABCF grading

PHI 618 Philosophy and the Sciences
3 credits, ABCF grading

PHI 619 Special Topics in Interface Studies
3 credits, ABCF grading

PHI 620 Advanced Problems in Philosophy
3 credits, ABCF grading
May be repeated for credit

PHI 621 Independent Study
1 to 12 credits, S/U grading
May be repeated for credit

PHI 622 Supervised Teaching
3 credits, S/U grading

PHI 623 Teaching Practicum
3 credits, S/U grading

PHI 624 New York Consortium Study
This course designation should be used by students who enroll in seminars at participating universities of the New York Consortium of Graduate Schools. No more than six credits of consortium study (and none for first-year students at Stony Brook) may count toward the fulfillment of requirements in the doctoral program.
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab. Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

PHI 625 Prospectus Seminar
This seminar is taken by all doctoral students in the spring semester of their third year. The primary goal is to have each write a dissertation proposal.
Spring, every year, 3 credits, S/U grading

Conemporary Seminars

PHI 630 Seminar in Continental Philosophy
3 credits, ABCF grading

PHI 631 Seminar in Analytic Philosophy
3 credits, ABCF grading

PHI 632 Seminar in Comparative Philosophy
3 credits, ABCF grading

PHI 633 American Pragmatism and Naturalism
3 credits, ABCF grading

PHI 634 Eastern Philosophy
5 credits, ABCF grading

PHI 635 Philosophy of Science and Logic
3 credits, ABCF grading

PHI 636 Metaphysics
3 credits, ABCF grading

PHI 637 Epistemology
A study of selected conceptions of the nature, structure, and content of knowledge, as found in classical and contemporary theories of knowledge.
3 credits, ABCF grading

PHI 638 Philosophical Psychology
5 credits, ABCF grading

PHI 639 Social and Political Philosophy
3 credits, ABCF grading

PHI 640 Ethics
3 credits, ABCF grading

PHI 641 Aesthetics
3 credits, ABCF grading

PHI 642 Philosophy of Religion
3 credits, ABCF grading

PHI 643 Semiotics
5 credits, ABCF grading

PHI 644 Special Topics in Contemporary Philosophy
3 credits, ABCF grading
May be repeated for credit

Dissertation Research

PHI 699 Dissertation Research On Campus
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab. Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

PHI 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered

3 credits, ABCF grading
on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.

Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

PHI 701 Dissertation Research Off Campus–International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an International Advisor.
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

PHI 800 Full-Time Summer Research
0 credits, S/U grading
May be repeated
The Department of Physics and Astronomy in the College of Arts and Sciences offers courses of study and research that normally lead to the Ph.D. degree. The M.A degree is awarded either to exchange students or to students on the way to the Ph.D. degree. A Master of Science in Scientific Instrumentation program is provided for those interested in instrumentation for physical research. A Master of Arts in Teaching program, from the School of Professional Development, is available for students seeking to teach physics in high schools.

Physics research is conducted in the areas of particle, nuclear, condensed matter, mesoscopic, nanoscale, device, and atomic, molecular, and optical physics on campus and at research facilities elsewhere. Brookhaven National Laboratory (BNL), located only 20 miles away, offers many unique research opportunities. A number of institutes dedicated to specific fields of research are associated with the Department. The C.N. Yang Institute for Theoretical Physics focuses on research in fundamental theory such as particle theory, neutrino physics, string theory, supersymmetry, and statistical mechanics. The Nuclear Theory Institute works on the theory of non-perturbative quantum chromodynamics and the properties of hadronic matter. A new Simons Center for Geometry and Physics initiated by a significant private donation to the University is now in the planning stage. It will build on the historic close interaction between mathematicians and physicists at Stony Brook. The Department has a Tandem Van de Graaff accelerator that after 40 years of nuclear research is now being converted to educational, training, and accelerator R&D efforts. The Institute for Terrestrial and Planetary Atmospheres at the School of Marine and Atmospheric Sciences offers a program in atmospheric physics. The Center for Environmental Molecular Sciences enables study of biological and environmental problems. Under the umbrella of the New York Center for Computational Science (NYCCS), the Stony Brook Center for Computational Science coordinates with the Brookhaven Computational Science Center (CSC) on their mission to develop interdisciplinary computational science at Stony Brook. It provides a focal point for the community of users of the new IBM BlueGene/L supercomputer, NY Blue. Faculty and staff make use of many off-campus facilities including the Relativistic Heavy Ion Collider at BNL, the Fermilab Tevatron Collider, the Large Hadron Collider at CERN, neutrino facilities in Japan, the Center for Functional Nanomaterials at BNL, and synchrotron light sources at BNL, Argonne National Laboratory and Lawrence Berkeley National Laboratory.

Astronomical research is conducted on both theoretical and observational topics. The group uses DOE supercomputing facilities as well as an on-site Beowulf cluster for extensive simulations of astronomical objects and nuclear astrophysical processes. Observational research investigates extragalactic and cosmological parameters, molecular clouds, stellar properties, star formation regions, and neutron stars. Stony Brook is a member of the SMARTS consortium that operates a set of telescopes at Cerro Tololo in Chile. Faculty and students are also frequent users of the National Optical Astronomy Observatories, the National Radio Astronomy Observatories, the observatories at Mauna Kea, and the millimeter wave facilities at FCRAO and IRAM. They have also received extensive time on space-based observatories, including the Hubble Space Telescope.

There are additional research possibilities for graduate students at Brookhaven National Laboratory or Cold Spring Harbor Laboratory in various areas of physics not found in the Department. Students may also find opportunities in related disciplines at Stony Brook in such programs as Medical Physics, Chemical Physics, Atmospheric and Climate Modeling, Materials Science, or Biophysics.

The entire faculty participates in teaching a rich curriculum of undergraduate, graduate, and professional development courses, including many courses on special topics of current interest. Graduate students must fulfill one year of teaching. Course requirements are kept at a minimum to allow the student to set up a flexible program. Students are encouraged to participate in research as early as possible and to begin their thesis research no later than the beginning of their third year. The typical length of time to the Ph.D. is four to six years, whereas the Master's in Scientific Instrumentation is a two-year program that involves a thesis project in instrumentation design or development.

The Department of Physics and Astronomy has been highly ranked in national surveys for the quality of its graduate program, its faculty, and the impact of its published research. It strives to make a graduate education in physics intellectually stimulating and educationally rewarding.

Research Areas

Experimental High-Energy Physics

The Stony Brook group has been in the forefront of high-energy research at many premier facilities in the United States, Europe, and Japan. A large effort is based on the Drell-Yan experiment at the Fermilab collider, currently the highest energy accelerator in the world. The detector has been upgraded to seek new understanding of the top quark, to explore the mechanism of electroweak symmetry breaking and search for the Higgs boson, to study CP violation and mixing in the b quark system, to probe the strong QCD force in new regions, and to seek new phenomena such as supersymmetry or extra spatial dimensions. The group is also participating in the ATLAS experiment at the CERN Large Hadron Collider, expected to begin in 2008, and has built components of its calorimeter and event selection electron-
ies. Our proximity to BNL continues to provide fruitful opportunities for research. We are working to develop a 500 GeV e+e- linear collider at a site to be determined.

The Stony Brook Nucleon Decay and Neutrino group is involved in the Super-Kamiokande, the K2K and the T2K experiments in Japan. The Super-Kamiokande detector, located deep underground in western Japan, detects neutrinos from the sun and neutrinos produced in the upper atmosphere. In 1998, the experiment discovered neutrino oscillations in the atmospheric neutrino data with a far-reaching impact in elementary particle physics. The experiment also aims to detect neutrinos from super-nova bursts. It is sensitive to a host of possible proton decay signals and has set the world’s best limits on the proton decay. The K2K experiment is the first successful long baseline neutrino oscillation experiment which confirmed the discovery made by the Super-Kamiokande experiment on neutrino oscillation and refined the measurement of the neutrino mixing using accelerator-generated neutrino beams. Neutrinos were generated at the KEK laboratory on the East Coast of Japan 250 km from Super-Kamiokande and sent to the Super-Kamiokande detector. The T2K experiment is an extension of this program which will use neutrinos generated by the new JPARC accelerator. It is the first approved experiment in the world to specifically look for electron neutrino appearance from muon neutrinos, which will allow us to measure 1st and 3rd generation mixing. The group is also leading an effort to build a next-generation underground neutrino detector, UNO, in the Henderson Mine in Empire, Colorado.

The MARIACHI (Mixed Apparatus for Radar Investigation of Cosmic-rays of High Ionization) project, developed by physicists and high school teachers, utilizes an innovative technique—radar reflection from ionization—to detect and study ultra high-energy cosmic rays. MARIACHI integrates outreach education with science and involves a diverse group of scientists, educators, and students in its implementation. The scientific scope of MARIACHI includes the study of meteors, lightning, and atmospheric phenomena that can be concurrently detected and recorded by their radar reflections.

Experimental Nuclear Physics
The Stony Brook Relativistic Heavy Ion Group studies collisions of large nuclei at the highest available energies, with the intent of elucidating the properties of the quark-gluon plasma, a state in which quarks and gluons become deconfined. The group is one of the founders of the PHENIX experiment at BNL Relativistic Heavy Ion Collider. They are among the leading institutions in PHENIX having taken responsibility for the design and construction of the focal plane of the Ring-Imaging Cherenkov detector, the electronics and mechanics of the PHENIX drift chambers, the tracking software, and leadership of the overall analysis efforts of PHENIX data. This fruitful program has included the first observations of jet quenching phenomena and excess nucleon yield at high transverse momentum, both discovered by the Stony Brook group’s analysis of the PHENIX data. The group has also taken on the leadership role in the upgrade of PHENIX for second-generation RHIC measurements. A new effort to understand the composition of nucleon spin was launched in 2004, and the first results on the role of the gluons in the nucleon’s spin, obtained from polarized proton collisions, have been published recently. The expected large increase in polarized proton luminosity, along with the introduction of precision silicon vertex detectors for heavy quark physics (currently under development by the group) will enable the group to address many interesting questions in the field of nucleon spin in the coming years. Members of the spin group play leadership roles in all aspects of the spin physics at RHIC, and in the planning of the new Electron Ion Collider, currently under consideration by the U.S. nuclear physics community.

Optical Sciences
The optical sciences are among the most dynamic areas of physics with an impact on contemporary life that will continue to grow. Organized as an optics consortium, several groups in the Department share an interest in optics and offer research opportunities in atomic molecular and optical physics, physics of optoelectronic materials, and X-ray optics and microscopy. The Laser Teaching Center is a focus for the activities of many student research projects.

Atomic, Molecular, and Optical Physics and Quantum Electronics
Atomic, molecular, and optical physics and quantum electronics experimental and theoretical studies focus on the interaction of light and matter under widely different circumstances. We are exploring new topics in optical manipulation of atoms both in the quantum (deBroglie) and the classical domains. We can exert huge optical forces with non-monochromatic light, create electrostatic forces on Rydberg atoms, and produce delicate momentum changes with Raman transitions. We explore dark state physics, coherent control of momentum exchange between atoms and light fields, and entanglement between orthogonal spaces. The boundary between quantal and classical physics is especially interesting when the latter is chaotic. Some experiments have focused on hydrogen atoms excited with energetic collisions and lasers into highly excited states being driven by one or more carefully controlled microwave fields strong enough to cause ionization. In other experiments that use microwaves, carefully built macroscopic resonators are mathematically equivalent to certain mesoscopic systems of interest in low-temperature condensed-matter systems. Our recent experiments have focused on so-called ray-splitting phenomena. Modern laser technology allows pulses that are short compared to molecular vibrational periods, so by careful choice of their spectral content and phases, quantum chemistry can be controlled. The process exploits learning and genetic algorithms that control the behavior of fast modulators through sophisticated computing systems. Theoretical studies of Bose Einstein condensates (BEC) probe interesting new regimes of many-body physics. A new laboratory now taking shape has produced BECs and will explore BECs and correlated motion of atoms in optical lattices.

Experimental Condensed Mesoscopic, Nanoscale, and Device Physics
The Department is active in several key areas of mesoscopic, nanoscale, and solid-state device physics, including quantum computing, single-electronics, molecular electronics, and nanoscale transistors. We have developed novel ultrafast superconducting digital devices and integrated circuits based on magnetic
flux quantization, and single-electronic devices using ultra-small tunnel junctions with dimensions down to 30 nm. There is also an active program in solid-state and low-temperature physics. Areas of study include semiconductors, fullerenes, phase transitions in two-dimensional solids, integer and fractional quantum Hall effect, Wigner crystallization of the two-dimensional electron gas in semiconductor heterostructures, electronic properties of electron-hole systems, and electro-optic effects in quantum wells and superlattices. There is also a project to develop self-wiring “neuromorphic” computer architectures using a hybrid of 50nm lithographic crossbars and molecular conductors as active circuit elements. Projects at the National Synchrotron Light Source at BNL include powder diffraction studies on a wide range of materials (ranging from malaria pigment to intercalated fullerenes) and exploring new methods of electron spin resonance by using the far-infrared synchrotron light and superconducting magnets. A wide variety of modern techniques for fabrication of samples is employed including molecular beam epitaxy, deposition of thin films by resistive and electron-gun evaporation and magnetron sputtering, and patterning of thin-film structures using optical lithography and direct electron-beam writing.

X-Ray Physics

X rays have a wavelength short enough that one can produce a high-resolution focus and probe the structure of materials at the atomic scale. The X-ray Optics and Microscopy group carries out research in developing high resolution X-ray optics (in partnership with the Center for Functional Nanomaterials at BNL), and using these optics for soft X-ray microscopy and spectroscopy studies of problems in biology and in environmental science (the latter as part of a Center for Environmental Molecular Science at Stony Brook). The group is also developing X-ray imaging beyond the resolution limit of lenses by reconstructing diffraction data from non-crystalline specimens. Our research primarily makes use of the National Synchrotron Light Source at BNL, but also synchrotron sources at Argonne National Laboratory and Lawrence Berkeley National Laboratory.

Atmospheric Research

Atmospheric research may be carried out within the Department and also with faculty in the Institute for Terrestrial and Planetary Atmospheres (ITPA). Our ground-based research based on measurements of stratospheric trace gases led to the first proof that the Antarctic “ozone hole” is caused by stratospheric contamination from man-made chlorofluorocarbons. Stratospheric dynamics can be studied by measuring the behavior of various inert tracers of transport, and chemistry-driven effects are studied by quantitative measurement of various species and their temporal and spatial evolution. Research in the ITPA includes advanced computer modeling or direct field studies of the chemistry and the large scale and mesoscale dynamics of atmospheres, including radiative transfer through atmospheres (the “greenhouse effect” and related phenomena), the atmospheric-ocean interchange, and the use of isotopic composition to characterize and monitor natural and anthropogenic trace gas sources and sinks in the earth’s atmosphere. Close interaction of students in the department with faculty of the ITPA offers a way to participate actively in finding solutions to global-scale atmospheric-environmental problems facing the world in the 21st century. The Department of Environmental Sciences at BNL offers further opportunities for instrumentation development and laboratory and field studies of atmospheric dynamics and related topics.

Yang Institute for Theoretical Physics

Research at the C.N. Yang Institute for Theoretical Physics addresses varied topics of fundamental interest. The Institute provides students of the Department the opportunity to carry on collaborative and independent research in a wide range of areas in theoretical physics.

The currently known forces and particles of high-energy physics are referred to as the standard model, including electroweak interactions and the theory of the strong interactions, quantum chromodynamics (QCD). The leading questions of high-energy and elementary particle physics emerge from unanswered questions raised by the standard model. Among these are the origins of electroweak symmetry breaking and of the patterns of particle masses. QCD is a unique testing ground for quantum field theory because of its highly energy-dependent interactions. Recent and ongoing studies in particle physics include detailed phenomenological calculations and analyses of high-energy scattering experiments, and the development of improved theoretical methods for both quantum field theory (QCD (including nuclear scattering) and electroweak interactions. There is a tradition in the study of neutrinos, now including analyses of masses and mixing in the light of contemporary data.

Quantum field and string theories supply a language for the description of matter on the smallest scales. Super-symmetric and other field theoretic extensions of the standard model, supergravity (which was discovered at Stony Brook), and string theories are being studied and developed, with attention to both their mathematical structures and physical consequences. Of special interest are quantum mechanical descriptions of gravitation and its relations to other forces. Other directions of research involve the complementary descriptions of theories with weak and strong interactions, relying on modern techniques in mathematics, statistical mechanics, including exactly solvable models and quantum computing. Progress in statistical mechanics, string and field theory is facilitated by the many physical concepts and mathematical methods that they share.

The broad range of topics and interests represented at the YITP encourages fruitful interactions with the nuclear and condensed matter theory groups, the high-energy and nuclear experimental groups, and other groups in the Departments of Physics and Astronomy, Mathematics, and Applied Mathematics.

Nuclear Theory

Traditionally, nuclear theory was limited to the study of properties of nuclei. However, in the past decade this field has broadened into the study of strong interactions in general with applications to a wide range of phenomena such as relativistic heavy ion collisions, the properties of hadrons, and the interior of neutron stars. The primary goal of nuclear theory is to understand strong interactions starting from quantum chromodynamics (QCD), the underlying microscopic theory. We address this problem in two different ways. First, to make contact with experiment, we construct and analyze phenomenological models. We investigate effective theories for the description of hadrons at low energy; have understood the pion wind in relativistic heavy ion collisions in terms of relativistic hydrodynamics; are
world experts in many body theory, which relates the properties of nuclei to the nucleon-nucleon interaction; and apply our insights to problems in astrophysics such as the structure of the interior of neutron stars and the formation of black holes. Second, we analyze QCD as a quantum field theory from different perspectives and under different and extreme conditions. We are particularly interested in nonperturbative phenomena and answer questions such as: Why do nucleons exist? What are the properties of the vacuum? What is the phase of QCD at high temperature and baryon density? What are the properties of the quark-gluon plasma that might be observed in high-energy nuclear collisions? Is QCD at high baryon density superconducting? The methods we use to answer these questions are from many areas of quantum field theory and statistical mechanics. Examples include the analysis of the statistical mechanics of instantons, development of a semiclassical theory of high-energy scattering, interpretation of gauge field fluctuations in terms of random matrix theory, and finite temperature quantum field theory. Our work has both benefited from and influenced large-scale Monte-Carlo simulations of lattice QCD by groups around the world.

Condensed Matter Theory and Statistical Mechanics

In the last decade, new conceptual and computational tools have led to major changes in our understanding of condensed matter systems. Recent work at Stony Brook has focused on quantum mechanical effects (i.e., superconductivity) on a macroscopic scale, quantum computing, collective phenomena in low-dimensional solids (i.e., high-temperature superconductors), the quantum Hall effect, properties of mesoscopic metals such as correlated tunneling and single-electron charging effects, and properties of nanoscale matter such as electronic properties of nanowires, single-molecule electronics, and solar energy applications. Computer simulation of solids and liquids (including problems involving interfaces, surfaces, amorphous states, nanocrystals and molecules) is being performed with density-functional theory and other theoretical methods using both a local, dedicated computer cluster and the new IBM BlueGene/L supercomputer. In statistical mechanics there is very active research into one- and two-dimensional systems where exact mathematical calculations can be made. These include studies of phase transitions, solitons, and spin diffusion. The effort spans the range from quantum field theory to computer studies.

Accelerator and Beam Physics

Research in accelerator physics is being carried out at Stony Brook and in several departments at nearby Brookhaven National Laboratory. The research covers theoretical and experimental aspects of circular and linear accelerators as well as interaction of particle beams with electromagnetic radiation, including free electron lasers. The experimental facilities include the BNL Alternating Gradient Synchrotron, the National Synchrotron Light Source, and the Relativistic Heavy-Ion Collider, also with work on radio-frequency superconducting accelerators and energy recovery linacs. Research is also being conducted on facilities such as the high-brightness Accelerator Test Facility, including investigations in high-gradient acceleration, generation of high-brightness beams, and free-electron lasers. Ph.D. and M.S.I. research at BNL may be arranged through the Center for Accelerator Physics.

Astronomy and Astrophysics

Cosmology and Extragalactic Astronomy

The cosmological and extragalactic effort combines theoretical and observational research to understand galaxy formation and evolution, and the development of large-scale structure in the universe. Theoretical efforts are aimed at interpreting the density structures uncovered by redshift surveys and have resulted in the determination of the gravitational field out to 0.5 billion light years. N-body hydrodynamics simulations of the large-scale structure are compared to the fast-growing body of data of large-scale field flows and the cosmic background radiation. Our observational efforts have focused on quasar absorption lines, which have revealed extensive galactic halos, and on the Hubble Deep field, in which the most distant objects in the universe have been found.

Millimeter Wave Astronomy and Interstellar Molecular Clouds

Stony Brook is involved in millimeter CO surveys in the galactic plane; in 1977 these first revealed the existence of giant molecular clouds. Current research focuses on determining the star formation rates in these clouds and producing high-resolution maps of the star-forming cores, and uses both infrared and millimeter wave observatories, including IRAS and the IRAM 30-meter antenna, the world's most powerful millimeter wave antenna. Extragalactic mapping of interstellar molecules like CO and CS is performed to understand the role played by giant molecular clouds in star formation and the evolution of spiral galaxies. Recently, CS emission has been detected in the luminous infrared galaxy Arp220, indicating the existence of 10 billion solar masses of dense molecular gas and extensive star formation. Mappings are also used to understand the effects of galaxy collisions on star formation and the starburst phenomenon.

Nuclear Astrophysics

Nuclear astrophysics research focuses on thermonuclear and core-collapse supernovae, neutron stars, and X-ray bursts, on the physics of dense matter, and on the development and verification and validation of algorithms for modeling these systems. Numerical simulations of these explosive events are carried out with grant support from DOE and using DOE and NASA supercomputing facilities nationwide. This work continues a long tradition of computational astrophysics at Stony Brook, including the modeling of supernovae and protoneutron stars spectacularly confirmed by neutrino observations from SN1987A. Other active areas of research are neutron star structure and cooling, including the effects of composition and superfluidity, and compact object mergers. Models for the dense matter equation of state developed by Stony Brook are used worldwide.

Astronomers at Stony Brook have discovered a nearby neutron star and measured its distance, temperature, and age. A major goal is to determine the radii of neutron stars combining calculations of neutron star atmospheres (employing various compositions and magnetic fields) with optical and X-ray observations (from Hubble, CHANDRA, XMM, and other instruments) of this and other neutron stars.

Modeling of thermonuclear explosions, including Type Ia supernovae and X-ray bursts, is also a major topic of research. Both the early stages and the explosion
itself are being investigated with a range of simulation codes developed by Stony Brook astrophysicists in association with researchers at DOE labs and other universities. Due to the complexity of the algorithms used in our research, verification and validation of our simulation codes is also an active area of research. This process is done in collaboration with collaborations at the DOE labs.

Star Formation and Stellar Astronomy

Star formation research focuses on low-mass pre-main sequence (PMS) evolution and the true initial mass function. This research has demonstrated that most PMS stars are not T-Tauri objects and also that most are in binary systems. We study the early evolution of PMS stars, measure their masses, and probe the structure and composition of their circumstellar disks using state-of-the-art optical, infrared, and millimeter-wave techniques from the ground and space. We participate in a space interferometry project to study the earliest epochs of planet formation. We are actively investigating the environments of the pre-main sequence stars, using CHANDRA and XMM, to study the 10^6 K coronal gas, and using FUSE and the Hubble Space Telescope to study the stellar chromospheres, the accretion process, and circumstellar molecular hydrogen. We also study the outer atmospheres and the coronal and chromospheric activity of older cool stars using optical, ultraviolet, and X-ray spectra obtained from the ground and space observatories.

Doctural Programs with Concentrations in Biophysics and Chemical Physics

The Department of Physics and Astronomy participates in two Ph.D. curricula in cooperation with other programs. The basic degree requirements for a student enrolled in one of these programs are the same as those for other students in physics. He or she will usually be advised to take one or more courses in the cooperating program. The written part of the preliminary (comprehensive) examination is the same as for other physics students; the oral part will ordinarily be on topics in biophysics or chemical physics. Subject to the approval of the chair of the two programs involved, the student’s research advisor may be chosen from participating members of the cooperating programs. A student in one of these programs who expects to receive a Ph.D. from a cooperating program should consult that program’s section in this bulletin for degree requirements. The cooperating programs are Biophysics: Department of Pharmacological Sciences and Department of Physiology and Biophysics; and Chemical Physics: Department of Chemistry.

Admission

For admission to graduate study in Physics and Astronomy the following, in addition to the minimum Graduate School requirements, are required:

A. A bachelor's degree in physics or a closely related field from an accredited institution;

B. A minimum grade average of B in all undergraduate coursework, and B or better in the sciences and mathematics;

C. Submission of the Graduate Record Examination (GRE) General Test (the Physics GRE subject test is also recommended);

D. Admission by the Department of Physics and Astronomy and the Graduate School.

In special cases, a student not meeting requirement A (or, in unusual cases, requirement B) may be admitted on a provisional basis, without financial support. Upon admission, the student will be informed of the requirements that must be satisfied for termination of provisional status. Retention of students in subsequent years will depend on satisfactory academic progress.

Faculty

Einstein Professor

Yang, Chen Ning, Emeritus, Ph.D., 1948, University of Chicago: Theoretical physics; field theory; statistical mechanics; particle physics.

University Professor

Marburger, John H., Science Advisor to the President and Director of the Office of Science and Technology Policy, Ph.D., 1966, Stanford University: Laser theory.

Distinguished Professors

Brown, Gerald E., Ph.D., 1950, Yale University: Theoretical physics; the many-body problem.

Grannis, Paul D., Emeritus, Ph.D., 1965, University of California, Berkeley: Experimental high-energy physics.

Jacak, Barbara, Spokesperson of the PHENIX Collaboration since 2006, Ph.D., 1984, Michigan State University: Experimental nuclear physics; relativistic heavy ions.

Kirz, Janos, Emeritus, Ph.D., 1963, University of California, Berkeley: X-ray optics and microscopy; synchrotron radiation.

Likharev, Kostantine K., Ph.D., 1979, Moscow State University, Russia: Mesoscopic physics.

Shuryak, Edward, Ph.D., 1974, Institute of Nuclear Physics, Novosibirsk, Russia: Theoretical nuclear physics.

Sprouse, Gene D., Editor in Chief, American Physical Society, Ph.D., 1968, Stanford University: Atomic and nuclear spectroscopy with trapped radioactive atoms.

Sterman, George, Director of Yang Institute for Theoretical Physics, Ph.D., 1974, University of Maryland: Theoretical physics.

Van Nieuwenhuizen, Peter, Ph.D., 1971, University of Utrecht, Netherlands: Theoretical physics; quantum field theory.

Distinguished Service Professor

Paul, Peter, Emeritus, Ph.D., 1959, University of Freiburg, Germany: Experimental nuclear physics.

Distinguished Teaching Professors

Hemmick, Thomas, Ph.D., 1989, University of Rochester: Experimental nuclear physics; relativistic heavy ions.

Professors

Allen, Philip B. Ph.D., 1969, University of California, Berkeley: Theoretical condensed matter physics.

Aronson, Meigan, Ph.D., 1988, University of Illinois at Urbana: Experimental condensed matter.

Averin, Dmitrii V., Ph.D., 1987, Moscow State University, Russia: Theoretical condensed matter physics.

Courant, Ernest D., Emeritus, Ph.D., 1943, University of Rochester: Theoretical physics; high-energy accelerator design.

DeZafra, Robert L., Emeritus, Ph.D., 1958, University of Maryland: Atmospheric sciences; remote sensing, stratospheric dynamics, and trace constituent measurements; millimeter-wave spectroscopy.

Drees, Klaus Axel, Ph.D., 1989, University of Heidelberg, Germany: Experimental nuclear physics; relativistic heavy ions.
Engelmann, Roderich, Ph.D., 1966, University of Heidelberg, Germany: Experimental high-energy physics.

Finocchiaro, Guido, Emeritus, Ph.D., 1957, University of Catania, Italy: Experimental high-energy physics.

Goldman, Vladimir J., Ph.D., 1985, University of Maryland: Experimental condensed matter physics.

Gurvitsen, Vladimir, Ph.D., 1979, University of Amsterdam, Netherlands: Experimental high-energy physics.

Rocek, Martin,1 Ph.D., 1979, Harvard University: Theoretical physics: supersymmetry and supergravity.

Shrock, Robert,1 Ph.D., 1975, Princeton University: Theoretical physics: gauge theories; statistical mechanics.

Siegel, Warren,1 Ph.D., 1977, University of California, Berkeley: Theoretical physics; strings.

Simon, Michal, Ph.D., 1967, Cornell University: Infrared astronomy; physics of the interstellar medium; star formation; solar astronomy.

Smith, John,1 Ph.D., 1963, University of Edinburgh, Scotland: Theoretical physics; elementary particle physics.

Swift, Clifford E., Emeritus, Ph.D., 1951, University of Rochester: Experimental high-energy physics; school curriculum revision.

Verbaarschot, Jac, Ph.D., 1982, University of Utrecht, Netherlands: Theoretical nuclear physics.

Walter, Fredrick M., Ph.D., 1981, University of California, Berkeley: Stellar astrophysics, including X-ray optical and infrared photometry and spectroscopy; RS CV objects; pre-main sequence objects.

Yahil, Amos, Ph.D., 1970, California Institute of Technology: Galaxies; clusters of galaxies; physical cosmology; accretion processes; stellar collapse; supernovae; nuclear astrophysics.

Zahed, Ismail, Ph.D., 1983, Massachusetts Institute of Technology: Theoretical nuclear physics.

Associate Professors

Evans, Aaron, Ph.D., 1996, University of Hawaii: Near-infrared and millimeter-wave astronomy; evolution and collisions of galaxies.

McGrew, Clark, Ph.D., 1994, University of California Irvine: Experimental high-energy physics.

Assistant Professors

Calder, Alan, Ph.D., 1997, Vanderbilt University: Observational astronomy.

Deshpande, Abhay, Ph.D., 1995, Yale University: Nucleon spin and heavy ion physics.

Durst, Adam, Ph.D., 2002, Massachusetts Institute of Technology: Theoretical condensed matter physics.

Fernandez-Serra, Maria, Ph.D., 2005, Cambridge University: Theoretical condensed matter physics.

Research Faculty

Patel, Vijay, Ph.D., 2001 Stony Brook University: Experimental condensed matter physics.

Semenov, Vasili, Ph.D., 1975, Moscow State University, Russia: Experimental condensed matter physics.

Swesty, Douglas F., Ph.D., 1993, Stony Brook University: Computational and nuclear astrophysics.

Yanagisawa, Chiaki, Ph.D., 1981, University of Tokyo, Japan: Experimental high-energy physics.

Adjunct Faculty

Abbas, Peter, Ph.D., 1999, University of Illinois: Condensed matter physics.

Aronson, Samuel, Director of Brookhaven National Laboratory, Ph.D., 1968, Princeton University: Experimental nuclear physics.

Ben-Zvi, Ilan, Ph.D., 1967, Weizmann Institute, Israel: Accelerator and beam physics.

Bergeman, Thomas, Ph.D., 1971, Harvard University: Theoretical atomic physics; interaction of light and matter; laser cooling; Bose condensation.

Creutz, Michael,1 Ph.D., 1970, Stanford University: Lattice gauge theory.

Davenport, James, Ph.D., 1976, University of Pennsylvania: Theoretical condensed matter physics.
Dawson, Sally; Ph.D., 1981, Harvard University: High-energy theory.
Dierker, Steven, Ph.D., 1983, University of Illinois: Experimental solid state physics.
DiMauro, Louis, Ph.D., Experimental atomic physics.
Forman, Miriam, Ph.D., 1972, Stony Brook University: Cosmic rays.
Geller, Marvin, Ph.D., 1969, Massachusetts Institute of Technology: Atmospheric physics.
Johnson, Peter, Ph.D., 1978, Warwick University: Experimental solid state physics.
Kao, Chi-Chang, Ph.D., 1988, Cornell University: Condensed matter physics.
Ku, Wei, Ph.D., 2000, University of Tennessee: Theoretical condensed matter physics.
Lee-Franzini, Juliet, Ph.D., 1960, Columbia University: Experimental high-energy physics.
Litvinenko, Vladimir, Ph.D., 1989, Institute of Nuclear Physics, Novosibirsk, Russia: Accelerator physics and free electron lasers.
Maslov, Sergei, Ph.D., 1996, Stony Brook University: Theoretical condensed matter physics.
Peggs, Steven, Ph.D., 1981, Cornell University: Accelerator physics.
Sayre, David, Ph.D., 1951, Oxford University: X-ray physics.
Spira, Robert, Physics high school teacher.
Sayre, David, Ph.D., 1951, Oxford University: X-ray physics.
Svoboda, Karel, Ph.D., 1994, Harvard University: Experimental biophysics.
Takai, Helio, Ph.D., 1986, Brazil: Experimental particle and heavy ion physics.
Vogelsang, Werner; Ph.D., 1993, University of Dortmund: Theory YITP.
Zhu, Yimei, Ph.D., 1987, Nagoya University: Condensed matter physics.

Affiliated Faculty

Number of teaching, graduate, and research assistants, Fall 2007: 183

1) Member, C.N. Yang Institute for Theoretical Physics

Degree Requirements

Requirements for the M.A. Degree in Physics

A. Satisfactory performance in a program of studies (30 graduate credits) approved by the Department; normally such a program would include graduate seminars, classical mechanics, electrodynamics, and quantum mechanics;

B. Minimum grade point average of 3.0 in all graduate courses taken at Stony Brook;

C. Either passing the graduate comprehensive examination at the master's level or completion of a master's project.

Requirements for the M.S. Degree with Specialization in Scientific Instrumentation (MSI)

A candidate for the master's degree with concentration in instrumentation will be required to demonstrate a certain level of knowledge of physics (by written and/or oral examination), to take certain required and elective courses, and to complete both a major and minor project. The curriculum is designed to meet the needs of students learning about the design, construction, and testing of sophisticated instrument systems. The degree holder will not be a super-technician but a professional scientist trained in both physics and measurement techniques.

A. A student shall demonstrate proficiency in undergraduate physics at the level of the courses PHY 335 (Junior Laboratory I) and 405 (Advanced Quantum Physics). Students need to have demonstrated knowledge in two of three areas: Nuclear and Particle Physics (covered in PHY 431), Condensed Matter Physics (PHY 472), or Laser and Atomic Physics (PHY 452). This can be done (1) by acceptance by the Master's in Scientific Instrumentation Committee of courses taken as an undergraduate, (2) by written examination, or (3) by passing the courses appropriate to a student's background;

B. A course about research instrumentation (PHY 514);

C. Two semesters each of graduate lab (PHY 515, 516) and graduate seminar (PHY 598, 599);

D. Students shall work as teaching assistants in an undergraduate laboratory for at least one semester (being a TA in PHY 445 may satisfy the requirement of taking the second semester of graduate lab [PHY 516]);

E. Thirty credits (minimum) of graduate courses (500 level or above), including a minor project and a master's thesis are required. This thesis must describe a major piece of work in scientific instrumentation and must be in a form acceptable to the Graduate School. It need not be original research in the same sense as a Ph.D. thesis, but it should be the result of an effort consistent with a full year of full-time work. The thesis should present an improvement of the state of the art in some area, the development of a sophisticated and/or automated apparatus, or some other significant laboratory project, and be defended before a committee;

F. Students shall work as teaching assistants in an undergraduate laboratory for at least one semester;

G. Students shall acquire those technical skills deemed necessary by their thesis supervisors. These must include, but are not limited to, machining capability and computer literacy.

Each student will be assigned a committee of three faculty members and will be required to meet frequently with them. It is expected that close communication among all the faculty and students involved will foster spirit, expose problems, and generally contribute to success.

For further information on this program, contact Professor Harold Metcalf.

Requirements for the Ph.D. Degree

A. Completion of the following core courses with a grade of B or better: 501, 505, 506, 511, 512, 540. A student can skip one or more of these courses by sufficiently good performance in the corresponding parts of a placement examination given at the beginning of each fall semester;

B. Completion of required courses; each of the courses listed below must be passed with a minimum grade of B:

1. PHY 598 and PHY 599 Graduate Seminars. These courses are normally taken during the first year of graduate study, one per semester in either order.

2. PHY 515 Methods of Experimental
Research. This course must be taken not later than the fourth semester of residence.

3. Two advanced courses, each in an area outside of the student's thesis research, chosen from a list of courses approved for this purpose.

C. Passing of the written comprehensive examination. This is offered at the beginning of each semester and generally draws from courses beyond the core listed in paragraph A above. It must be passed in the student's fourth semester of study at Stony Brook or earlier;

D. Passing an oral examination on a broad range of topics relevant to the student's intended area of thesis research. The oral examination should be passed before the beginning of the fifth semester of residency.

E. Acceptance of graduate student by an advisor for thesis work;

F. Teaching experience at least equivalent to that obtained in a one-year appointment as a teaching assistant, usually carried out in the first year;

G. Advancement to candidacy for the Ph.D. The Department's recommendations to the Graduate School for advancement to candidacy is based on the satisfactory completion of all requirements listed above;

H. Research, dissertation, and passing the dissertation examination;

I. At least one year of residence.

Courses

PHY 501 Classical Mechanics
Analytical classical mechanics including Lagrangian and Hamiltonian formulations and the Lagrangian-Jacobi theory. Variational principles, symmetries, and conservative laws. Selected advanced problems such as parametric and nonlinear oscillations, planetary motion, classical theory of scattering, rigid body rotation, and deterministic chaos. Basic notions of elasticity theory and fluid dynamics. Fall, 3 credits, ABCF grading

PHY 503 Methods of Mathematical Physics I
A selection of mathematical techniques useful for physicists. Topics are selected from: integral equations, group theory, conformal field theory, advanced statistics, stochastic methods, modern geometry, topology, Green functions, variational calculus. This course is offered to graduate students with special interest in mathematical methods. Fall and spring, 3 credits, ABCF grading

PHY 504 Methods of Mathematical Physics II
A selection of advanced mathematical techniques useful for physicists. Topics are selected from: integral equations, group theory, conformal field theory, advanced statistics, stochastic methods, modern geometry, topology, Green functions, variational calculus. This course is offered to graduate students with special interest in mathematical methods. Fall and spring, 3 credits, ABCF grading

PHY 505 Classical Electrodynamics I
First course in a two-part sequence. Electrostatics and magnetostatics in vacuum and matter; electromagnetic induction, Maxwell's equations and gauge invariance; electromagnetic waves. Additional topics as time permits. Vector analysis, eigenfunction expansions, and Green functions will be introduced and used. Fall, 3 credits, ABCF grading

PHY 506 Classical Electrodynamics II
Second course in a two-part sequence. Maxwell's equations are applied to electromagnetic waves in materials and at interfaces between media. Electromagnetic radiation by moving charges. Special relativity. Additional topics as time permits. Spring, 3 credits, ABCF grading

PHY 510 Introduction to Nonlinear Dynamics
This course concentrates on developing the tools used to analyze models of dynamical systems associated with physical phenomena, such as coupled electrical mechanical, chemical, and biological oscillators, amplitude equations, symmetric maps, etc. There is a discussion of the basic theorems, as well as methods used to derive perturbation solutions for differential equations and maps using the method of normal forms. Fall or spring, 3 credits, ABCF grading

PHY 511 Quantum Mechanics I
First course in a two-part sequence. Topics include basic quantum physics and mathematical apparatus; application to one-dimensional examples and simple systems. Symmetries, angular momentum, and spin. Additional topics as time permits. Fall, 3 credits, ABCF grading

PHY 512 Quantum Mechanics II
Second course in a two-part sequence, covering variational principles, perturbation theory, relativistic quantum mechanics, quantization of the radiation field, many-body systems. Application to atoms, solids, nuclei and elementary particles, as time permits. Spring, 3 credits, ABCF grading

PHY 514 Current Research Instruments
In a series of distinct units, various members of the experimental research faculty describe the nature of their work, explain the major principles of their laboratory instruments, discuss how these instrument systems function, and conduct tours of their laboratories showing the apparatus in action. The student becomes familiar with most of the experimental research instrumentation in the Department. Fall or spring, 3 credits, S/U grading

PHY 515 Methods of Experimental Research I
An experimental course required for all graduate students. The goal of the course is to provide firsthand experience with the nature of experimental work. For students oriented toward theory, the course gives a background for reading and evaluating experimental papers. The course is based on classic measurements in nuclear, particle, atomic, condensed matter physics, and astronomy. Students can gain experience in handling cryogenic liquids, vacuum systems, lasers, pulse counting and coincidence methods, resonance measurements, and electronic instrumentation, such as lock-in amplifiers, particle detectors, coincidence counters, computer control, etc. Numerical analysis of data, presentation of results in written, graphic, and oral form, and meaningful comparison of experiments and theory are part of the course. Working alone or with, at most, one partner, each student must do one experiment from each of four different groups.

PHY 515 Methods of Experimental Research II
May be repeated for credit

PHY 517 Laboratory Course in Astronomical Techniques
A course designed to introduce the theory, design, and operation of modern astronomical instrumentation and to familiarize the student with the use of telescopes. Current astronomical techniques will be discussed with emphasis on methods of observational measurements and reduction of data. Emphasis is given on optical techniques appropriate for wavelengths shorter than one micron. Extensive laboratory and observing exercises may be expected. Spring, alternate years, 3 credits, ABCF grading

PHY 521 Stars
A study of the atmospheres, interiors, and evolution of stars. The contact between theory and observations is emphasized. Stellar atmospheres in hydrostatic and radiative equilibrium described. Models for the calculation of stellar spectra are discussed. Stellar winds are studied. Next, theoretical studies of stellar interiors and evolution, including equations of state, energy transport, and nuclear energy generation, are developed. Structures of main sequence, red giant, pre-main sequence, and white dwarves are studied and compared to observations. The evolution of single stars up to supernovae and the peculiar evolution of close binary systems are also studied. Fall, alternate years, 0-3 credits, ABCF grading

PHY 522 Interstellar Medium
A study of the interstellar medium with emphasis on physical processes. Topics include kinetic theory, equation of transfer, spectral lines, non-thermal emission, ionization effects of dust, and formation and spectroscopy of molecular clouds. The components of the interstellar medium and the interactions between them are discussed in detail, as well as the process of star formation. Spring, alternate years, 0-3 credits, ABCF grading
PHY 523 Galaxies
A basic course on the observational and theoretical aspects of the content, morphology, kinematics, and dynamics of galaxies. Topics include the size, shape, and location of the sun in the Milky Way; stellar populations; the disk and spheroidal components; galactic rotation; distance determination in the Milky Way and to external galaxies; galaxy classification and the Hubble Law; Theoretical topics on stellar dynamics, including potential theory; stellar orbits; and spiral structure. The course also includes a brief introduction to cosmology. Fall, alternate years, 0-3 credits, ABCF grading

PHY 524 Cosmology
A basic course on cosmology: Hubble expansion, Friedmann universes, age of the universe, microwave background radiation, big-bang nucleosynthesis, inflation, growth of gravitational instabilities and galaxy formation, correlation functions, local density and velocity perturbations, and dark matter. Prerequisite: PHY 523 or permission of instructor Spring, alternate years, 0-3 credits, ABCF grading

PHY 533 High Energy Astrophysics
Physical processes that occur at high temperatures and pressures, including X-ray and gamma ray emission, cosmic rays, bremsstrahlung, synchrotron, inverse Compton radiation, and gravitational radiation. Topics also include stellar and galactic accretion processes and jets, including relativistic effects and superluminal expansion. We discuss applications to stellar coronae, supernova remnants, X-ray binaries, pulsars, and compact extragalactic objects. Fall or spring, alternate years, 0-3 credits, ABCF grading

PHY 534 Radio Astronomy
Topics covered include continuum and spectral-line radio astronomy. Within the Milky Way Galaxy topics include the interstellar medium, the physics and kinematics of molecular clouds, star formation in giant molecular cloud complexes, molecular clouds, galactic structure, spiral structure, and pulsars. Extragalactic topics include radio galaxies and jets, radio loud quasars, molecular and atomic gas in galaxies, luminous infrared galaxies, the missing mass problem in spiral galaxies, and cosmic microwave background radiation. Radio astronomy measurement techniques for single telescopes and aperture synthesis techniques are also covered, although the emphasis is on scientific results. Fall or spring, alternate years, 0-3 credits, ABCF grading

PHY 540 Statistical Mechanics

PHY 541 Advanced Statistical Mechanics
Topics are selected from cluster expansions, elementary theory of quantum fluids, phase transitions, transfer matrix, Ising and ferroelectric models, polymers and membranes, disordered systems, and fluctuation and non-equilibrium phenomena. Fall, 0-3 credits, ABCF grading

PHY 551 Nuclear Physics I
Nucleon structure, conservation laws, and the static quark model; nuclear force and the two nucleon system; bulk properties of nuclear matter, charge distribution, spin, isospin, mass, alpha decay, nuclear fission; electromagnetic and weak interaction; collective motion; microscopic models of the nucleus; nuclear matter under extreme conditions; high density. EMRHIC physics at RHIC, nuclear astrophysics. Summer, 0-3 credits, ABCF grading

PHY 552 Nuclear Physics II
Nucleon-nucleon scattering and effective range approximation; the nucleon-nucleon interaction calculated from meson exchange; effective forces between nucleons in nuclei and nuclear matter; the renormalization group approach to these interactions; Fermi-liquid theory of the nuclear many-body problem; thermodynamics of hadrons at high temperature; RHIC physics with heavy ions including transition from hadrons to quark gluon plasma, restoration of chiral symmetry, equation of state, initial conditions, thermodynamics of hadrons at high temperature. 0-3 credits, ABCF grading

PHY 555 Solid-State Physics I
This course concentrates on the basic notions of solid-state physics, treated mostly within the single-particle approximation. Main topics include: crystals, lattices and symmetries, reciprocal lattice and state counting, phonons, electron energy band theory, bonding and cohesion (semi-quantitatively), electron dynamics and electron transport in metals and semiconductors, screening, optical properties of solids, and an introduction to superconductivity and magnetism. Fall, 0-3 credits, ABCF grading

PHY 556 Solid-State Physics II
The course focuses on the many-particle aspects of solid-state physics addressing classical topics such as superconductivity and the transport properties of disordered conductors, as well as more modern subjects including the fractional quantum Hall effect, dissipative quantum mechanics, and problems of mesoscopic physics. Both phenomenological and theoretical descriptions are discussed. Spring, 0-3 credits, ABCF grading

PHY 557 Elementary Particle Physics
Introduction to elementary particle physics. Symmetries and invariance in particle physics. The properties of particles in terms of quarks and leptons and their interactions. An introduction to the electroweak and for strong interactions. Interactions at high energies. Interactions between particles and matter, experiments in particle and experimental results. Survey of particle accelerators. Fall or spring, 0-3 credits, ABCF grading

PHY 562 Lasers and Modern Optics
Introduction to the theory of lasers including resonance conditions, normal modes, optical cavities, and elementary quantum mechanics. Description of types of lasers, methods of control, limitations of power, precision, wavelength, etc. Applications to research and industry. Throughout the course, there will be many problems that involve writing computer programs to solve simple differential equations and model different aspects of laser operation. Not for satisfying physics Ph.D. breadth course requirements. Fall, every year, 0-3 credits, ABCF grading

PHY 565 Quantum Electronics I: Atomic Physics
Quantum electronics is a synthesis of quantum physics and electrical engineering, and is introduced in two independent semesters. A description of simple atoms and molecules and their interaction with radiation includes atoms in strong and/or weak external fields, two-photon spectroscopy, superradiance, Rydberg states, lasers and laser spectroscopy, coherent transients, etc. Spring, 0-3 credits, ABCF grading

PHY 566 Quantum Electronics II: Quantum Optics
Quantum electronics is a synthesis of quantum physics and electrical engineering, and is introduced in two independent semesters. This course focuses on the quantum properties of light. The quantized electromagnetic field and its correlations are used to understand nonclassical states from various sources such as two-level atoms and nonlinear systems interacting with radiation fields. Fall, 0-3 credits, ABCF grading

PHY 570 Introductory Physics Revisited for Teachers
This seminar allows students to explore the fundamentals of topics normally covered in high school physics. Not for Ph.D. credit. Spring, 3 credits, ABCF grading

PHY 571 Electromagnetic Theory for Teachers
The course reviews vector calculus and develops Maxwell’s equations relating electric and magnetic fields to their sources. Applications for time-independent fields are developed for solving boundary value problems and the interactions of fields in bulk matter. An oral presentation of a relevant topic suitable for a high-school class is required. Not for Ph.D. credit. Fall, 3 credits, ABCF grading

PHY 573 Mechanics for Teachers
The Newtonian formulation of classical mechanics is reviewed and applied to more advanced problems than those considered in introductory physics. The Lagrangian and Hamiltonian methods are then derived from the Newtonian treatment and applied to various problems. An oral presentation of a relevant topic suitable for a high-school class is
required. Not for Ph.D. credit.
Fall, 3 credits, ABCF grading

PHY 576 Thermodynamics and Statistical Mechanics for Teachers
This course consists of two parts. Those relations among the properties of systems at thermal equilibrium that are independent of a detailed microscopic understanding are developed by use of the first and second laws of thermodynamics. The concepts of temperature, internal energy, and entropy are analyzed. The thermodynamic potentials are introduced. Applications to a wide variety of systems are made. The second portion of the course, beginning with the kinetic theory of gases, develops elementary statistical mechanics, relates entropy and probability, and treats simple examples in classical and quantum statistics. An oral presentation of a relevant topic suitable for a high-school class is required. Not for Ph.D. credit.
Spring, 3 credits, ABCF grading

PHY 578 Quantum Physics for Teachers
The concepts, historical development, and mathematical methods of quantum mechanics. Topics include Schrödinger's equation in time-dependent and time-independent forms, and one- and three-dimensional solutions, including the treatment of angular momentum and spin. Applications to simple systems, especially the hydrogen atom, are stressed. An oral presentation of a relevant topic suitable for a high-school class is required. Not for Ph.D. credit.
Spring, 3 credits, ABCF grading

PHY 579 Special Topics for Teachers
Topics of current interest to high school teachers are discussed to bring the teachers up to date on the latest developments in various areas of research. Examples could include the standard model of particle physics, nanofabrication techniques, atomic force microscopy, etc. Not for Ph.D. credit.
Fall or spring, 0-3 credits, ABCF grading
PHY 580 Special Research Projects
Research under the direction of a faculty member. Not open to Ph.D. candidates.
Fall and spring, 0-18 credits, ABCF grading
PHY 581 Astrophysics
An introduction to some areas of astrophysics. Topics are selected from stellar structure and evolution, stellar atmospheres, interstellar matter, planetary atmospheres, galactic dynamics, high-energy astrophysics and cosmology, laboratory astronomical techniques.
0-3 credits, ABCF grading

PHY 582 Optics Rotation
Optical science students experience three- to eight-week periods in each of several appropriate research groups. At the end of each period a report is required that describes the topics studied or project done. May not be taken for credit more than two semesters.
Fall and spring, 2 credits, ABCF grading
PHY 585 Special Study
Reading course in selected topics.
Fall and spring, 0-18 credits, ABCF grading
May be repeated for credit

PHY 595 Master's Degree Thesis Research
Independent research for master's degree students. Open only to those approved by individual faculty for thesis work.
Fall and spring, 0-18 credits, ABCF grading
May be repeated for credit

PHY 598 Graduate Seminar I
Special research topics centered on monographs, conference proceedings, or journal articles. Topics include solid-state physics, atomic physics, and quantum optics. Required for all first-year graduate students.
Fall and spring, 0-1 credits, ABCF grading

PHY 599 Graduate Seminar II
Special research topics centered on monographs, conference proceedings, or journal articles. Topics include elementary particles, nuclear physics, galactic and extragalactic astronomy, and cosmology. Required for all first-year graduate students.
Fall and spring, 0-1 credits, ABCF grading

PHY 600 Practicum in Teaching
This course provides hands-on experience in teaching. Activities may include classroom teaching, preparation and supervision of laboratory experiments, exams, homework assignments, and projects.
Fall and spring, 0-2 credits, ABCF grading
May be repeated for credit

PHY 610 Quantum Field Theory I
Quantization of relativistic fields: Lorentz and gauge symmetries, relativistic spin, the S-matrix and scattering; the standard model; perturbation theory, renormalization and effective field theories; path integrals and relations to condensed matter physics.
Fall, 0-3 credits, ABCF grading

PHY 611 Quantum Field Theory II
Quantization of relativistic fields: Lorentz and gauge symmetries, relativistic spin, the S-matrix and scattering; the standard model; perturbation theory, renormalization and effective field theories; path integrals and relations to condensed matter physics.
Spring, 0-3 credits, ABCF grading

PHY 612 Theoretical Particle Physics
Applications of quantum field theory to interactions between elementary particles. Topics are chosen from perturbative quantum chromodynamics, the standard electro-weak model, lattice field theory, grand unified models, supersymmetry, and current research problems.
Fall, 0-3 credits, ABCF grading

PHY 620 Modern General Relativity
General theory of relativity; tensor analysis, Einstein's field equations, experimental tests, black holes, gravitational waves, cosmology. May also include topics such as causality, conformal invariance, and introduction to string theory or supergravity.
Fall or spring, 0-3 credits, ABCF grading

PHY 621 Advanced Quantum Field Theory
Proofs of renormalizability and unitarity on non-Abelian gauge theories using modern methods of Becchi-Rouet-Stora-Tyutin (BRST) symmetry; descent equations for anomalies; classical instantons and their quantum corrections, including integration over zero modes; background field methods, other topics if time permits.
Prerequisite: PHY 610/611 or equivalent
Fall or spring, 0-3 credits, ABCF grading

PHY 622 String Theory I
This course is intended for graduate students who have familiarity with gauge and quantum field theory. Topics will be selected from: Free bosonic and spinning strings and heterotic and Green-Schwarz superstrings; conformal field theory; tree-level and one-loop amplitudes; partition functions; spacetime supersymmetry and supergravity; compactification and duality; winding and Kaluza-Klein modes; 11-dimensional supergravity; branes in supergravity; D-branes in string theory; T-duality; M-theory; complex geometry and Calabi-Yau manifolds; string field theory; other advanced topics if time permits.
Prerequisite: PHY 610/611 or equivalent
Fall or spring, 0-3 credits, S/U grading

PHY 623 String Theory II
This course is intended for graduate students who have familiarity with gauge and quantum field theory. Topics will be selected from: Free bosonic and spinning strings and heterotic and Green-Schwarz superstrings; conformal field theory; tree-level and one-loop amplitudes; partition functions; spacetime supersymmetry and supergravity; compactification and duality; winding and Kaluza-Klein modes; 11-dimensional supergravity; branes in supergravity; D-branes in string theory; T-duality; M-theory; complex geometry and Calabi-Yau manifolds; string field theory; other advanced topics if time permits.
Prerequisite: PHY 610/611 or equivalent
Fall or spring, 0-3 credits, S/U grading

PHY 655 Advanced Graduate Seminar in Theoretical Physics
A weekly seminar on advanced theoretical concepts. The discussion starts with a graduate student presentation and is conducted under the guidance of a faculty supervisor.
0-3 credits, S/U grading
May be repeated for credit

PHY 664 Astronomy Journal Club
Presentation of preliminary research results and current research problems by students and faculty. Required every semester of all astronomy graduate students.
Fall and spring, 0-1 credits, S/U grading
May be repeated for credit

PHY 666 Cool Stars
A weekly seminar concentrating on observational and theoretical studies of cool stars and related objects. Emphasis is on ongoing research and recent results in this area. Speakers include faculty, students, and visitors. Topics anticipated in the near future include results from the Hubble Space Telescope and ROSAT. Students registering
for one credit will be expected to present at
least one seminar.
Prerequisite: Permission of instructor
Fall and spring, 0-1 credits, S/U grading
May be repeated for credit

PHY 668 Seminar in Astronomy
A weekly series of research seminars presented by visiting scientists as well as by
the faculty. Required every semester of all astronomy graduate students.
Fall and spring, 0-1 credits, S/U grading
May be repeated for credit

PHY 669 Nuclear Astrophysics Seminar
A weekly seminar concentrating on topics in nuclear astrophysics, including dynamics of
supernova collapse, structure and evolution of neutron stars, equation of state, the role of
neutrinos in nucleosynthesis, etc.
Fall and spring, 0-1 credits, S/U grading
May be repeated for credit

PHY 670 Seminar in Theoretical Physics
Fall and spring, 0-1 credits, S/U grading

PHY 672 Seminar in Elementary Particle Physics
Fall and spring, 0-1 credits, S/U grading

PHY 674 Seminar in Nuclear Physics
Fall and spring, 0-1 credits, S/U grading

PHY 676 Seminar in Solid-State Physics
Fall and spring, 0-1 credits, S/U grading

PHY 678 Atomic, Molecular, and Optical Physics Seminar
Fall and spring, 0-1 credits, S/U grading

PHY 680 Special Topics in Theoretical Physics
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 681 Special Topics in Statistical Mechanics
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 682 Special Topics in Solid-State Physics
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 683 Special Topics in Astronomy
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 684 Special Topics in Nuclear Physics
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 685 Special Topics in Mathematical Physics
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 686 Special Topics in Elementary Particles
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 687 Topics in Biological Physics
The “Topics” courses in the 680 sequence do
not have specific description, since the sub-
ject matter within the broadly defined topic
may change from one semester to the next.
0-3 credits, ABCF grading

PHY 688 Special Topics in Astrophysics
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 689 Special Topics in Atomic and Optical Physics
Fall and spring, 0-3 credits, ABCF grading
May be repeated for credit

PHY 690 Colloquium
Fall and spring, 0-1 credits, S/U grading
May be repeated for credit

PHY 699 Dissertation Research On Campus
Independent research for Ph.D. degree candidates.
Prerequisite: Must be advanced to candidacy (G5); major portion of research must
take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits,
S/U grading
May be repeated for credit

PHY 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take
place off campus, but in the U.S. and/or U.S.
provinces (Brookhaven National Lab and
Cold Spring Harbor Lab are considered
on campus); all international students
must enroll in one of the graduate student
insurance plans and should be advised by
an International Advisor
Fall, spring, and summer, 1-9 credits,
S/U grading
May be repeated for credit

PHY 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take
place outside the U.S. and/or U.S. provinces;
domestic students have the option of
the health plan and may also enroll in
MEDEX; international students who are
in their home country are not covered by
mandatory health plan and must contact
the Insurance Office for the insurance
charge to be removed; international students
who are not in their home country are
charged for the mandatory health insurance
(if they are to be covered by another insur-
ance plan, they must file a waiver by the
second week of classes; the charge will only
be removed if the other plan is deemed
comparable); all international students
must receive clearance from an
International Advisor
Fall, spring, and summer, 1-9 credits,
S/U grading
May be repeated for credit

PHY 800 Summer Research
0 credit, S/U grading
May be repeated
Physiology and Biophysics (HBY)

Chair: Peter R. Brink, Basic Science Tower T-6 Room 140, (631) 444-2287
Graduate Program Director (Ph.D.): Suzanne Scarlata, Basic Science Tower T-6 Room 145A, (631) 444-3071
Graduate Program Director (M.S.): Irene Solomon, Basic Science Tower T-5 Room 167, (631) 444-2932
Graduate Program Administrator: Melanie Bonnette, Basic Science Tower T-6 Room 140, (631) 444-2299

Degree awarded: Ph.D. in Physiology and Biophysics and M.S. in Physiology and Biophysics

The Department of Physiology and Biophysics offers graduate studies leading to the Ph.D. degree. The Department's faculty has a broad spectrum of research interests, with a major emphasis on understanding the mechanisms of regulation of cellular and organ function in mammalian systems.

The overall goals of the new Master of Science degree program in Physiology and Biophysics are to prepare students for a research career in industry (without a focus on R&D), a teaching career at the undergraduate college level, or further graduate study leading to the Ph.D degree in the Biomedical Sciences. For students interested in attending medical school, the M.S. degree program can complement and enhance your background in the physiological sciences, including biomedical research. To accomplish these goals, the program of study provides training in cellular and systems-level physiology, membrane biophysics, experimental design, data analysis, and commonly used laboratory techniques in integrative physiology. Elective courses in Biomedical Engineering, Molecular and Cellular Biology, Neuroscience, Pharmacological Sciences, and Physiology and Biophysics, are then selected to complement and expand on the above core training, and meet the individual needs of each student. For more information, please contact Dr. Solomon at Irene.Solomon@stonybrook.edu

Research Interests

There are five main research areas in the Department:

1. Regulation of cell function and metabolism
2. Intercellular and intracellular signaling mechanisms
3. Biophysical studies of membranes
4. Cellular and systems electrophysiology and neurobiology
5. Cardiac pre-conditioning and arrhythmia prevention

The Department strives to offer a broad spectrum of experimental approaches and a wide range of research interests, including membrane biophysics, systems biology, cardiac physiology, membrane transport, and the molecular physiology of cell signaling systems. The Department also offers expertise in a wide range of experimental methods including patch clamping, protein chemistry, optical spectroscopy, recombinant DNA and siRNA technology, and state-of-the-art cell imaging.

Some Department faculty members are associated with the Health Sciences Center Diabetes and Metabolism Center and others participate in a University-wide program in Molecular and Cellular Biology, Structural Biology, Biophysics, and Biosystems. Most faculty have collaborative arrangements with other basic science and clinical departments. Through joint faculty appointments, students have access to the unique facilities of Brookhaven National Laboratory and Cold Spring Harbor Laboratory, renowned research institutions, which are located near Stony Brook.

Institute of Molecular Cardiology

Housed within the Department of Physiology and Biophysics is the Institute of Molecular Cardiology. Since heart disease is still the number one cause of death in the United States, the Institute of Molecular Cardiology was established to bring a multidisciplinary group of basic scientists and clinical investigators together to focus on clinically relevant problems. Biophysicists, molecular biologists, cell biologists, engineers, and cardiovascular surgeons together compose the group that currently investigates ischemic preconditioning, atrial and ventricular arrhythmias, cardiac contractility, and the development of stem-cell-based therapies.

Research Facilities

In addition to the wide range of instrumentation and technical centers available on campus, the Department of Physiology and Biophysics is well equipped with major research instrumentation for physiological, metabolic, and biochemical studies. The Department houses a Molecular Biology Core that has scintillation counters, ultracentrifuges, amino acid analyzers, protein sequencers, and a wide variety of chromatographic,-electrophoretic, and spectrophotometric equipment. Also available are a peptide synthesizer and a laboratory for chemical synthesis of low-molecular-weight compounds. NMR instrumentation is available through collaboration with other departments. Tissue culture services, including monoclonal antibody production, are also available. Specialized equipment used in studies of membrane physiology and biophysics (e.g., membrane electrophysiology and patch-clamp studies on ion channels) are in routine use in several faculty laboratories. The Department also houses an imaging center containing two confocal microscopes with image acquisition and processing systems.

Molecular Biology Core

The molecular biology core was established to provide students and faculty ready access to DNA/RNA recombinant technology. Departmental facilities include a 37-degree environmental room, a DNA synthesizer, and an automatic DNA sequencer, large orbital shakers, an array of incubators, DNA sequencing gel set ups (IBI), electrophoretic apparatus and power supplies, an IBI gel reader and a software package that permits the reading of DNA sequencing gels, a selection of restriction enzymes, and a number of cDNA expression libraries.

Molecular Modeling

Computational molecular modeling and visualization are valuable tools for the study of signal transduction systems and protein structure/function. Some current applications of faculty affiliated with our Biophysics Program include examining the physical factors involved in protein/membrane, protein/protein,
protein/DNA interactions, studying the specificity of ligand and substrate binding to enzymes, and building models of proteins using domain structures from homologous proteins. Several Departmental members have access to the University’s Supercomputing Centers.

Computing Facilities
Access to the campus-wide wireless network is available. All computers are connected via Ethernet to a local area network.

The Graduate Program in Physiology and Biophysics

Goals of the Program
The diverse nature of the Department’s research provides a unique environment for graduate study. The overall goal of our program is to prepare students to investigate complex physiological and biophysical problems that often bridge traditional academic boundaries. This requires sound training in a broad range of biological disciplines, plus experience in using the latest techniques in physiology, biochemistry, molecular biology, physics, applied mathematics, and computing.

To accomplish this goal, we recruit a relatively small number of students with diverse undergraduate training in the physical and biological sciences. Individual courses of study are then designed that reflect the background and goals of each student.

Overview of Curriculum
During the first year, all students take courses in cellular and organ systems physiology, biochemistry, and experimental design and data analysis methods. During the second year, students select from a variety of advanced courses that suit their scientific interests, goals, and background. Most students complete their coursework at the end of the fall semester of their second year. Students rotate through at least three faculty laboratories to gain research experience in their first year. Students also participate, under faculty supervision, in the teaching of physiology or biophysics. Upon completion of the qualifying examination and the selection of a faculty advisor for their research, the students then devote essentially all of their time to dissertation research.

There are three research concentrations available to graduate students: Cellular and Molecular Physiology, Biophysics, and Systems Physiology.

Cellular and Molecular Physiology
The goal of the Cellular and Molecular Physiology concentration is to train students to investigate significant problems in human physiology using modern techniques of molecular and cellular biology. Students who choose this option generally have undergraduate degrees in biochemistry or biology, and will take advanced graduate classes in cellular and molecular biology and molecular genetics during their second year.

To increase the training and research opportunities available to our students, this program is affiliated with an interdepartmental program in Molecular and Cellular Biology (MCB). The MCB Program consists of approximately 100 faculty from 11 departments, as well as investigators at Cold Spring Harbor Laboratory and Brookhaven National Laboratory. It offers several core courses taken by all graduate students in the biological sciences.

Biophysics
The goal of the Biophysics Studies concentration is to train students with strong backgrounds in physics and/or chemistry in modern biophysics. The program is an interdepartmental effort, consisting of faculty from Cold Spring Harbor Laboratory and Brookhaven National Laboratory. Students who choose this option generally take advanced courses in biophysical chemistry, computational biophysics, electro-physiology, or advanced biochemistry. Biophysics students carry out rotations and dissertation research in the lab of any faculty member affiliated with the Biophysics Program.

Systems Physiology
The primary goal of the systems physiology concentration is to provide an educational framework that focuses on preparing students to attack complex integrative problems using interdisciplinary approaches and to work effectively as part of a multidisciplinary team. Areas of specialization in the Department include systems neurophysiology, cardiovascular and microvascular physiology, and vision research. The systems physiology concentration is a central element in the BioSystems Group, which is an interdepartmental consortium of faculty members drawn from six departments, including Physiology and Biophysics, Biomedical Engineering, Neurobiology and Behavior, Pharmacological Sciences, Medicine, and Applied Mathematics and Statistics, as well as members from Brookhaven National Laboratory and Cold Spring Harbor Laboratory.

The campus-wide nature of the BioSystems Group provides educational and research opportunities of exceptional depth and diversity, and the ability to accommodate students with a broad spectrum of interests and background. This diversity is reflected in the areas of specialization within the graduate programs. These include the general areas of systems physiology, cellular/molecular physiology, biophysics, biomedical engineering, neuroscience, pharmacology, computational biology, and signal processing.

Requirements and Procedures

Advisory Committee
After admission and until the student qualifies for candidacy, the student’s education is directed by the Departmental graduate committee. The committee will assess the student’s background and preparation and will develop with each student an individual program of courses, laboratory experiences, and independent study. The committee is also responsible for monitoring student performance and assessing progress after the end of the first year.

Laboratory Experience
During the first year, students rotate through at least three laboratories affiliated with the Department. The duration of these rotations may vary, but should not exceed six months. At the end of each rotation, students will submit a written report of the aims and results, as well as the difficulties with the project.

Teaching Experience
Students are required to serve as teaching assistants for one semester in a course offered by the Department. This will fulfill the Teaching Practicum required for doctoral degrees awarded by the State University of New York.

Seminars and Journal Club
The Department hosts an extensive series of seminars on topics of direct and indirect relevance to research interests of the faculty. Seminars are given by faculty and visiting scientists. Students are required to attend all departmental seminars. Students are also required to participate in the student journal club, in which a student
critically presents a journal article to members of the Department.

Course of Study

Graduate students are required to take the following courses: HBY 530 Cellular Physiology and Biophysics, HBY 501 Human Physiology or HBY 531 Medical Physiology, MCB 517 Biomembranes, MCB 520 Graduate Biochemistry, HBY 561 Statistical Analysis of Physiological Data, HBY 562 Model-based Analysis of Physiological Data, HBY 695 Teaching Practicum, HBY 591 Research in Physiology and Biophysics, HBY 570 Journal Club, HBY 690 Seminar in Physiology and Biophysics, and HBY 699 or HBY 700 Thesis Research in Physiology and Biophysics, GRD 500 Scientific Integrity.

Students must also take at least four elective courses equaling 12 credits.

1. Biophysics: HBY 553 Signal Transduction and other courses with approval.
2. Cellular, Molecular, and Systems Physiology: HBM 503, Molecular Genetics Molecular and HBH 533 Physiological Basis of Drug Action, HBP 533 Immunology, HBY 564 Experimental Techniques in Systems Physiology, HBY 565 Mathematical Models of Physiologic and Biophysical Systems, and other courses with approval.

Students are also required to demonstrate competency in statistics and computer programming, either by formal undergraduate or graduate courses, or by passing an exam after self study.

Qualifying for Candidacy

The major purpose of the Qualifying Examination is to establish how well the student is able to formulate scientific questions independently. To accomplish this, the student will be required to write, within a prescribed period of time, a formal research proposal with format and scope similar to an NIH Postdoctoral Fellowship Application under the guidance of a faculty committee.

The qualifying exam will be administered to all second-year students in the spring semester. At that time, the student will choose a topic that may complement but not be directly in the area of the student’s own major research interest. The student will then meet with the Preliminary Examination Committee, twice over the course of six to eight weeks. The student will then distribute copies of the proposal to the faculty and present a seminar to the entire Department describing the proposal. Following the seminar, the student will meet with the faculty to defend the proposal. The Preliminary Examination Committee will then vote on whether the student passes, fails or must amend portions of his/her exam.

Doctoral Program Committee

After completing three rotations, the student will select a faculty committee to provide guidance throughout the dissertation research. The committee will meet at least once a year to assess the progress of the work toward a dissertation. The committee will advise the student when it is appropriate to assemble the committee for the dissertation defense.

Thesis Research Proposal

In consultation with the student’s advisor and Doctoral Program Committee, the student is required to submit a written thesis proposal to the Doctoral Program Committee as soon as the direction and scope of the dissertation research project is established. The student is also required to present a seminar describing his proposal to the entire Department and to defend the proposal in a closed meeting with the Doctoral Program Committee. The approved thesis proposal should be submitted one to two years after advancement to candidacy.

Dissertation Defense

A Dissertation Defense Committee is appointed by the Dean of the Graduate School, and is to include at least four faculty members, of whom at least one must be from outside the program. The thesis advisor may be in attendance, but is without vote.

Doctoral Thesis

The thesis will be written in the form of one or more scientific publications in accordance with the guidelines of the Graduate School. The student then presents his/her thesis work to Departmental members in an open seminar, after which the student meets privately with the Dissertation Defense Committee for an oral examination. The Dissertation Defense Committee evaluates both the oral exam and the completed thesis.

Time Limits

All requirements must be completed within seven years.

Admission

For admission to the Ph.D. program in Physiology and Biophysics or the M.S. program, the following, in addition to the minimum Graduate School requirements, are normally required:

A. A four-year undergraduate degree including the following courses: one year of calculus, one year of general biology with laboratory, one year of physics using calculus, and one year of chemistry. Training in the following areas is strongly recommended: organic chemistry, biochemistry, and physical chemistry. Courses in genetics, cell biology, and biostatistics will also be useful. In exceptional circumstances, permission may be granted to correct deficiencies in undergraduate training during the first year of graduate study.

B. Three letters of reference are required.

C. The Graduate Record Examination (GRE) General Test is required.

Instructions on reporting scores to this campus is on the Graduate School Website. So that the scores will be available for a timely admission decision, the test should be taken no later than January. The deadline for receipt of the online applications for admission in the fall is January 15. The TOEFL examination is also necessary for foreign students. Acceptance by both the Department of Physiology and Biophysics and the Graduate School is required.

D. A GPA of 3.0 or higher is required.

Faculty

Professors

Brink, Peter R., Chair, Ph.D., 1976, University of Illinois: Physiology and biophysics of junctional and excitable membranes.
Cohen, Ira S., M.D., Ph.D., 1974, New York University: Electrophysiology of the heart; synaptic physiology.
Johnson, Roger A., Ph.D., 1968, University of Southern California: Mechanism of hormone action; inter- and intracellular regulation of membrane-bound hormone-sensitive enzymes.
Krukenkamp, Irvin B., M.D., University of Maryland, 1978: Surgical and pharmacologic preconditioning and atrial arrhythmias.

Mathias, Richard T., Ph.D., 1975, University of California, Los Angeles: Electrophysiology of cardiac muscle; volume regulation in the lens.

McLaughlin, Stuart, Ph.D., 1968, University of British Columbia, Canada: Biophysics of membranes.

Mendell, Lorne, Ph.D., 1965, Massachusetts Institute of Technology: Physiology and modifiability of synapses in the spinal cord.

Miller, W. Todd, Ph.D., 1988, Rockefeller University: Protein structure and function; molecular mechanisms of signal transduction.

Moore, Leon C., Ph.D., 1976, University of Southern California: Renal physiology.

Scarlat, Suzanne, Ph.D., Program Director, Ph.D., 1984, University of Illinois: Biophysics of signaling proteins.

Smith, Steven O., Ph.D., 1985, University of California, Berkeley: Molecular mechanisms of signal transduction.

Associate Professors

Chon, Ki H., Ph.D., 1993, USC: Biomedical signal processing; identification and modeling of physiological systems and medical instrumentation.

Clausen, Chris, Ph.D., 1979, University of California, Los Angeles: Electrical properties of transporting epithelia.

McKinnon, David, Ph.D., 1987, Australian National University: Control of ion channel expression.

Solomon, Irene C., M.S. Graduate Program Director, Ph.D., 1994, University of California, Davis: Neural control of respiratory motor output and fast oscillatory rhythms.

Spector, Iman, Ph.D., 1967, University of Paris, France: Electrophysiology of nerve and muscle cell lines; ion channels; neurotoxins.

White, Thomas W., Ph.D., 1984, Harvard University: Biology of cell-to-cell communication and gap junction.

Assistant Professors

Entcheva, Emilia, Ph.D., 1998, Memphis: Cardiac cell function.

Frame, Mary, Ph.D., 1990, University of Missouri: Microcirculation; tissue engineering; nanofabrication.

Nassar, Nicolas, Ph.D., 1992, University Joseph Fourier and EMBL: Protein-protein interactions.

Research Faculty

Cameron, Roger H., Assistant Professor, Ph.D., 1990, Stony Brook University: Electron microscopy; pharmacology of plasma cells secretion.

El-Maghrabi, Raafat, Associate Professor, Ph.D., 1978, Wake Forest University: Enzyme regulation; hormonal control of metabolism.

Gao, Junyuan, Assistant Professor, Ph.D., 1994, Stony Brook University: Sodium potassium pump current in cardiac myocytes.

Kumari, Sindhu, Assistant Professor, Ph.D., 1988, Madurai Kamaraj University, India: Biochemical and molecular characterization of gap junction channels and sodium potassium pump.

Pentylalys, Srivinas, Ph.D., Assistant Professor, Ph.D., 1989, SRI Venkateswara University: Molecular mechanics of the action of anesthetics.

Rebecchi, Mario J., Associate Professor, Ph.D., 1984, New York University School of Medicine: Signal transduction in mammalian cells.

Rosati, Barbara, Assistant Professor, Ph.D., 2000, Milan, Italy: Transcriptional regulation of ion channel genes in the heart.

Valjunas, Virginiaus, Assistant Professor, Ph.D., 1992, Kaunas Medical University, Lithuania: Gap junction; intercellular communication and cardiac electrophysiology.

Varadaraj, Kulandaiyappan, Assistant Professor, Ph.D., 1991, Madri Kamaraj University: Lens membrane proteins and gap junctions.

Wang, Hsiun Yu, Associate Professor, Ph.D., 1989, Stony Brook University: Signal transduction and development.

Biophysics Program Affiliated Faculty

Grollman, Arthur P., Distinguished Professor, Department of Pharmacological Sciences, M.D., 1959, Johns Hopkins University: Chemical carcinogenesis and mutagenesis.

Jacobsen, Chris J., Professor, Department of Physics, Ph.D., 1988, Stony Brook University: Soft X-ray microscopy of cellular structure and materials structure.

Joshua-Tor, Leemor, Assistant Investigator, Cold Spring Harbor Laboratory, Ph.D., 1991, The Weizmann Institute of Science: Structural biology; X-ray crystallography; molecular recognition; transcription; proteases.

Kirk, Janos, Professor, Department of Physics, Ph.D., 1963, University of California, Berkeley: Microscopy and microanalysis of cellular architecture with soft X-rays.

Krainer, Adrian R., Professor, Cold Spring Harbor Laboratory, Ph.D., 1986, Harvard University: Mechanisms and regulation of messenger RNA splicing in human cells.

Lennarz, William J., Professor, Department of Biochemistry, Ph.D., 1959, University of Illinois: Biosynthesis and function of glycoproteins in development.

London, Erwin, Professor, Department of Biochemistry, Ph.D., 1979, Cornell University: Membrane lipid-protein interactions; protein toxin structure and function.

Malbon, C., Professor, Department of Pharmacology, Ph.D., 1976, Case Western Reserve University: Elucidating the genetic basis of developmental and metabolic diseases.

Matthews, Gary, Professor, Department of Neurobiology and Behavior, Ph.D., 1975, University of Pennsylvania: Cellular biophysics of electrical signals in the retina.

Raleigh, Daniel P., Professor, Department of Orthopedics, Ph.D., 1983, Bristol University: Cellular mechanisms responsible for adaptation in bone.

Sampson, Nicole S., Professor, Department of Chemistry, Ph.D., 1990, University of California, Berkeley: Enzyme mechanisms and protein structure-function relationships.

Setlow, Richard, Professor, Department of Biology, and Senior Scientist, Brookhaven National Laboratory, Ph.D., 1947, Yale University: DNA damage and repair.

Tonge, Peter J., Professor, Department of Chemistry, Ph.D., 1986, University of Birmingham, England: Enzyme mechanisms in antitubercular drugs and Alzheimer's disease.

Wong, Stanislaus, Associate Professor, Department of Chemistry, Ph.D., 1999, Harvard University: Fundamental structure correlations in unique nanostructures.

1) Joint appointment, Department of Neurobiology and Behavior
2) Joint appointment, Department of Medicine
3) Joint appointment, Department of Surgery
4) Joint appointment, Department of Pediatrics
5) Joint appointment, Department of Anesthesiology
6) Joint appointment, Cold Spring Harbor Laboratory
7) Joint appointment, Brookhaven National Laboratory
8) Joint appointment, Department of Applied Mathematics and Statistics
9) Joint appointment, Department of Orthopedics
10) Joint appointment, Veterans Administration Hospital
11) Joint appointment, North Shore University Hospital
12) Joint appointment, Department of Urology
13) Joint appointment, SUNY Old Westbury
14) Joint appointment, Department of Biochemistry and Cell Biology
15) Joint appointment, Department of Biology, University of Tulsa, Oklahoma
16) Joint appointment, Department of Pharmacology, College of Physicians and Surgeons, Columbia University
17) Joint appointment, Department of Molecular Genetics and Microbiology
18) Joint appointment, Department of Biomedical Engineering
Degree Requirements

In addition to the minimum Graduate School requirements, the following are required:

A) Completion of HBY 531 or HBY 501, HBY 530, HBY 561 HBY 562, MCB 517, MCB 520, HBY 570, HBY 591, HBY 690, HBY 699, HBY 695, GRD 500

B) Satisfactory completion of the preliminary examination at the end of the second year of study

C) Submission of a thesis research proposal by the end of the third year

D) Participation in the teaching practicum

E) Submission of an approved dissertation and successful oral defense

F) Completion of all requirements within seven years

Courses

HBY 501 Physiology

Introduces normal function of human tissues and organs and their regulation by nervous and endocrine systems. Emphasizes the organization and function of physiological control systems and the maintenance of a constant internal environment.

Prerequisites: Fully matriculated graduate students, with permission of instructor

Fall, 4 credits, ABCF grading

HBY 530 Cellular Physiology and Biophysics

Cellular structure and function. Topics include ion channels excitability, transport, energetics and metabolism, contraction, secretion, and communication within and between cells. Emphasizes quantitative analysis of cellular processes. Crosslisted with BME 545.

Prerequisites: Undergraduate physics, physical chemistry, biology, calculus, or permission of instructor

Fall, 1-3 credits, ABCF grading

HBY 531 Medical Physiology

A graduate-level introduction to the physiology of the organ systems with ultrastructural correlations. Ultrastructural correlations are demonstrated in a laboratory setting using histological preparations in conjunction with electron micrographs illustrating the relevant ultrastructure needed to understand the normal functioning of tissues and organs. The physiology of the major organ systems is addressed in a lecture format with the emphasis on problem solving. Relevant clinical correlations are addressed at the end of each block insofar as they illustrate how symptoms and signs of disease result from disordered physiology. Medical Physiology addresses the structure and function of the cardiovascular, respiratory, renal, gastrointestinal, endocrine, skeletal, reproductive, and integumentary systems.

Prerequisites: Admission to medical or dental school and permission of instructor

Spring, 8 credits, ABCF grading

HBY 553 Signal Transduction

The course will emphasize fundamental concepts in signal transduction (e.g., membrane-protein and protein-protein interactions, amplification of signals), and individual lectures will apply these concepts at each stage of the signal transmission and the cell surface to the nucleus, where signal transduction leads to specific gene expression. Crosslisted with HBY 555 or HBB 553.

Prerequisite: Admission to graduate Health Sciences Center program

Spring, odd years, 3 credits, ABCF grading

HBY 554 Principles of Neuroscience

The aim of this course is to highlight and create an understanding as to how the human nervous system operates.

Prerequisite: Undergraduate biochemistry, biology, and chemistry. Permission of instructor

Fall, 2 credits, ABCF grading

HBY 557 Advanced Physiology

This course is designed to introduce students to integrative approaches in biomedical research. Emphasis will be placed on the primary physiological concepts of control, communication, signal processing, metabolism and replication.

Prerequisites: Systems physiology, biochemistry, and permission of instructor

Spring, 2 credits, ABCF grading

HBY 561 Statistical Analysis of Physiological Data

Statistical methods useful in analyzing common types of physiological data. Topics include probability, data distributions, hypothesis testing with parametric and non-parametric methods, ANOVA, regression and correlation, and power analysis. Emphasis is on experimental design and appropriate, efficient use of statistical software.

Fall, 1 credit, ABCF grading

HBY 562 Model-based Analysis of Physiological Data

The analysis of common biochemical and physiological data by non-linear regression of data models and biological models of physiological and biochemical processes. Examples include binding kinetics, compartmental mass transfer, and spectral analysis.

Prerequisite: HBY 561; permission of instructor

Fall, 1 credit, ABCF grading

HBY 564 Experimental Techniques in Systems Physiology

A series of lectures and laboratory exercises designed to introduce students to in vivo experimental techniques used in systems physiology. Emphasis will be placed on the ethical use of rodents in biomedical research and the measurement of physiological variables. Data acquisition and analysis procedures used in cardiovascular, respiratory, neural, and renal physiology will also be covered.

Spring, 2 credits, ABCF grading

HBY 565 Mathematical Models of Physiological and Biophysical Systems

An introduction to mathematical modeling of cell and tissue function. Topics include the derivation and numerical solution of models of cell homeostasis, membrane transport and excitability, and cell signaling and metabolism. Grading is based on problems, student presentations, and completion of a modeling project.

Spring, 3 credits, ABCF grading

HBY 570 Student Journal Club

Graduate student presentation on a selected topic with faculty consultation.

Prerequisite: Limited to students of the Physiology and Biophysics program

May be repeated for credit

HBY 590 Special Topics in Physiology and Biophysics

Student seminars on topics to be arranged through consultation with faculty members.

Prerequisite: Permission of instructor

Spring, 1 credit, S/U grading

May be repeated for credit

HBY 591 Physiology and Biophysics Research

Original investigation under the supervision of a staff member.

Prerequisite: Permission of instructor

1-12 credits, ABCF grading

May be repeated for credit

HBY 690 Seminar in Physiology and Biophysics

Seminars and discussions on major topics in physiology and biophysics by students, staff, and visiting scientists.

Prerequisite: Permission of instructor

1 credit, S/U grading

May be repeated for credit

HBY 695 Practicum in Teaching in Physiology and Biophysics

Practical experience and instruction in the teaching of physiology and biophysics carried out under faculty orientation and supervision.

1 credit, ABCF grading

May be repeated for credit

HBY 699 Dissertation Research On Campus

Original (thesis) research undertaken with the supervision of a member of the staff.

Prerequisite: Advancement to candidacy (G5); permission of thesis advisor; major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab; admission to graduate Health Sciences Center program

1-9 credits, ABCF grading

May be repeated for credit

HBY 700 Dissertation Research Off Campus—Domestic

Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must
enroll in one of the graduate student insurance plans and should be advised by an international advisor; admission to graduate Health Sciences Center program
1-9 credits, S/U grading
May be repeated for credit

HBY 701 Dissertation Research Off Campus – International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by the mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will be removed only if the other plan is deemed comparable); all international students must receive clearance from an international advisor; admission to graduate Health Sciences Center program
1-9 credits, S/U grading
May be repeated for credit

HBY 800 Full-Time Summer Research
Full-time laboratory research projects supervised by staff members.
Prerequisite: Permission of instructor; full-time graduate status
Summer, 0 credit, S/U grading
May be repeated
Political Science (POL)

Chair: Jeffrey Segal, Ward Melville Social and Behavioral Sciences Building Room S-711, (631) 632-7667
Graduate Program Director: Charles Taber, Ward Melville Social and Behavioral Sciences Building Room N-707A, (631) 632-7659
Graduate Coordinator: Lee Stanley, Ward Melville Social and Behavioral Sciences Building Room S-703, (631) 632-7667

Degrees awarded: M.A. in Political Science; M.A. in Public Policy; Ph.D. in Political Science

Ph.D. Program in Political Science

The Ph.D. program in Political Science, in the College of Arts and Sciences, is characterized by several distinct features:

A. Three areas of specialization:
 1. Political Psychology/Behavior
 2. Political Economy and Public Policy
 3. American Politics

B. Close student/faculty interaction

C. An emphasis on professional training of research-oriented students and the production of professional-quality articles and conference papers by Ph.D. students

Political Psychology/Behavior

The doctoral concentration in political psychology/behavior applies contemporary psychological theories, concepts, and research methods to the study of political behavior. Students are trained in topics and methods associated with psychology as well as political science. Methodological concerns focus on experimentation and survey research. In addition to formal training in methods appropriate to the psychological study of political behavior, students are apprenticed to ongoing research projects throughout their course of training. Students become familiar with the Department’s extensive and well-equipped laboratories and the regular subject pool. Opportunities are also available to take part in ongoing survey research projects.

The substantive interests of the faculty in this area include voter decision-making processes, political socialization, political values and beliefs, the mass media, political cognition, group influence, and public opinion.

Political Economy and Public Policy

The concentration in political economy and public policy emphasizes the interaction between politics and the institutions (both public and private) that shape economic policies. Students choosing this concentration analyze important issues by focusing on decision making and organizational behavior as shaped by individual incentives and institutional structures. In addition to the foundation course in public policy required of all students, elective seminars in this field include policy evaluation, organizational decision making, bureaucracy, regulation, institutional analysis, and urban politics.

The faculty have published research on issues such as the economic development of metropolitan areas, the political economy of suburbs, political controls over regulatory bureaucracies, and citizen responses to tax policies. A sample of other ongoing research projects in which incoming students may become involved includes the effect of market-like incentives in school choice, subsidy flows in the European Union, the role of social capital in environmental decision-making, and regulation of business by state governments. The economic approach is also used to investigate other political processes such as voting, party competition, and agenda setting.

American Politics

The American politics concentration provides a broad perspective on national political institutions and processes, with particular emphases on elections and courts. Courses focusing on political parties and elections, the legislative process, the American judiciary, electoral behavior, American political ideology, and public choice theory are offered. Students become familiar with the kinds of quantitative and formal analysis techniques most often applied to the study of American politics. Seminar papers allow students to go into detail on topics of special interest.

Members of the faculty are currently doing research on congressional and Supreme Court decision making, the role of economic forces in American national elections, voting in congressional elections, gender issues, and the dynamics of American public opinion.

Methodology

Since we believe that a strong background in research methods is essential for political scientists interested in empirical research, we provide a rigorous training in the application of statistical methods and formal models to political analysis. Coursework in methods includes introductory training in research design and elementary statistics, as well as more advanced work in statistical analysis, econometrics, time series analysis, and measurement. The Department recognizes that many undergraduates in political science come to graduate school without much background in statistics and math. Therefore, our courses therefore start at an introductory level and slowly develop the skills necessary to do publishable research in political science. In addition to the classroom work, these courses all involve analysis of actual data on personal computers. We believe, however, that it is the application of research methods, first as part of faculty and class research projects and then in a student’s own dissertation research, that makes a qualified researcher with the skills required for success in research and academic careers.

Research Facilities

The Department has extensive research facilities equal to any in the country, most located on the same floor with faculty and student offices. Students routinely use the conveniently located computer facilities for writing and analysis as part of their professional training. The Social and Behavioral Sciences Data Laboratory on our floor provides access to state-of-the-art personal computers tied to a local computer network and providing connections to all computers on campus. The Stony Brook Instructional Networked Computer site one floor below the Department provides additional personal computers for classroom and research work. In addition, our data lab maintains a library of reference materials, holds classes on specific software packages, provides access to the extensive data archives available.
through the Inter-University Consortium for Political and Social Resources, and employs computer consultants to help with student research projects. All of the resources of the data lab are available to graduate students.

The laboratories for political psychology research are designed for the experimental study of political behavior. One set of labs contains computerized equipment to monitor, control, record, and analyze multiple responses from subjects. Much of the recent work focuses on information processing and decision making—how citizens interpret, use, and recall political information. The other set of labs contains a large survey and experiment room equipped with computerized data collection stations. Students may also take advantage of our modern, fully equipped Survey Center for public opinion studies using computer-assisted telephone interviewing.

Admission

The Department of Political Science doctoral program admits only students who intend to complete the Ph.D., although students are eligible to receive the M.A. Applicants for admission to the Ph.D. program in political science must meet the following requirements:

A. Submission of Graduate Record Examination (GRE) Test scores (verbal, quantitative, and analytic)
B. Prior training that includes basic work in at least one of the following:
 1. Political science
 2. Psychology
 3. Mathematics or statistics
 4. Economics or sociology
C. A bachelor's degree with at least a B average in the major subject
D. Three letters of recommendation from instructors or academic advisors
E. In cases where the Departmental admissions committee deems it desirable, personal interviews with Departmental representatives may be necessary

Acceptance by both the Department of Political Science and the Graduate School is required.

Faculty

Distinguished Professors

Lodge, Milton G., Emeritus, Ph.D., 1967, University of Michigan: Political psychology, political cognition.

Schneider, Mark, Ph.D., 1974, University of North Carolina, Chapel Hill: Urban public policy; urban service delivery; administration and public policy.

Segal, Jeffrey A., Chair, Ph.D., 1983, Michigan State University: Judicial process and behavior; research methods; American politics.

Professors

Feldman, Stanley, Ph.D., 1978, University of Minnesota: American politics, emphasizing political psychology and socialization; public opinion; voting behavior and participation; methodology.

Huddy, Leonie, Ph.D., 1987, University of California, Los Angeles: Political attitudes; groups and politics; sociopolitical gerontology; women and politics.

Koppelman, Lee E., D.P.A., 1970, New York University: Comprehensive regional and urban planning; environmental policy; American federalism and intergovernmental relations; regional policy analysis; coastal zone planning.

Myers, Frank, Ph.D., 1965, Columbia University: Comparative politics; political theory.

Norpoth, Helmut, Ph.D., 1974, University of Michigan: Electoral behavior; public opinion.

Salins, Peter D., SUNY Provost and Vice Chancellor for Academic Affairs, Ph.D., 1969, Syracuse University: Public policy; regional planning.

Associate Professors

Cover, Albert D., Ph.D., 1976, Yale University: American politics: congressional elections.

Lavine, Howard, Ph.D., 1994, University of Minnesota: Political psychology; cognition.

Taber, Charles S., Graduate Program Director, Ph.D., 1991, University of Illinois: International relations; political psychology; foreign policy; conflict modeling; computational modeling (AI).

Assistant Professors

Bartels, Brandon, Ph.D., 2006, Ohio State University: Judicial politics and decision-making; constitutional law; public opinion; congressional organization and behavior; political methodology.

Basinger, Scott J., Ph.D., 2000, University of California, San Diego: Game theory; American political parties; American political development.

Lahav, Gallya, Ph.D., 1995, City University of New York: Political psychology; comparative politics.

Lebo, Matthew, Ph.D., 1999, University of North Texas: Political parties; public opinion; elections; political methodology.

Levitan, Lindsey Clark, Ph.D., 2007, University of Chicago: Social networks; attitudes; prejudice.

Lindstäd, René, Ph.D., 2006, Washington University: Political institutions; bureaucratic and legislative politics; American political development; political methodology and formal theory.

Simmons, Joel, Ph.D., 2007, University of Michigan: Comparative political economy; international political economy; political and economic development; political institutions; political parties; public goods provision; international relations; methodology.

Smirnov, Oleg, Ph.D., 2005, University of Oregon: Evolutionary game theory; computational and agent-based modeling; experimental economics; evolutionary psychology.

Number of teaching, graduate, and research assistants, Fall 2007: 23

Degree Requirements

Requirements for the M.A. Degree

In addition to the minimum requirements of the Graduate School, the Department requires all candidates to complete 30 credits of approved graduate coursework in which a grade of B or higher has been received.

M.A. in Public Policy

The M.A. in Public Policy prepares students for entry and mid-level analytic and management positions in state, local, and federal agencies, in non-profit organizations that interact with government, and in corporations that deal with public policy. Courses are taught by members of the Department, as well as by outstanding local practitioners affiliated with the Center for Regional Policy Studies, headed by Dr. Lee Koppelman.

Admission

Applicants should have an undergraduate grade point average of 3.0 (out of 4.0), and Graduate Record Examination (GRE) scores indicating a potential for success in a rigorous graduate program. Consideration will also be given to letters of recommendation and work experience.

Program Tracks

M.A. Track

This track requires the completion of 30 credits of graduate coursework, typically distributed as follows:

Fall:

POL 501 Introductions to Statistics for Public Policy (three credits)

POL 535 Public Policy Analysis and Evaluation (three credits)
POL 509 Public Budgeting and Finance (three credits)
POL 537 Administrative Law for Public Analysts (three credits)
or
500-level elective approved by Graduate Director (only one elective permitted outside of Department of Political Science)

Spring:
POL 502 Intermediate Statistics for Public Policy (three credits)
POL 536 Public Management and Organizational Behavior (three credits)
POL 510 Personnel Systems for Public Policy (three credits)
POL 534 Intergovernmental Relations and Policy Delivery (three credits)
or
500-level elective (as approved)

Summer:
POL 599 Internship in Public Policy (six credits)
or
POL 597 Master's Paper (six credits)

Full-time students without past significant full-time public policy work experience are required to take the Internship in Public Policy. Part-time students can fulfill their capstone requirement by the Internship (POL 599), the M.A. Paper (POL 597), or two additional elective courses approved by the graduate program director.

B.A./M.A. Track
Stony Brook University students currently enrolled with a major in Political Science are eligible for the five-year B.A./M.A. program, in which up to six graduate credits are earned during the senior year, while also fulfilling the B.A. requirements. Consult the Undergraduate Bulletin for B.A. requirements. Upon admission to the program, the following two courses (or others approved by the graduate program director) are taken in the senior year and also satisfy the upper level undergraduate elective requirement:

POL 535 Public Policy Analysis and Evaluation (three credits)

POL 536 Public Management and Organizational Behavior (three credits)
The student then completes the remaining graduate requirements during the fifth year of full-time study.

Requirements for the Ph.D. Degree
Candidates must meet the general requirements for the Ph.D. degree set by the Graduate School. Departmental requirements are as follows:

A. Core Courses
Students take four core courses:

1. POL 600 Research Project
2. POL 601 Public Policy and Political Economy
3. POL 605 American Government
4. POL 608 Political Psychology

B. Methods
Students are expected to master the methods necessary to engage in scholarly work:

1. All students take a three-course sequence in mathematics, statistics, and research methods (POL 602, 603, 604).
2. All students are required to take at least one advanced methods course either in this department or in a cognate field (e.g., economics). The student’s choice of advanced elective(s) is decided in conjunction with the student’s advisor.
3. In addition to requirements 1 and 2 above, political psychology students take POL 610, a graduate-level course in experimental design. Political economy and American Politics students must take POL 613, Public Choice.
4. Students who have attended the ICPSR Summer Program in Quantitative Methods at the University of Michigan can have the advanced elective requirement waived.

C. Electives
Students take a minimum of four advanced seminars in their area of specialization and three in their minor area. The seminars are typically at the 600 level and can be within the Department or can be in cognate fields such as psychology, economics, or applied math. The course of study is selected by the student in consultation with his or her advisor and must be approved by the graduate program director.

D. Teaching and Research Apprenticeship
To ensure that all students become proficient in teaching and research, students work with the faculty on an individual basis. Funded students participate in faculty research projects and assist in teaching courses. Advanced students then prepare and teach their own undergraduate classes.

E. Evaluation
Graduate students in the Ph.D. program are formally evaluated at the end of each semester, based on grades received in the program and on evaluations by faculty familiar with the student’s work.

The evaluation committee’s charge is to make one of the following three possible determinations with regard to the student’s progress: (1) recommend continuation of graduate study toward the Ph.D., (2) recommend that the student be allowed to continue toward a terminal M.A. but not to continue in the Ph.D. program, or (3) recommend that the student not be permitted to enroll in additional graduate courses in the Department.

The evaluation also serves as the basis for the decision as to whether the student is to receive financial support during subsequent semesters of graduate work.

F. Qualifying Examinations
1. Timing of Examinations: Students making normal progress toward the Ph.D. should anticipate taking qualifying examinations following the second year of coursework. Examinations in three fields compose the doctoral qualifying examinations.

2. Examination Fields: The Department’s policy is to allow students to take exams only in those areas in which its faculty strengths allow in-depth training, including:

 a. Methods
 b. American Politics
 c. Political Economy and Public Policy
 d. Political Psychology/Behavior

 All students are required to take the methods exam. Students then prepare two of the three other substantive areas for written examination.

3. Preparation and Evaluation of Examinations: The graduate program director appoints a committee (with a designated committee chair) responsi-
ble for each examination field. The committee prepares the written examination, providing sufficient options for questions on which students may write. The committee members read the student's examination and prepare an evaluation of that performance, which is reviewed by the Ph.D. committee.

G. Dissertation
Following successful completion of the qualifying examinations, the student begins the process of preparing his or her dissertation.

The third year includes developing a directed reading course under the supervision of a dissertation director. Through the readings the student will explore specialized research literature in the area of a proposed dissertation, develop an initial bibliography, and formulate a specific question for research. The second half of the year includes working with the dissertation director and selecting a dissertation committee consisting of four faculty members—three from the Department of Political Science and one with whom the student has worked outside of the Department. The third year culminates with a presentation of the dissertation proposal by the student and its acceptance by the dissertation committee.

Should the dissertation committee reject the proposal, a candidate is allowed to revise the proposal for a subsequent defense. If this second defense also results in failure, the student's program is terminated.

Upon successful conclusion of research, the student defends the completed dissertation to the committee and the University community at large.

Courses
M.A. in Political Science with Emphasis on Public Policy

Required courses (POL 501, POL 502, POL 509, POL 510, POL 535, POL 536) are open to qualified students from other programs with permission of the graduate program director. Elective courses are open to all graduate students.

Ph.D. Program

The required courses for first-year students are given every year; electives are generally offered every other year. Courses are open to qualified students from other programs with permission of the graduate program director.

POL 501 Introduction to Statistics for Public Policy
This course acquaints student with statistics. It begins with the basics of applied statistical analysis, including probability and hypothesis testing, and builds to simple regression analysis. Requires use of computer packages.

Prerequisites: Some elementary mathematics/statistics background helpful
Fall, 3 credits, ABCF grading

POL 502 Intermediate Statistics for Public Policy
This course utilizes multivariate regression analysis and explores violations of the linear model. Requires use of computer.

Prerequisites: POL 501 or equivalent
Spring, 3 credits, ABCF grading

POL 509 Public Budgeting and Finance
This course develops the rationale for public taxation and spending programs. It examines the role of public finance in the economy, and explores the use of program and functional budgets, capital and operating budgets, intergovernmental expenditures, etc. Focuses on state and local governments.

Fall, 3 credits, ABCF grading

POL 510 Personnel Systems for Public Policy
This course examines the development of civil service and other bureaucratic personal systems in American government. It focuses on the knowledge that managers must have to utilize human resources appropriately in the constrained public sector environment. Focuses mainly on state and local government.

Spring, 3 credits, ABCF grading

POL 530 Topics in Public Affairs
Specially organized seminars are offered on topics of particular importance to students of public affairs. These courses are led by distinguished experts in those policy areas.

3 credits, ABCF grading

May be repeated for credit

POL 531 Topics in Public Affairs: Planning
This course addresses the planning process as a decision-making tool in the implementation of public policy in housing, land-use, transportation, and environmental management. The course also investigates intergovernmental relations and the impact of citizen participation on policy changes.

3 credits, ABCF grading

May be repeated for credit

POL 534 Intergovernmental Relations and Policy Delivery
The examination of the formulation, implementation, and impact of intergovernmental policy are the core concepts to be covered in this course. Several policies are examined in-depth, including grant-in-aid programs, General Revenue Sharing, housing and community development, and employment programs. The historical, economic, and political foundations of intergovernmental policy delivery systems are examined.

3 credits, ABCF grading

POL 535 Public Policy Analysis and Evaluation
This course concentrates on the strategies and methods of public policy analysis and evaluation. Students debate the merits of proposed solutions to various policy issues and discover the political constraints on the policy making process. Skills stressed in the course include cost-benefit analysis, program evaluation, and basic microeconomics.

Prerequisites: Permission of graduate studies director;
3 credits, ABCF grading

POL 536 Public Management and Organizational Behavior
This course examines how public sector organizations work and how managers can operate in the public sector environment. A range of theoretical perspectives, including sociological, economic, and institutional, will be employed as real public organizations are examined and analyzed. Public agencies will also be compared to their private sector counterparts, and the nature of organizational efficiency will be explored.

Spring, 3 credits, ABCF grading

POL 537 Administrative Law for Policy Analysts
This course examines the role of administrative law in the formulation, implementation, and evaluation of public policy. The role of legislation such as the Administrative Procedures Act is explored. Actual cases are analyzed, as well as the broader set of precedents that have emerged in federal, state, and local administrative law proceedings.

3 credits, ABCF grading

POL 538 The Politics of Local Economic Development
This course examines the process of local economic development with an emphasis on the interaction of political and economic factors. It explores the extent to which local (as compared to state and federal) officials can influence business location decisions, the specific strategies often utilized, and the way they have changed over time. It also considers the winners and losers from the "economic development game" with a focus on New York and Long Island.

3 credits, ABCF grading

POL 543 Environmental Politics and Policy
Federal environmental policies, such as the National Environmental Policy Act, the Coastal Zone Management Act, and the Federal Pure Waters Management Act are examined in this course. The policies, politics, and administrative activities of federal, state, and local levels are considered. Finally, the interaction of the public sector, the private sector, and citizen groups in the implementation of environmental policy is discussed.

This course is offered as both CES 553 and POL 543.

3 credits, ABCF grading

POL 544 Human Behavior as Rational Action
Rational behavior means choosing among possible actions those that are most efficient in meeting one's goals. Whether people do so is one of the oldest unresolved disputes in philos-
phy and the social sciences. We will trace the main positions in this dispute as they have evolved in philosophy, psychology, economics, anthropology, and sociology, paying special attention to the arguments between economics and other social sciences as to whether economic behavior exhibits strictly economic rationality or is heavily affected by noneconomic obligations and aims. Another important topic is the relationship between individual rationality and social institutions. Even if individuals do act rationally, can we assume that the large scale social patterns that result are necessarily effective? Readings will consider the topic abstractly, but also in the concrete settings of small intimate groups, formal organizations, and primitive and modern economic systems and political systems in both stable and revolutionary situations. Knowledge of elementary economics is helpful but not required.

3 credits, ABCF grading

POL 553 Foundations: Comparative, International
Survey and evaluation of the major theoretical approaches, issues, and problems in comparative political analysis. The course examines such areas as political development, empirical democratic theory, or political socialization, along with a detailed examination of one or more selected non-American political systems. 3 credits, ABCF grading

POL 560 American Democracy: Its Critics and Defenders
This course will examine the central components of American democratic government. Critics and defenders of the over 200-year-old Constitution (Congress, President, Supreme Court) will be discussed, as will arguments surrounding the role of political parties, pressure groups, and the bureaucracy. Most readings will be from contemporary authors and reference sources. This course is offered as both CEI 560 and POL 560. 3 credits, ABCF grading

POL 595 Internship Public Policy
3-6 credits, ABCF grading
May be repeated for credit

POL 596 Directed Policy Research
Student works under supervision of faculty member on research project related to public policy. 1-6 credits, ABCF grading

POL 597 Master's Paper in Public Policy
This course is primarily for students already employed in the related field. In lieu of internship, a student writes a Master's Paper, that goes beyond his or her normal employment duties to apply theory and methods to a particular policy issue. Prerequisite: Permission of graduate program director 6 credits, ABCF grading

POL 598 Thesis Registration
1 credit, S/U grading
May be repeated for credit

POL 599 Internship in Public Policy
This course is an applied internship in a public, not-for-profit, or private sector organization that deals with public policy. The student works in the organization and prepares a daily journal of activities, as well as a paper at the conclusion of the course, applying program knowledge to the internship activities. Prerequisites: POL 535 and permission of graduate program director 3-6 credits, S/U grading
May be repeated for credit

POL 600 Research Project
A two-semester introduction to research for first-year students. The course introduces issues of research design through lectures and presentations of current research by faculty members. Each student designs his or her own research paper under the guidance of a faculty member familiar with his or her area of interest. Final papers are due in the beginning of May. 3 credits, ABCF grading
May be repeated for credit

POL 601 Foundations: Public Policy and Political Economy
A systematic introduction to the principles of political economy. Develops a microeconomic model and approach to public policy analysis. A major part of the course is devoted to student projects that analyze the political economy of a governmental policy. 3 credits, ABCF grading

POL 602 Applied Data Analysis I
The application of statistical and mathematical models to the analysis of political data: introduction to the research process and to topics in measurement, basic descriptive statistics, and inferential statistics. 3 credits, ABCF grading

POL 603 Applied Data Analysis II
The application of statistical and mathematical models to the analysis of political data: regression analysis. Prerequisite: POL 602 or equivalent 3 credits, ABCF grading

POL 604 Applied Data Analysis III
The application of statistical methods to the analysis of political data. The emphasis is on diagnosing and dealing with violations of assumptions of statistical models. Topics covered include advanced regression, models for discrete dependent variables, systems of equations, and selection bias. Prerequisite: POL 603 or equivalent 3 credits, ABCF grading

POL 605 Foundations: American Politics
A review of the basic political science literature on American politics, with emphasis on American political institutions. 3 credits, ABCF grading

POL 606 Duration and Panel Models
This seminar will consider statistical models for political processes observed over time. The major topics will include duration models and methods for pooled cross-sectional (panel) data. 3 credits, ABCF grading

POL 607 Social Survey in Contemporary Society
This course on political socialization focuses on continuity and change in political attitudes and behavior across the life span. Topics include the stability of political attitudes—contrasting the greater durability of political partisanship and basic values with the relative instability of issue positions; the social psychology of attitude change, which lends some insight into the conditions under which attitudes are most likely to change; the importance of political period or era as a determinant of political attitudes and behavior; and the existence and coherence of distinct political generations. Some attention is also given to the political changes that accompany old age, including changes in attitude and behavior linked to growing dependency on the Social Security and Medicare systems. Prerequisites: POL 602 and POL 603 3 credits, ABCF grading

POL 608 Foundations: Political Psychology, Behavior
A review and analysis of the political behavior literature, including such topics as attitude formation and change, belief systems, political socialization, demographic and small group influences on political beliefs and conduct, political leadership, electoral behavior, elite vs. mass politics, decision making, personality and politics, political conformity, and protest. 3 credits, ABCF grading

POL 609 Advanced Research Design
A practical application of topics in the philosophy of science to research design. Students prepare their dissertation proposal as a part of this course. Prerequisite: Permission of graduate program director 3 credits, ABCF grading

POL 610 Foundations II: Experimental Design and Methods
An overview of experimental research with an emphasis on experimental design, data analysis, and interpretation. Students develop the ability to critically evaluate experimental research. Students also participate in the development, implementation, and analysis of a laboratory experiment. 3 credits, ABCF grading

POL 612 Classics of American Politics
Reading and discussion of a selection of the most frequently cited works in the field of American politics, with emphasis on relatively contemporary authors. 3 credits, ABCF grading

POL 613 Game Theory for Political Science
Introduction to formal models of strategic behavior in static, dynamic, and repeated games. Technical emphasis is formulation and solution of games of complete and incomplete information; a variety of equilibrium concepts will be introduced. Substantive applications include spatial models of candidate behavior in elections; agenda control and bargaining in legislatures; lobbying by interest groups; common pool resource problems; and cooperation between rivals. 3 credits, ABCF grading
POL 614 American Judiciary
A seminar on judicial process and behavior. Emphasis is placed on the Supreme Court, but trial courts and other appellate courts are examined as well. Topics include constitutional interpretation and both legal and extra-legal models of decision making. Students should possess basic methodological skills.
3 credits, ABCF grading

POL 615 Legislative Process
A seminar on the legislative process, focusing on current research on the United States Congress.
3 credits, ABCF grading

POL 616 Political Parties and Groups
A seminar on parties, campaigns, and elections in the United States. Topics covered include party organization and leadership, nomination and general election campaigns, and the role of parties in government.
3 credits, ABCF grading

POL 617 Electoral Behavior
Models of voting choices; key attitudes such as party identification, issue orientations, and ideology; the impact of group affiliations, economic conditions; campaign strategies of candidates; congressional vs. presidential elections; historical change, e.g., party realignments.
3 credits, ABCF grading

POL 618 American Political Ideology
This course examines American political ideology as it is reflected in public opinion, political debate, and public policy. The goal is to understand the underlying bases of conflict and consensus in American politics and the ways in which they influence and constrain debate over public policy. The course traces the development of political conflict in the United States and examines the basis of contemporary political debate.
Prerequisites: POL 605 and permission of instructor
3 credits, ABCF grading

POL 620 Government Regulation of Business
An examination of the scope of government regulation in the United States today—regulation at both the federal and state levels and by both economic and social agencies. The course compares market vs. regulatory policies as well as possible explanations for why some regulatory agencies change over time. Finally, the course considers proposed reforms, such as clearer legislative standards, curbs on “revolving door” practices, greater citizen participation in agency proceedings, and deregulation.
3 credits, ABCF grading

POL 621 Theories of Policy Making
An introduction to theories of policy making, especially policy formulation, stressing reading and thinking about classics and acquiring skills necessary for theorizing, including mathematical modeling and formal theory. Laboratories focus on improving special skills (e.g., optimization) and theorizing about particular policy areas (e.g., pork barrel politics).
3 credits, ABCF grading

POL 622 Bureaucracy and the Policy Process
An examination of bureaucracy as part of the policy-making process. This course reviews theoretical explanations for the bureaucracy as a political institution and implications of its rapid growth since the New Deal. It also looks inside bureaucratic organizations, examining factors that influence the exercise of discretion and policy implementation.
3 credits, ABCF grading

POL 623 Urban Politics
This course concentrates on urban and suburban growth, the decentralization of metropolitan areas, land-use policy, and reforming metropolitan policy making. Specific policy areas such as education, finance, and police are considered. Political phenomena, including parties and ethnic groups, are also discussed. This course is offered as both CES 545 and POL 623.
3 credits, ABCF grading

POL 624 Decision Making in Organizations
A seminar on decision procedures in public and private organizations. The course begins with the rational choice model developed primarily in economics and policy analysis, then considers common problems of decision-making arising from limited capabilities, conflicts among organization members, and uncertainties and ambiguity in the organization’s environment. Readings are from several disciplines.
3 credits, ABCF grading

POL 625 Experimental Game Theory
Surveys experimental tests of formal models derived from political economy and game theory, and applies behavioral and social-psychological theories to explain deviations from equilibrium behavior. The methodologies of psychological and economic experiments are contrasted and explored. Substantive applications include social trust, bargaining power, agenda control, committee decision making, common pool resource problems, and political persuasion.
3 credits, ABCF grading

POL 630 Political Cognition
Surveys the contemporary psychological literature on human memory and cognition, with emphasis on applications to political information processing.
Prerequisite: POL 608
3 credits, ABCF grading

POL 632 Mass Communication and Political Persuasion
In-depth examination of the role of mass media in the political process and the psychological dynamics of media influence. Effects of the media on public opinion and voting. Implications of media influence on democratic theory.
3 credits, ABCF grading

POL 633 Social Influence and Group Processes in Political Decision Making
Review of contemporary theories of social influence and group decision-making, with emphasis on applications to decision making in politics. Special focus on small-group methods and research applications.
3 credits, ABCF grading

POL 634 Behavioral Decision Theory
Emphasizes psychological theories of judgment and choice and prediction of the errors that individual decision makers are likely to make. These ideas are applied to a variety of political contexts.
3 credits, ABCF grading

POL 635 Advanced Topics: Political Socialization
An interdisciplinary course on political socialization that focuses on continuity and change in political attitudes and behavior across the life span. Readings cover research and theorizing on conditions under which political attitudes are most likely to change. Dual emphasis is placed on attitudes that prove to be exceedingly stable over time and others that seem to have undergone considerable change over the past few decades.
3 credits, ABCF grading

POL 636 Advanced Institutions
3 credits, ABCF grading

POL 670 Advanced Topics: Public Policy Analysis I
An intensive examination of major substantive and methodological concerns involved in the investigation of the public policy process. Prerequisite: Permission of graduate program director
3 credits, ABCF grading
May be repeated for credit

POL 671 Advanced Topics: Public Policy Analysis II
A continuation of POL 670.
3 credits, ABCF grading

POL 673 Advanced Topics: American Politics I
A seminar in American institutions and processes, focusing on current research in such areas as Congress, the Supreme Court, the presidency, political parties, or bureaucracy. Prerequisite: POL 605
3 credits, ABCF grading
May be repeated for credit

POL 674 Advanced Topics: American Politics II
A continuation of POL 673.
3 credits, ABCF grading
May be repeated for credit

POL 675 Advanced Topics: Comparative Politics I
Readings and research papers on topics in comparative politics. Particular attention is given to concepts and methods identified with the field.
Prerequisite: POL 552
3 credits, ABCF grading
May be repeated for credit

POL 676 Advanced Topics: Methods I
A course reviewing the literature and methodology of specific areas of political science research. The course relates directly to research applications and provides students with an opportunity to apply advanced research tools to selected substantive problems.
3 credits, ABCF grading
POL 678 Political Decision Making
Review of the literature and methods related to a topic or problem in contemporary political science, voting behavior, issue formation, interest groups, political economy, or personality.
Prerequisite: POL 605, 608
3 credits, ABCF grading
May be repeated for credit

POL 679 Advanced Topics: Political Psychology/Behavior II
A continuation of POL 678.
3 credits, ABCF grading
May be repeated for credit

POL 680 Directed Study
Individual studies under the guidance of a faculty member. Subject matter varies according to the needs of the student.
Prerequisite: Permission of instructor and graduate program director
1-6 credits, ABCF grading
May be repeated for credit

POL 681 Directed Study
Individual studies under the guidance of a faculty member. Subject matter varies according to the needs of the student.
Prerequisite: Permission of instructor and graduate program director
1-9 credits, S/U grading
May be repeated for credit

POL 690 Research Colloquium
Students participate in weekly Departmental colloquia where they serve as discussants of research reports presented by individual faculty members or outside investigators reporting on current research.
Prerequisite: Permission of graduate program director
3 credits, ABCF grading

POL 691 Research Practicum I
A course actively involving students in an ongoing research project under the direction of a principal investigator. Students participate in all stages of the research project and are required to prepare a research report on one aspect of the project.
3 credits, S/U grading

POL 692 Research Practicum II
A continuation of POL 691. Students actively participate in either a second research project, where they will again prepare a research report, or continue their participation in the same project, where they are then assigned a subset of data for analysis or carry out a specific research aim of the project.
Prerequisite: POL 691
3 credits, S/U grading
May be repeated for credit

POL 693 Practicum in Teaching
1-3 credits, S/U grading

POL 699 Dissertation Research On Campus
Dissertation research under direction of advisor.
Prerequisite: Advancement to candidacy (G5); permission of Graduate Program Director; major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

POL 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

POL 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by a mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will be removed only if the other plan is deemed comparable); all international students must receive clearance from an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

POL 800 Summer Research
0 credit, S/U grading
May be repeated for credit
School of Professional Development (SPD)

Associate Dean and Teacher Certification Officer: Marvin J. Glockner, Ward Melville Social and Behavioral Sciences Building N-223, (631) 632-7055
Assistant Dean for Budget and Administration: Judith Daly, Ward Melville Social and Behavioral Sciences Building N-203, (631) 632-7053
Assistant Dean for Academic Services: Joyce Wellinger, Ward Melville Social and Behavioral Sciences Building Room N-203, (631) 632-7751

The School of Professional Development (SPD) offers graduate degree and certificate programs designed for working adults. Courses are scheduled in the evenings, on Saturdays, off-campus, and online; students may enroll on a part-time or full-time basis.

From Human Resource Management to Environmental Management, SPD offers a wide range of programs that address the needs of the Long Island region and emerging professions. Its most popular programs, however, are in the field of professional education. SPD supports educators in each step of their careers by preparing new teachers seeking initial licensure (the Master of Arts in Teaching), assisting current teachers in obtaining their professional license (the Master of Arts in Liberal Studies), and helping advance seasoned teachers into the ranks of administration (the Educational Leadership programs).

Since 1996, SPD has been at the forefront of online learning and currently has the highest online graduate enrollment of any SUNY school. As of Fall 2007, SPD offers five fully online degree and advanced graduate certificate programs. All of SPD's online graduate programs are accredited, and its Master of Arts in Liberal Studies program is accredited by the Middle States Commission on Higher Education. This degree program is a 33-credit interdisciplinary degree program that examines issues and themes in the arts and humanities, social and behavioral sciences, and natural and applied sciences. Developed primarily for adult students who seek educational enrichment and professional development on a part-time evening basis, the M.A./L.S. is not structured specifically to serve as a prerequisite to a more advanced degree.

The M.A./L.S. is acceptable as a functionally relevant master's degree that initially licensed teachers may use to achieve professional certification through the New York State Education Department (provided that they complete a minimum of four courses in their content area of certification as part of their program).

The degree program is also available in a completely online, asynchronous format that has been approved by the New York State Education Department. For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/mals.

Master of Professional Studies (M.P.S.)

The Master of Professional Studies has been developed as the professional studies counterpart to the Master of Arts in Liberal Studies. It is an interdisciplinary degree whose core curriculum focuses on the theoretical structure and methodology of social science disciplines and their application to professional studies. Two concentrations are available within this program: Human Resource Management or Environmental Management. The program stresses the applica-
tion of research and experience to complex social and political issues. Structured primarily for working adults who seek educational study and professional development on a part-time evening basis, the M.P.S. does not specifically serve as a prerequisite for a more advanced degree.

The M.P.S. with a concentration in Human Resource Management is also available in an asynchronous, fully online format. For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/myps.html.

Master of Arts in Teaching (M.A.T.)

Each Master of Arts in Teaching program includes a set of professional education courses and a concentration in an academic discipline. Students who complete an M.A.T. program satisfy both the registered and approved program requirements for New York State secondary education (grades 7 to 12 initial teacher certification in M.A.T. subject areas i.e., Biology, Chemistry, Earth Science, English, French, German, Italian, Mathematics, Physics, Russian, Spanish, and Social Studies) and the master's degree requirement for professional certification. SPD Office of Teacher Certification: SPD_teachercertprograms@notes.cc.sunysb.edu.

All advisement on how to meet requirements for state certification by the alternate route (i.e., minimum requirements) must be obtained from the State Education Department in Albany, (518) 474-3901, or visit NYSED online at http://ohe32.nysed.gov/tecert.

Master of Arts in Teaching (M.A.T.): English

Offered through SPD in collaboration with the Professional Education Program and the Department of English, the Master of Arts in Teaching English is designed as a course of study leading to New York State certification for teaching English in the secondary schools (grades 7 to 12). This program consists of 41 credits of graduate coursework.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/matenglish.html. Prospective students may also address inquiries to: Dr. Kenneth Lindblom, Director, M.A.T. in English Program Department of English Stony Brook University Telephone: (631) 632-7403 or 632-7055 E-mail: Kenneth.Lindblom@stonybrook.edu

Master of Arts in Teaching (M.A.T.): Science

The Master of Arts in Teaching programs are individually designed to lead to New York State certification for teaching French, German, Italian, Russian, or Spanish in the secondary schools (grades 7 to 12). Each program requires 44 graduate credits of coursework.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/matscience.html, or contact the appropriate program director at the phone numbers listed below:

- Biology M.A.T.: Dr. Zuzana Zachar; (631) 632-8970 or Zuzana.Zachar@stonybrook.edu
- Chemistry M.A.T.: Dr. Robert Kerber; (631) 632-7940 or Robert.Kerber@stonybrook.edu
- Earth Science M.A.T.: Dr. Gilbert Hanson; (631) 632-8210 or Gilbert.Hanson@stonybrook.edu
- Physics M.A.T.: Dr. Robert McCarthy; (631) 632-8086 or Robert.McCarthy@stonybrook.edu

Master of Arts in Teaching (M.A.T.): Social Studies

The Master of Arts in Teaching Social Studies, with a concentration in history, is designed as a course of study leading to New York State certification for teaching social studies in the secondary schools (grades 7 to 12). It is offered through SPD in collaboration with the Professional Education Program and the Department of History. The program consists of a total of 41 graduate credits of coursework.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/matsst.html. Prospective students may also address inquiries to: Dr. Lawrence Frohman, Director MAT in Social Studies Program Stony Brook University Telephone (631) 632-8970 or (631) 632-7055 E-mail: Lawrence.Frohman@stonybrook.edu

Master of Arts in Teaching (M.A.T.): Foreign Languages

The Master of Arts in Teaching Foreign Languages programs are individually designed to lead to New York State certification for teaching French, German, Italian, Russian, or Spanish in the secondary schools (grades 7 to 12). Each program requires 44 graduate credits of coursework.

The programs are offered through SPD in collaboration with the Professional Education Program and the Department of Languages, Literatures, and Cultures. For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/matfl.html. Prospective students may also address inquiries to: Dr. Sarah Jourdain, Director M.A.T. in Foreign Language Programs Stony Brook University Stony Brook, New York 11794-3350 Telephone (631) 632-7440 or 632-7055 E-mail: Sarah.Jourdain@stonybrook.edu

Master of Arts in Teaching (M.A.T.): Mathematics

The Master of Arts in Teaching Mathematics is a course of study leading to New York State certification for teaching mathematics in the secondary schools (grades 7 to 12). This 42-credit program, offered in collaboration with the University's Department of Mathematics and Professional Education Program, is designed for those who have little or no previous coursework in education or formal classroom teaching experience.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/matmath.html. Prospective students may also address inquiries to: Dr. Bernard Maskit, Director M.A.T. in Mathematics Program Stony Brook University Stony Brook, New York 11794-3651 Telephone (631) 632-8257 or 632-7055 E-mail: Bernard.Maskit@stonybrook.edu
Educational Leadership Program

SPD has the largest Educational Leadership program in New York State and is the first program of its kind to be offered both in-person and completely online. The program is open to teachers who have at least three years of full-time teaching experience and have already earned a master's degree. Completion of this 36-credit Post-Master’s Advanced Graduate Certificate program leads to a credential that serves as a pathway for certification at both the district and building levels. Such positions include superintendent of schools, district superintendent, assistant superintendent, principal, assistant principal, department chair, or athletic director. The Educational Leadership Program is offered in collaboration with the University's Professional Education Program.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/edleadership. Prospective students may also e-mail inquiries to edleadership@stonybrook.edu or call (631) 632-7078.

School District Business Leader (SDBL) Post-Master’s Advanced Graduate Certificate

This Post-Master’s Advanced Graduate Certificate program prepares professionals from the corporate world, public service agencies, and charitable institutions for access and advancement to positions in a school district central office as assistant superintendent for school business positions. This 36-credit program is offered in collaboration with the University’s Professional Education Program. Courses in this program can be used to complete some requirements toward the Ed.D. at St. John's University and the Ed.D. in Educational Administration at Hofstra University.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/sdbl/index.html. Prospective students may also address inquiries to:
Dr. Robert Moraghan
School of Professional Development
Stony Brook University
Stony Brook, NY 11794-4310
Telephone: (631) 632-7702
E-mail: moraghan@math.sunysb.edu

Advanced Graduate Certificate (AGC) Programs

SPD offers a variety of Advanced Graduate Certificate programs for individuals who seek a specialized professional credential beyond the baccalaureate degree. Programs are currently offered in the following areas of study: Coaching, Educational Computing, Environmental Management, Human Resource Management, Information Systems Management, and Operations Research. Credit requirements range from 18 to 21 credits, some of which may be applicable toward a master's degree. Please consult with an SPD academic advisor to determine how the graduate courses that meet the requirements for each of these certificates may, where appropriate, also be used to satisfy SPD degree program requirements.

Advanced Graduate Certificate (AGC) in Coaching

The Advanced Graduate Certificate in Coaching program offers the necessary course work to meet New York State certification or licensing requirements. Students will examine a broad range of issues that impact the coach in today’s educational climate, including learning theories, social and psychological issues, principles of organization and administration, kinesthetic theories, injury care, and exercise and nutritional considerations.

This program can be completed in person at our Stony Brook campus or completely online.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/coaching.html. Prospective students may contact Dr. Jack Foley, Program Director, at John.Foley@stonybrook.edu or at (516) 524-1791.

Advanced Graduate Certificate (AGC) in Educational Computing

The 18-credit Advanced Graduate Certificate program in Educational Computing is offered in collaboration with the Department of Technology and Society. This certificate program qualifies individuals to confront the complex and controversial problems of environmental management by providing students with the educational background for making informed decisions on these matters. Areas to be covered in this program include community land use planning, systems and risk management, policy and the democratic process, wetland and water resource studies, and controversial problems of environmental management.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/edcomputing.html. For academic questions, prospective students may contact: Professor David Ferguson, Chair Department of Technology and Society Telephone: (631) 632-8763 E-mail: David.Ferguson@stonybrook.edu

Advanced Graduate Certificate (AGC) in Environmental Management

SPD’s 18-credit Advanced Graduate Certificate in Environmental Management is offered in collaboration with Stony Brook's School of Marine and Atmospheric Sciences. The certificate program qualifies individuals to confront the complex and controversial problems of environmental management by providing students with the educational background for making informed decisions on these matters. Areas to be covered in this program include community land use planning, systems and risk management, policy and the democratic process, wetland and water resource studies, and issues relating to communication and participatory processes.

This certificate should appeal to those who consider access to the most current expertise in environmental management essential to working effectively in their professional careers or public service activities. It is designed to meet the immediate demands for environmental management solutions and the more long-range goal of promoting the environmental and economic welfare of the New York region.
For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/environmental.html. For academic questions, prospective students may contact:
Dr. Larry Swanson
School of Marine and Atmospheric Sciences
Telephone: (631) 632-8704
E-mail: Lawrence.Swanson@stonybrook.edu

Advanced Graduate Certificate (AGC) in Human Resource Management
Offered in collaboration with the College of Business, this program provides the educational background necessary to make informed decisions in management and policy analysis as related to human resource issues. It is designed for private- and public-sector managers, industrial relations specialists, union representatives, human resource/ personnel managers, and employee training professionals. Eighteen of the 21 credits required to earn this Advanced Graduate Certificate may be applied toward SPD’s Master of Professional Studies degree. Course work for this certificate program may be completed on campus, online, or in combination.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/hrm.html. For academic questions, prospective students may contact:
Dr. Manuel London
Associate Dean, College of Business
Telephone: (631) 632-7159
E-mail: Manuel.London@stonybrook.edu

Advanced Graduate Certificate (AGC) in Information Systems Management
This 18-credit program provides an educational opportunity to combine management education with technical training in specific areas related to information systems. Offered in collaboration with the College of Business, this graduate certificate program should interest students from various professional fields. For students without formal training in management of information systems, the program can be used as an introduction to the field. For students with management experience, the program offers specialized courses in selected subjects such as systems analysis and design, database management, telecommunications, expert systems, and personal computing. For technical workers in the information systems field without formal managerial training, the program offers managerial courses and a professional credential.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/ism.html. For academic questions, prospective students may contact:
Aristotle Lekacos
College of Business
Telephone: (631) 632-7389
E-mail: Aristotle.Lekacos@stonybrook.edu

Advanced Graduate Certificate (AGC) in Operations Research
This certificate program is offered through SPD in collaboration with the Department of Applied Mathematics and Statistics in the College of Engineering and Applied Sciences and correlates with the M.S. in Applied Mathematics and Statistics as well as the Master of Arts in Liberal Studies offered through SPD.

The Advanced Graduate Certificate in Operations Research provides students with the fundamental applied mathematics tools for developing protocols for the efficient management of private companies, government agencies, and non-profit organizations.

In today’s global marketplace, organizations need to be efficient to survive. The Operations Research program will provide formal training in methods of optimization, modeling, and statistics used in operations research. The objective of this program is to help individuals to assist organizations in making efficient use of their resources so as to maximize efficiency and minimize cost. Graduates of this program may be able to advance in management and organizational planning positions within their current employment or obtain new employment. It is recommended that applicants to the program hold a bachelor’s degree in mathematics, engineering, or computer science.

For complete admission and program requirements, visit SPD on the Web at www.stonybrook.edu/spd/graduate/operations.html. For academic questions, prospective students may contact:
Dr. Alan Tucker
Coordinator of Operations Research
Department of Applied Mathematics and Statistics
Telephone: (631) 632-8365
E-mail: atucker@notes.stonybrook.edu
The Department of Psychology, in the College of Arts and Sciences, is one of Stony Brook's largest graduate departments. More than 800 Ph.D. degrees have been awarded since the program began more than 40 years ago. In recent years the population of students has been about 60 percent women, 15 percent students from underrepresented groups, and 10 percent international students.

The Department is administratively organized into four program areas: Biopsychology, Clinical Psychology, Cognitive/Experimental Psychology, and Social and Health Psychology. Students must be admitted to one of these four program areas, but they are encouraged to receive training in more than one program area if appropriate. In conjunction with the Department of Neurobiology and Behavior, Brookhaven National Laboratory, and the Department of Psychiatry, interdisciplinary training is offered in behavioral neuroscience. In conjunction with the Departments of Linguistics and Computer Science, interdisciplinary training is offered in cognitive science. Course offerings and research training are structured in such a way that students can meet the requirements for a Ph.D. degree in Biopsychology, Clinical Psychology, Cognitive/Experimental Psychology, or Social and Health Psychology. Stony Brook's doctoral program in clinical psychology is approved by the American Psychological Association.

A detailed description of the graduate program, including requirements for students in each area of graduate studies, is available from the departmental graduate office or at www.psychology.sunysb.edu.

In all four program areas, the primary emphasis is on research training through apprenticeship, advisement, and independent research. New students are encouraged to become involved immediately in ongoing research and to engage in independent research when sufficient skills and knowledge permit, with the goal of becoming active and original contributors.

Graduate Training Programs

Faculty in each area maintain active laboratories with state-of-the-art equipment for research and graduate training. The Clinical area research interests of the core faculty center on depressive disorders, anxiety disorders, personality disorders, discord and aggression among couples, romantic competence among adolescents and adults, social problem solving, psychotherapy process and outcome, lesbian/gay/bisexual issues, and autism. Faculty labs are equipped with state-of-the-art facilities including equipment for observational research (e.g., digital cameras and DVDs), psychophysiological equipment (e.g., heart rate, blood pressure, respiratory rate) as well as electrophysiology (EEG, ERP). The clinical area also utilizes a number of other on- and off-campus facilities for clinical research and training, including the Psychological Center, a training, research, and service unit that provides psychological services and consultation to the community as well as a site for graduate practicum and internships. Within the Psychological Center, an Anxiety Disorders Clinic provides assessment and treatment of various anxiety disorders such as obsessive-compulsive disorder and post-traumatic stress disorder. The University Marital Therapy Clinic provides therapy for couples and individuals in the community who are experiencing relationship difficulties. Personnel at the Marital Clinic also provide forensic assessments for child custody and therapeutic visitation for the Supreme and Family Courts of Suffolk County, New York. The Autism Help Center is a private local agency that deals with school and family issues for children with autism and related developmental disabilities. The Developmental Disabilities Institute, another local agency, also offers services for people with a variety of disabilities. Affiliations have been established with the University's Health Sciences Center, North Shore University Hospital, Long Island Jewish Hillside Hospital, local public schools, an agency for the mentally retarded, and Northport Veteran's Administration Hospital. The Department-sponsored University Preschool enrolls children from 18 months to five years of age, permitting both research and observation.

The Biopsychology area research of core faculty spans the fields of behavioral neuroscience, cognitive neuroscience and affective neuroscience, and molecular biology. The breadth of the program allows students to obtain a broad foundation in neuroscience while developing expertise in a focused research program. Faculty interested in animal models study neuromolecular disorders such as autism, the role experience plays in shaping neural connections, mediating damage, and behavioral performance, and the role peptides play in memory, attention, and motivation. Faculty studying human subjects are interested in the role of prefrontal cortex in cognitive control mechanisms and working memory, and faculty in affective neuroscience focus on the relationship between personality, genes, and epigenetic regulation of gene expression, and their impact on regional brain activation. Human imaging is conducted on the 3T MRI at Stony Brook University Hospital. Additional facilities are currently being developed through an NSF Instrumentation Grant. Faculty also have individual facilities for molecular biology, transcranial magnetic stimulation, human electrophysiology, and eye-tracking. Overall, there are opportunities for rigorous, sophisticated techniques that are often integrated. For studies in animals, investigators have basic histology facilities, a neuron tracking system, image analysis, and equipment for numerous behavioral tests (operant conditioning, mazes, motor
The Cognitive/Experimental area offers training in cognitive science in its affiliations with the Departments of Linguistics and Computer Science, and in cognitive neuroscience, in cooperation with the Biopsychology Program. The Language, Mind, and Brain Initiative regularly sponsors interdisciplinary seminars with participation from Psychology, Linguistics, Computer Science, Philosophy, and Biology. Laboratory facilities include a Purkinje eyetracker and several lightweight head-mounted eyetrackers for psycholinguistics and visual cognition studies, rooms equipped to study electronic communication and human-computer interaction, sound-isolated chambers for perception and psycholinguistics experiments, multimedia workstations for presenting stimuli and collecting data, and computer-controlled choice stations for testing human and non-human subjects. Faculty research is particularly strong in language, memory, attention, visual cognition, and perception. Most research programs are funded by agencies such as the National Science Foundation, the National Institutes of Health, and the Army Research Office. Faculty, students, and postdoctoral associates rely primarily on the Department of Psychology's large volunteer pool of human subjects.

The Social and Health area faculty have affiliations with the Department of Psychiatry and Behavioral Science and they collaborate with researchers and clinicians in a variety of departments at the Stony Brook School of Medicine and University Hospital. Social and Health facilities include laboratories for studies of attachment, women's health, close relationships, stress and coping, social-cognitive development, prejudice and discrimination, social cognition, social identity, social neuroscience, volunteering, academic achievement, meta-analysis, and medical decision-making.

Admission

The requirements for admission to doctoral study, in addition to the minimum Graduate School requirements, ordinarily include:

A. A bachelor's degree with a major in Psychology, or in a program providing adequate preparation for the intended area of study (ordinarily including statistics, research methodology, and/or psychology laboratory)

B. An average of 3.5 or better in academic undergraduate coursework

C. One official copy of all previous college transcripts, with certified English translations of any transcripts in a foreign language

D. Letters of recommendation from three instructors or academic advisors, and, for applicants to Clinical Psychology, three supplementary recommendations. The Clinical supplemental recommendation form can be found at the Departmental Web site: www.psychology.sunysb.edu

E. The Graduate Record Examination (GRE) General Test (the subject GRE is not required)

F. For international students, TOEFL or IELTS scores (unless their native language is English or they attended college where English was the language of instruction) and the International Student Financial Affidavit

G. Students who do not meet these requirements may also apply if they feel that special circumstances should be considered

H. Acceptance by the Department and Graduate School

The deadline for receipt of applications and all supporting materials for fall admission is December 15. Applications must be submitted online. Links to the online application system are on the department Web site at www.psychology.sunysb.edu

Faculty

Distinguished Professors

Goldfried, Marvin, Ph.D., 1961, University at Buffalo: Lesbian, gay, and bisexual issues; psychotherapy process research; cognitive behavior therapy; delineation of common therapeutic principles across theoretical orientations. Clinical Program

O'Leary, K. Daniel, Emeritus, Ph.D., 1972, University of California, San Diego: Autism; developmental disabilities; applied behavior analysis; positive behavior support with families and schools; Clinical Program, Social and Health Program.

D'Zurilla, Thomas J., Emeritus, Ph.D., 1964, University of Illinois; Social problem solving; problem-solving therapy; prevention problem-solving training; Clinical Program.

Rachlin, Howard, Emeritus, Ph.D., 1965, Harvard University: Choice, decision making, behavioral economics, self-control, addiction, gambling, and time allocation in humans and other animals; Cognitive/Experimental Program.

Professors

Aron, Arthur, Ph.D., 1970, University of Toronto, Canada: Motivation and cognition in close relationships; intergroup relations; social neuroscience; Social and Health Program.

Carr, Edward G., Ph.D., 1973, University of California, San Diego: Autism; developmental disabilities; applied behavior analysis; positive behavior support with families and schools; Clinical Program, Social and Health Program.

D'Zurilla, Thomas J., Emeritus, Ph.D., 1964, University of Illinois; Social problem solving; problem-solving therapy; prevention problem-solving training; Clinical Program.

Gerrig, Richard, Ph.D., 1984, Stanford University: Psycholinguistics; text understanding and representation; nonconventional language; cognitive experiences of narrative worlds; Cognitive/Experimental Program.

Levine, Marvin, Emeritus, Ph.D., 1959, University of Wisconsin: Problem solving, especially heuristics, and the use of spatial information; comparison of Buddhist and Western views of human nature; Clinical Program.

O'Leary, Susan G., Ph.D., 1972, Stony Brook University: Theoretical and applied research on discipline practices in the home; prevention and early intervention vis-a-vis oppositional and conduct-disordered children; Clinical Program.

Rajaram, Suparna, Ph.D., 1991, Rice University: Human memory and amnesia; implicit and explicit memory distinctions; new learning in amnesia; priming, social influences on individual memory; experimental investigation of remembering and knowing the past. Cognitive/Experimental Program.

Samuel, Arthur, Graduate Program Director, Ph.D., 1979, University of California, San Diego: Perception, psycholinguistics, and attention; perception of speech as a domain of study in cognitive psychology; spatial and temporal properties of visual attention; Cognitive/Experimental Program.

Squires, Nancy K., Chair, Ph.D., 1972, University of California, San Diego: Neuropsychology; neurophysiological measures of sensory and cognitive functions of the human brain, both in normal and clinical populations; Biopsychology Program.

Waters, Everett, Ph.D., 1977, University of Minnesota: Social and personality development; parent-child and adult-adult attachment relationships; Social and Health Program.
Waters, Harriet Salatas, Ph.D., 1976, University of Minnesota: Cognitive development (comprehension and production of prose; memory and problem solving) and social cognition (mental representations of early social experience, co-construction and socialization processes); Social and Health Program.

Whitaker-Azmitia, Patricia, Undergraduate Program Director, Ph.D., 1979, University of Toronto: Animal models of autism and Down syndrome; serotonin and its role in brain development; Biopsychology Program.

Wortman, Camille, Ph.D., 1972, Duke University: Reactions to stressful life experiences; the role of social support and coping strategies in ameliorating the impact of life stress; predictors of good psychological adjustment among those who experience major losses, including bereavement and serious injury; others' reactions to those who experience life crisis; Social and Health Program.

Associate Professors

Anderson, Brenda J., Head, Biopsychology, Ph.D., 1993, University of Illinois: Rodent models of the effects of exercise and stress on brain structure, metabolism, and function; Biopsychology Program.

Brennan, Susan E., Ph.D., 1990, Stanford University: Language production and comprehension; speech disfluencies; human/computer interaction; computational linguistics; eye gaze as a measure of language processing and as a cue in conversation; Cognitive/Experimental Program.

Canli, Turhan, Ph.D., 1993, Yale University: The genetic and neural basis of personality and emotion; Biopsychology Program.

DaVila, Joanne, Ph.D., 1993, University of California, Los Angeles: Interpersonal functioning and psychopathology; depression; maladaptive personality styles; close relationships; attachment processes; Clinical Program.

Franklin, Nancy, Head, Cognitive/Experimental Area, Ph.D., 1989, Stanford University: Human memory; source monitoring; spatial cognition; mental models; Cognitive/Experimental Program.

Levy, Sheri, Ph.D., 1998, Columbia University: Ideologies and lay theories; intergroup relations; prejudice reduction; volunteering; Social and Health Program.

Lobel, Marci, Ph.D., Head, Social and Health, 1989, University of California, Los Angeles: Stress, coping, and physical health; psychosocial factors in women's reproductive health; social comparison processes; Social and Health Program.

Robinson, John, Ph.D., 1991, University of New Hampshire: Behavioral neuroscience; Biopsychology Program.

Zelinsky, Gregory, Ph.D., 1994, Brown University: Attention and eye movements during visual search and visual working memory tasks; Cognitive/Experimental Program.

Assistant Professors

Freitas, Antonio L., Ph.D., 2002, Yale University: Social cognition; motivation; self-regulation; Social and Health Program.

Hajcak, Greg, Ph.D., 2006, University of Delaware: Psychophysiology, emotion, cognition; anxiety disorders and their treatment; Clinical Program.

Klochko, E. David, Ph.D., 2005, University of Virginia: Self-injurious behaviors; borderline personality disorder; emotion and psychopathology; measurement of personality and psychopathology; Clinical Program.

Leung, Hoi-Chung, Ph.D., 1997, Northwestern University: Prefrontal and parietal function in human cognition; neural mechanisms underlying spatial information processing and eye movement control; fMRI applications in cognitive neuroscience; Biopsychology Program.

London, Bonita, Ph.D., 2006, Columbia University: Social identity and intergroup processes; stereotyping and prejudice; academic achievement; Social and Health Program.

Moyer, Anne, Ph.D., 1995, Yale University: Psychosocial issues surrounding cancer risk; research synthesis and research methodology; Social and Health Program.

Lecturer

Kuchner, Joan, Ph.D., 1981, University of Chicago: Child and family studies; child development; social policy; children's environments. Research Faculty

Heyman, Richard, Professor, Ph.D., 1992, University of Oregon: Escalation and de-escalation of family conflict; observation of couples; defining and assessing family maltreatment; innovative approaches to prevalence estimation of secretive problems; family maltreatment, substance abuse, suicidality; community-based prevention of secretive problems; clinical assessment and treatment of relationship dissatisfaction and partner abuse; Clinical Program.

Slep, Amy Smith, Associate Professor, Ph.D., 1995, Stony Brook University: Affect regulation in parent-child and marital dyads; etiology of parental and partner aggression/abuse; connections between parenting and marital functioning; Clinical Program.

Kritzer, Mary, Associate Professor, Neurobiology and Behavior, Ph.D., Yale University, 1989: Gonadal hormone influence over function and dysfunction in the cerebral cortex; Biopsychology Program.

Krupp, Lauren, Associate Professor, Psychology, M.D., 1981, Albert Einstein College of Medicine: Neuropsychological and neurobehavioral characteristics of chronic mental illness; interrelationship between memory performance and mood disturbance in chronic fatigue syndrome, Lyme disease, and multiple sclerosis; Biopsychology Program.

Kotov, Roman, Research Assistant Professor, Department of Psychiatry: Psychiatric Epidemiology, Ph.D., 2006, University of Iowa: Classification of mental illness; relationships between personality and psychopathology; clinical assessment; Clinical Program.

Lavine, Howard, Ph.D., 1994, University of Minnesota: Political psychology; cognition; Social and Health Program.

London, Manuel, Professor, College of Business and Center for Human Resource Management, Ph.D., 1974, Ohio State University: Organizational psychology; person perception applied to performance ratings, feedback, and performance management systems; group learning and team development; dispositional factors affecting involvement in social advocacy; Social and Health Program.

Macaj, Marta, M.D., 1989, Stony Brook University: Director, Sleep Disorders Center, University Hospital; Biopsychology Program.

Morin, Lawrence P., Professor, Psychiatry, Ph.D., 1974, Rutgers University, Institute of Animal Behavior: Biological rhythms; environment and reproduction; endocrine system and behavior; Biopsychology Program.
A student must maintain a graduate G.P.A. of at least 3.0 and successfully complete an approved program of study with a grade of at least B in each required course. Two semesters of quantitative methods and three breadth courses selected outside the student's area of graduate studies are required. In addition, two semesters of First-Year Lectures (no credit) and two semesters of a practicum in statistical computer applications are required. The four training areas of the Department have additional course requirements. Following admission, students with graduate training elsewhere can petition to satisfy course requirements on the basis of their previous graduate work. No more than three Departmental course requirements will be waived. Petition to waive requirements or to satisfy them on the basis of previous graduate work should be directed to the Graduate Office. Petitions concerning area requirements should be addressed to the student's area head.

B. Yearly Evaluation

The progress of each graduate student is reviewed at the end of each academic year by the student's area's faculty. This provides opportunities for both positive feedback about the student's achievements and constructive feedback for improving or accelerating the student's progress. We expect that all students admitted to the Ph.D. program have the potential to succeed; however, any student whose performance is below the standards established by the Department and the area may be dismissed or asked to withdraw. Under certain circumstances a student may be permitted to obtain a terminal Master of Arts degree, satisfactorily completing the required courses and 30 graduate credit hours of study, and writing a second-year research paper.

C. Second-Year Paper

At the end of the second year of study, each student must submit an original research paper to the advisor and the area head. Although the form of this paper and the date it is due varies by area, all second-year papers must include data collection and analysis. The second-year paper must be approved prior to the specialties paper (see item E). A copy of the approved paper must be provided to the Psychology Graduate Office.

D. M.A. Degree in the Course of Doctoral Studies

The Department will recommend granting an M.A. degree to students who have successfully completed the second-year requirements, including the second-year research paper, upon the recommendation of the faculty in the student's area of graduate studies. This process is not automatic; students wishing to obtain an M.A. degree must file for one.

E. Specialties Paper and Examination

This requirement should be completed by the end of the sixth semester of study. The specialties paper is a review/research paper suitable for submission to a refereed journal. The paper must be presented to and defended before a committee. The form of the specialties paper depends upon the student's area of graduate studies, but all areas require its completion by the end of the third year in order for a student to be considered to be on track.

F. Advancement to Candidacy

After successful completion of the specialties paper and examination, all required coursework, two SDI courses (see G), and the requirements of the student's area of studies, a majority vote of the faculty of the student's area is required to recommend advancement to candidacy for the Ph.D. The Graduate School requires that students must advance to candidacy at least one year before defending their dissertations.

G. Research and Teaching

All four graduate training areas focus heavily on research; research activity from the time of admission through the fourth year is required. Students who are funded on state lines serve as teaching assistants (TAs) for classes taught by departmental faculty and instructors.

For all students, regardless of source of funding, two semesters of substantial direct instruction (SDI) in the classroom or laboratory is required (one of which must be PSY 310). Students may satisfy this requirement by providing significant hours of lecturing and student contact in a class for which they are serving as a TA, or by serving as the instructor of record for a class of their own. During these semesters, graduate students must receive teaching evaluations from their students.

H. Residence

Minimum residence of two years and the equivalent of three years of full-time graduate study are ordinarily required. Unless admitted as part-time students (which happens very rarely), residents must register for full-time study until they are advanced to candidacy. Full-time study is 12 credits during the first year and nine thereafter.

I. Dissertation

The approval of the dissertation proposal and successful oral defense of the completed dissertation are required.
Within Area Course Requirements
In addition to satisfying Graduate School and Departmental degree requirements, students must satisfy all of the course requirements of their training programs.

Biopsychology
Complete the following courses (required of all Biopsychology area students):

PSY 561 Cognitive and Behavioral Neuroscience I
PSY 562 Cognitive and Behavioral Neuroscience II

Complete at least two of the following courses:

PSY 560 Neuropsychology
PSY 564 Neuropsychopharmacology
PSY 620 Seminars in Selected Topics: Affective Neuroscience
PSY 620 Seminars in Selected Topics: Cognitive Neuroscience

Sign up for the following sequence each year (required of all Biopsychology area students):

PSY 581 Cognitive and Behavioral Neuroscience Colloquium I
PSY 582 Cognitive and Behavioral Neuroscience Colloquium II

Clinical Psychology
Complete the following courses in the first year (required of all Clinical area students):

PSY 534 Assessment: General Principles, Clinical Interviews, and Adult Psychopathology
PSY 602 Assessment: Personality Testing, Intellectual/Cognitive Testing, and Child/Parent Assessment
PSY 537 Methods of Intervention: Treatment of Internalizing Disorders
PSY 538 Methods of Intervention: Treatment of Externalizing Disorders and Relationship Problems
PSY 545 Psychopathology: Conceptual Models and Internalizing Disorders
PSY 596 Psychopathology: Externalizing and Psychotic Disorders
PSY 603 Ethics and Professional Issues

Complete the following courses in the second year (required of all Clinical area students):

PSY 535 Advanced Research Methods
PSY 604 Intervention Practicum
PSY 605 Advanced Clinical Practicum

Complete the following courses in the third year:

PSY 533 Principles Applicable to Clinical Psychology: Historical and Systemic Perspectives
PSY 606 Supervised Practice (Fall and Spring)
PSY Breadth Course 2
PSY Breadth Course 3
PSY 698 Research (Fall and Spring)

Complete dissertation (PSY 699) during the fourth year and complete internship (PSY 608) in the fifth year.

Cognitive/Experimental Psychology
Complete three of the following:

PSY 513 Attention and Thought
PSY 514 Sensation and Perception
PSY 518 Memory
PSY 520 Psycholinguistics
PSY 610 Seminars in Selected Topics: Cognition

Sign up for the following sequence each year (required of all students):

PSY 583 Experimental Colloquium I
PSY 584 Experimental Colloquium II

The Cognitive/Experimental Area also requires submission of a First-Year Research Paper requiring data collection and analysis. This paper must be submitted to the advisor and area head at the end of the second semester of graduate study.

Social and Health Psychology
Complete two of the following courses:

PSY 541 Social Psychology of Close Relationships
PSY 543 Attachment
PSY 544 Emotions and Cognition
PSY 549 Prejudice and Discrimination
PSY 555 Social Psychology
PSY 558 Theories of Social Psychology: Health Applications
PSY 559 Psychology of Women’s Health

Complete an additional special topics course in the Social and Health area (PSY 610 or PSY 620). Alternatively, students can complete an additional course from the preceding category.

Students must complete one of the quantitative courses listed below or an additional methods or statistics course as approved by the student's advisor or area head. These quantitative courses count toward the Department's breadth requirement.

PSY 505 Structural Equation Modeling and Advanced Multivariate Methods
PSY 506 Psychometrics
PSY 535 Advanced Research Methods
PSY 610 Seminars in Selected Topics: Meta-Analysis

Courses

PSY 501 Analysis of Variance and Experimental Design
The design and analysis of factorial experiments having a single dependent variable. Topics include between- and within-subjects designs, repeated measures, and multivariate analysis of variance. Required of all Ph.D. students in psychology.
Prerequisite: Undergraduate statistics
Co-requisite: PSY 508
Fall, 3 credits, ABCF grading

PSY 502 Correlation and Regression
Correlation, regression, multiple correlation, partial correlation, and introductions to some of the following topics: factor analysis, mediational analysis, structural equation modeling, relation of regression to analysis of variance, analysis of covariance, discriminant function analysis, and multivariate analysis of variance. Required of all Ph.D. students in psychology.
Co-requisite: PSY 508
Spring, 3 credits, ABCF grading

PSY 504 First-Year Lectures
Presentation and discussion of current research progress and interests. Required of all first-year Ph.D. students.
Fall and spring, 0 credit, S/U grading

PSY 505 Structural Equation Modeling and Advanced Multivariate Methods
Thorough coverage of structural equation modeling and brief coverage of other specialized techniques used in data analysis in psychology, such as multi-level modeling and cluster analysis (topics for brief coverage vary from year to year). The course emphasizes hands-on work with real data sets, using standard statistical software packages.
Spring, 3 credits, ABCF grading

PSY 506 Psychometric Methods
This course surveys traditional and evolving views on item design, reliability, and validity, reviews statistical methods related to test construction, and applies this material to the design and evaluation of observational, rating, and self report measures in domains of interest to psychologists. The course also examines the impact of test characteristics on data analysis and the role of test design in theory construction.
Fall or spring, alternate years, 3 credits, ABCF grading
PSY 508 Introduction to Computer Applications in Statistics
Computer protocol and introduction to statistical packages and necessary utility programs. Pre- or Co-requisite: PSY 501 or 502. Fall and spring, 0-1 credits, S/U grading. May be repeated for credit.

PSY 510 History of Psychology
Intensive reading in the history of psychology from original sources. Emphasis is on class discussion and relation to modern problems. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 511 Learning
A consideration of the basic principles of learning. Analysis of the leading theories of learning as well as areas of controversy and dispute. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 513 Theories of Attention
This course covers some of the major theoretical perspectives that have shaped the attention literature, starting with historical distinctions of early versus late selection and ending with more contemporary mathematical, neurophysiological, and neucomputational theories. Specific questions will include: “What is attention?” (Is it a unitary thing or a grab-bag of assorted processes?), “How does it work?”, and “What paradigms have researchers used to study attention?” (dichotic listening, priming, search, etc.). Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 514 Sensation and Perception
This course covers the sensory mechanisms that change physical stimuli (e.g., a picture of your friend) into neural information, the major brain areas involved in processing this sensory information for various perceptual abilities (e.g., motion perception, color perception, object perception, etc.), and the different theoretical approaches to analyzing a given perceptual phenomenon. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 518 Memory
Review of theory and phenomena related to human memory. Topics include representation of schemas and categories, encoding, forgetting, implicit learning, and memory for procedures. Several recent models of long-term memory representation are discussed and compared. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 520 Psycholinguistics
The psychology of language, including the mental lexicon, sentence processing, pragmatics, discourse, production and comprehension of utterances in conversation, language and thought, first-language acquisition, and computational approaches. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 524 Cognitive Development
This course presents the developmental perspective as applied to human cognition. Topics include (1) characteristics and constraints on cognitive abilities in infancy, childhood, and adolescence; (2) mechanisms of developmental change; and (3) links between cognitive development and selected applied topics. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 533 Principles Applicable to Clinical Psychology: Historical/Systemic Perspectives
A critical review of how principles of general psychology apply to clinical psychology. The course material will be discussed within the context of the history of ideas and major systems of thought as they relate to conceptualization, assessment, and intervention. Prerequisite: Psychology doctoral student. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 535 Advanced Research Methods
Advanced research methods employed in clinical, personality, social, and behavioral research. Prerequisites: PSY 501, 502; clinical doctoral student. Fall or spring, 3 credits, ABCF grading.

PSY 537 Methods of Intervention: Treatment of Internalizing Disorders
This course covers the theory and research associated with the treatment of internalizing disorders of adults, adolescents, and children. Among the topics covered are the treatment of phobias, school refusal, panic disorder, general anxiety disorder, social anxiety, post-traumatic stress disorder, complicated grief, obsessive compulsive disorder, and mood disorders. In the treatment of each, particular emphasis is placed on how therapy needs to be modified depending on whether one is working with a child, adolescent, or adult. Prerequisite: Psychology graduate student. Fall, 3 credits, ABCF grading.

PSY 538 Method of Intervention: Treatment of Externalizing Disorders and Relationship Problems
This course focuses on the treatment of externalizing disorders of adults and children as well as intimate partner problems like relationship discord and partner abuse. A developmental focus is taken as exemplified by coverage of child externalizing problems such as Oppositional Defiant Disorder, Conduct Disorder, Attention Deficit Disorder, Borderline Personality Disorder, and Partner Abuse. Treatments of alcohol abuse and eating disorders in both teens and adults are presented. Finally, treatment of schizophrenia is addressed along with coverage of the course of schizophrenia across the lifespan. Individual, couple, and family treatments are reviewed. Prerequisite: Psychology graduate student. Spring, 3 credits, ABCF grading.

PSY 541 Social Psychology of Close Relationships
High-level overview of current theory and research on the social psychology of close relationships. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 542 Psychology of Addictive Behaviors
Study of psychological, behavioral, and biological theories of addiction. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 543 Attachment
This course examines current psychological theories of infant-parent and child-parent relationships and adult-adult attachment with special attention to assessment methods, clinical applications, and controversy regarding the importance of early experience. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 544 Emotion and Cognition
This course focuses on fundamental questions regarding the interaction between emotion and cognition, and how this interaction can be measured. Key topics will include: differentiating emotions from other affective states, understanding the functions of discrete emotions, the role of the consciousness in emotional experience, and whether emotions can be controlled; additionally, the course will address emotion-cognition interactions in the domains of memory, attention, perception, and reasoning/decision-making. We will also address developmental changes and cross-cultural differences in emotion and cognition. The goal of the course is to be able to develop a translational research proposal rooted in basic research on emotion and cognition. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 545 Psychopathology: Conceptual Models and Internalizing Disorders
Theory and research on abnormal behavior in children, adolescents, and adults. A lifespan development approach is taken, with a focus on classification, conceptualizations, and models of psychological disorders, and the phenomenology, epidemiology, course, etiology, pathogenesis, psychopathology, and pathophysiology of internalizing disorders such as mood and anxiety disorders. Prerequisite: Psychology graduate student. Fall, 2 credits, ABCF grading.

PSY 546 Measurement and Scaling
A historical introduction to the measurement of psychological variables and survey of contemporary scaling methods with an emphasis on psychophysical scaling and experimental applications. Fall or spring, alternate years, 3 credits, ABCF grading.

PSY 549 Prejudice and Discrimination
This course will provide an overview of theoretical perspectives, research methods, empirical findings, and practical applications of psychological research on prejudice, stigma, and intergroup relations. Critical thinking about theorizing and research in this area.
will be emphasized during class discussions and through a course project. Students are admitted with permission by instructor.

Fall or spring, alternate years, 3 credits, ABCF grading

PSY 555 Social Psychology

An introduction to social psychology, a field of study examining how people feel about, think about, and influence others. Topics include attitudes, motivation, social judgments, and interpersonal behaviors. Coursework focuses on identifying basic principles that transcend particular content domains.

Fall or spring, alternate years, 3 credits, ABCF grading

PSY 558 Theories of Social Psychology: Health Applications

This course provides an overview of the ways in which social psychological theories and perspectives can be used to understand thoughts and behavior relevant to health and illness. It covers social influence, social comparison, pluralistic ignorance, social support, cognitive dissonance, message framing, and fear communication. The course also covers links between personality characteristics and health and how broader social and cultural environment affects health and illness.

Fall or spring, alternate years, 3 credits, ABCF grading

PSY 559 Psychology of Women's Health

This course covers a variety of psychologically important topics in women's health based on current research findings. We address psychological contributors to and consequences of women's health and illness, focusing on diseases that affect women differently or disproportionately from men (including coronary heart disease, cancer, AIDS, and autoimmune diseases), women's reproductive health (including menstruation, contraception, pregnancy, infertility, and menopause), health behaviors (including substance abuse, exercise, and eating), and other topics such as violence against women, women's mental health, and women as health-care providers and health researchers.

Fall or spring, alternate years, 3 credits, ABCF grading

PSY 560 Neuropsychology

The functions of the normal and pathological primate brain in behavior. Consideration of anatomical, neurophysiological, and pharmacological correlates of behavioral functions such as perception, attention, motivation, learning, memory, cognition, and language. The behavioral consequences of various forms of brain pathology are discussed.

Fall or spring, alternate years, 3 credits, ABCF grading

PSY 561 Cognitive and Behavioral Neuroscience I

This course introduces students to neural elements responsible for processing information supporting sensation, perception, cognition, and movement. Starting with the philosophy of the mind and the history of neuroscience, the course proceeds with an introduction of cells, neural signaling, transmitters, and receptors. How these elemental units are integrated to support emergent properties, such as object recognition, is illustrated. Conversely, examples of complex behavioral impairments resulting from dysfunction in elemental units are illustrated. The course proceeds to cover neural metabolism, and its relationship to disorders of memory and motor dysfunction. Last, stress and its role in neuropsychological disorders are discussed.

Spring, 3 credits, ABCF grading

PSY 562 Cognitive and Behavioral Neuroscience II

Cognitive and Behavioral Neuroscience illustrates how cellular circuits support function. Classic experiments demonstrating function for the use of electrophysiological data, lesions, and transmitter manipulations are discussed. Students interested in understanding how individual neurons and neural circuits and integrated regional systems directly support specific behaviors will find this course of interest. A textbook is used for the readings.

Fall, 5 credits, ABCF grading

PSY 563 Neuropsychological Assessment

Classroom discussions of issues in neuropsychological assessment and design of assessment batteries are combined with practical experience in the assessment of clinical populations. Each student is assigned to a supervisor to learn assessment techniques for research and/or clinical practice.

Fall or spring, alternate years, 3 credits, ABCF grading

PSY 564 Neuropsychopharmacology

This course covers the mechanisms of transmitters and related drug action in the nervous system. In addition to exploring transmitter/receptor relationships, the course covers the sequence of events initiated by this action. Through understanding of these processes, the course then links drug action to nervous system outcomes such as movement, cognition, pain, and mood.

Spring, alternate years, 3 credits, ABCF grading

PSY 566 Laboratory Rotations in Cognitive and Behavioral Neuroscience I, II

This is a two-semester sequence devoted to instruction in a variety of laboratory techniques. Students spend a minimum of four weeks in each of three different laboratories of faculty in the program.

Fall (Section I); Spring (Section II), 3 credits, S/U grading

May be repeated once for credit

PSY 581 Cognitive and Behavioral Neuroscience Colloquium I

Colloquium presentations on current research problems by advanced students, staff, and visiting scientists. This sequence is required of all students in the Biopsychology Program.

Fall, 0-3 credits, S/U grading

May be repeated for credit

PSY 582 Cognitive and Behavioral Neuroscience Colloquium II

Colloquium presentations on current research problems by advanced students, staff, and visiting scientists. This sequence is required of all students in the Biopsychology Program.

Spring, 0-3 credits, S/U grading

May be repeated for credit

PSY 583 Experimental Psychology Colloquium

Seminars on current research problems directed by students, staff, and invited scientists. Required of all Experimental/Cognitive students.

Fall, 0-1 credit, S/U grading

May be repeated for credit

PSY 584 Experimental Psychology Colloquium

Seminars on current research problems directed by students, staff, and invited scientists. Required of all Experimental/Cognitive students.

Spring, 0-1 credit, ABCF grading

May be repeated for credit

PSY 594 Psychology of Gender

This class examines how gender affects and is affected by behavior, thoughts, and emotions. We investigate gender differences and similarities across the lifespan and consider various perspectives on the study of gender, including psychobiology, social cognitive theory, social role theory, and cross-cultural research.

Fall or spring, alternate years, 3 credits, ABCF grading

PSY 596 Psychopathology: Externalizing and Psychotic Disorders

Theory and research of abnormal behavior in children, adolescents, and adults. A lifespan development approach is taken, with a focus on the phenomenology, epidemiology, course, etiology, pathogenesis, psychopathology, and pathophysiology of externalizing disorders (e.g., conduct, disorder, personality disorders, substance use disorders) and psychotic disorders.

Prerequisite: Must be Psychology graduate student

Spring, 2 credits, ABCF grading

Self-report and projective measures of personality and psychopathology; targeted assessments and measures; intellectual and cognitive assessment; assessment of children and parents; ethics and cultural diversity.

Prerequisite: Must be clinical doctoral student

Spring, 2 credits, S/U grading

PSY 603 Ethics and Professional Issues

Ethics and professional issues. Required of all first-year clinical students.

Prerequisite: Clinical psychology doctoral student

Spring, 2 credits, S/U grading
PSY 604 Intervention Practicum
Exposure of the application of clinical intervention procedures.
Prerequisite: PSY 537 or PSY 538; must be Clinical psychology doctoral student
Fall, 2 credits, S/U grading

PSY 605 Advanced Clinical Practicum
Exposure to the application of advanced intervention procedures.
Prerequisite: PSY 604 and Clinical psychology doctoral student
Fall and spring, 2 credits, S/U grading

PSY 606 Supervised Practice
Supervised experience for advanced clinical students.
Prerequisite: Clinical psychology doctoral student
Fall and spring, 3 credits, S/U grading

PSY 608 Clinical Psychology Internship
Qualified clinical students carry out supervised clinical responsibilities in settings approved by the faculty.
Prerequisite: Clinical psychology doctoral student
Fall and spring, 1 credit, S/U grading

PSY 610 Seminars in Selected Topics
Topics are selected on the basis of the needs of the graduate program and research interests of the staff.
Prerequisite: Permission of instructor
Fall, 0-3 credits, ABCF grading
May be repeated for credit

PSY 620 Seminars in Selected Topics
Topics are selected on the basis of the needs of the graduate program and research interests of the staff.
Prerequisite: Permission of instructor
Spring, 0-3 credits, ABCF grading
May be repeated for credit

PSY 621 Seminar in Teaching Methods
Theory and pragmatics of good college teaching. Topics include lecturing, use of discussion, types of evaluation of students and teachers, factors affecting undergraduate learning, ethics, student-faculty relations, course administration, and audio-visual devices.
Prerequisites: Matriculated psychology graduate student; permission of instructor
Fall or spring, 0-3 credits, ABCF grading
May be repeated for credit

PSY 696 Readings
Prerequisite: Permission of instructor
1-12 credits, S/U grading
May be repeated for credit

PSY 698 Research
Prerequisite: Permission of instructor
1-12 credits, S/U grading
May be repeated for credit

PSY 699 Dissertation Research On Campus
Dissertation research under direction of advisor.
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

PSY 700 Dissertation Research Off Campus—Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

PSY 701 Dissertation Research Off Campus—International
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place outside of the U.S. and/or U.S. provinces; domestic students have the option of the health plan and may also enroll in MEDEX; international students who are in their home country are not covered by the mandatory health plan and must contact the Insurance Office for the insurance charge to be removed; international students who are not in their home country are charged for the mandatory health insurance (if they are to be covered by another insurance plan, they must file a waiver by the second week of classes; the charge will only be removed if the other plan is deemed comparable); all international students must receive clearance from an international advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

PSY 800 Full-Time Summer Research
0 credit, S/U grading
May be repeated

PSY 810 Summer Research
0 credit, S/U grading

PSY 820 Summer Teaching-CED
0 credit, S/U grading
Public Health

Graduate Program Director: Raymond L. Goldsteen
Graduate Program Coordinator: Judith Greene

Degrees awarded: Master of Public Health (M.P.H.), Bachelor of Science in Applied Mathematics and Statistics/Master of Public Health (B.S./M.P.H.), and Master of Public Health/Master of Business Administration (M.P.H./M.B.A.)

M.P.H. Degree

The graduate program in Public Health's Master of Public Health (M.P.H.) degree program is a small, selective program whose mission is to train individuals who wish to integrate public health knowledge, skills, and values into their careers and provide leadership in the field.

The program emphasizes the population health approach to public health. Achieving and maintaining healthy populations, effectively and efficiently, are central to the population health orientation. Effectiveness and efficiency are particularly acute concerns for public health in today's world of limited resources and competing agendas. The hallmarks of population health are an ecological understanding of the determinants of health and a systems approach to solving health problems; emphasis on proactively stabilizing and improving health among all populations; and insistence on accountability, evidence-based practice, and continuous performance improvement. The population health approach requires multidisciplinary collaboration among scholars in the social, behavioral, clinical, and basic sciences and the humanities; development of comprehensive, sophisticated health information systems; and use of advanced analytical tools to examine health problems and evaluate responses to them.

The program is designed for persons with an advanced clinical or related degree or currently studying for such a degree, as well as for students who have only a bachelor's degree. The curriculum is 45 credits and consists of a public health core (24 credits), a practicum, a capstone seminar, and a concentration in Evaluative Sciences, Community Health, or Public Health Practice. The core consists of ten required courses including biostatistics, epidemiology, environmental and occupational health, data management and informatics, research methods, health systems, cost benefit analysis, and the social and behavioral determinants of health. The practicum is a field-based experience that introduces students to the real world of public health practice. Most courses are offered in the late afternoon and evening, and there are course offerings throughout the year.

The Master of Public Health degree can be obtained concurrently with the M.D. degree. Medical students are advised to begin their coursework for the M.P.H. degree in the summer preceding medical school in order to complete the program within four years. There may be scholarships available for full-time medical students also pursuing an M.P.H. degree.

Facilities

The graduate program in Public Health has established the Center for Health Services and Clinical Outcomes Research (CHSCOR). The CHSCOR is a multidisciplinary research unit that combines expertise in economics, statistics, epidemiology, medicine, and other clinical disciplines to address substantive issues in health care delivery. As part of its research mission, the Center seeks to develop joint projects with researchers at Stony Brook University and with health organizations throughout New York State.

The graduate program in Public Health has also established the Center for Public Health and Health Policy Research (CPHHPR), which aims to increase knowledge about the determinants of health and illness and the most effective and efficient methods of improving health. The Center is a multidisciplinary research unit that combines expertise in economics, statistics, epidemiology, demography, and medicine and other clinical disciplines to address these substantive issues. As part of its mission, the Center seeks to develop joint projects between researchers at Stony Brook University and other health-related organizations throughout Long Island. The Center has developed a ongoing relationship with the Suffolk County Department of Health Services to study the causes of major health problems among County residents and develop policy solutions. Areas of interest include increasing access to medical care, improving opportunities to lead a healthy lifestyle, reducing environmental risks, and establishing programs to decrease health disparities.

The Health Sciences Library serves the educational and research needs of the faculty, staff, and students in the program, the Medical Center, and the University. It also functions as a regional resource, assisting health care professionals throughout Nassau and Suffolk counties. It contains a large, well-equipped computer laboratory for students.

Admission

Although admissions requirements are rigorous, the graduate program in Public Health aims to develop camaraderie, cooperation, and cohesiveness among students in each cohort. For this reason, admission to the program is during the fall semester only.

The admissions requirements for the program are:

A. Bachelor's degree from an accredited college or university with a 3.0 GPA or better; the major must have an equivalent at the State University of New York (SUNY);

B. Official transcripts from all post-secondary schools; transcripts for all degrees earned in schools outside the U.S. or Canada must be evaluated by an agency accredited by the National Association of Credential Evaluation Services; the requirement for evaluation of transcripts is waived for graduates of foreign medical schools with a current license to practice in the U.S.;

C. Proof of licensure and good standing for licensed health professionals;

D. Official GRE (verbal, quantitative, and analytical) scores; applicants can submit scores from the MCAT, DAT, or GMAT instead of the GRE; this requirement is waived for applicants...
who have been awarded a doctoral degree from an accredited U.S. or Canadian college or university; persons currently employed for more than three years in the public health field may request a waiver of this requirement;

E. Three references from persons who can address the applicant’s capacity to provide leadership in public health and complete a course of graduate study; if the applicant is a student or has graduated within the past two years, at least one letter must be from a college or university faculty member with whom the applicant has studied; if the applicant is a member of the public health workforce, at least one letter must be from a senior administrator in the organization who is familiar with his/her work;

F. Two essays, no more than 500 words each:

Essay 1: How does your background, training, and experience prepare you for a leadership role in Public Health?

Essay 2: Select one of the following topics: (a) Explain how the graduate program in Public Health and the concentration chosen will help you achieve your short-term and long-term goals; (b) Define a time in your own life when you have identified and captured an opportunity; (c) Define a unique quality you possess; or (d) How do you expect to contribute to the improvement of health in your community?

G. A personal interview, if requested by the Admissions Committee.

H. Any other requirements of the Graduate School not stated here.

The Admissions Committee considers all factors including grades, GRE (or DAT, MCAT, or GMAT) scores, recommendation letters, essays, prior training, and professional experience. It is a goal of the Admissions Committee to select applicants who have the academic capability, aptitude, character, personal qualities, and commitment to provide future value to society through leadership and creative contributions to the field of public health.

In addition, the program requires that each entering student take a mathematics placement examination prior to enrollment. Also, students without a clinical background must provide certificates of completion for the following two online courses: Anatomy and Physiology 101 and Medical Terminology 101, available at www.universalclass.com. Students are admitted to the program on the condition that these courses will be completed by the end of the first semester.

It is expected that incoming students will be computer literate and e-mail capable, and have library skills sufficient for graduate work. For students with deficiencies in these areas, resources are available through the Health Sciences Center Library to acquire or update them, as necessary.

There are special admission requirements for international students.

Faculty

Professors

Edelman, Norman, H. M.D., New York University: Pulmonary medicine; health policy.
Goldstein, Raymond L., Graduate Program Director, Dr. Ph.D., Columbia University: Fairness and effectiveness of allocation policies for health-care resources.
Jonas, Steven, Preventive Medicine, M.D., Harvard University; M.P.H., Yale University: Health policy.
Shroyer, A. Laurie, Ph.D., M.S.H.A. University of Colorado: Clinical sciences research; cardiology.

Research Associate Professor

Goldstein, Karen, M.P.H., Columbia University, Ph.D., University of Illinois, Urbana: Social determinants of child health and well-being.

Research Clinical Associate Professor

Rice, Nanci, Ph.D., New York University: Women’s health.

Assistant Professors

Goodman, Melody, Ph.D., Harvard University: Biostatistics; health disparities.
Hale, Lauren E., Ph.D., Princeton University: Social determinants of sleep; demography.
Meliker, Jaymie, Ph.D., University of Michigan: Environmental health; risk exposure assessment; GIS.

Clinical Assistant Professor

Kaplan-Liss, Evonne, M.D., Mount Sinai School of Medicine; M.P.H., Columbia University: Pediatrics; medical journalism; environmental health.

Affiliated Faculty

Professors

Ferguson, David L., Technology and Society, Ph.D., University of California, Berkeley: Quantitative reasoning; problem solving; educational technologies; decision-making.
Rizzo, John A., Preventive Medicine, Ph.D., Brown University: Health economics; clinical outcomes research.
Robbins, Charles L., Social Welfare, D.S.W., Yeshiva University: Health, violence, and ethics; social justice; gender issues.
Tomes, Nancy J., History, Ph.D., University of Pennsylvania: History of medicine and public health.

Associate Professors

McCray, S. Van, Preventive Medicine, Ph.D., University of Texas Medical Branch; M.P.H., Johns Hopkins University: J.D., University of Tennessee: Bioethics and health law.
O’Riordan, Thomas, Medicine, M.D., University College, Dublin: Asthma, COPD and other respiratory system diseases.

Clinical Associate Professor

Benz Scott, Lisa A., Health Care Policy and Management, Ph.D., Johns Hopkins University: Cardiovascular outcomes research.

Assistant Professor

Daroowalla, Feroza, Medicine, M.D., State University of New York at Syracuse, M.P.H., University of Washington: Work-related lung diseases and asthma.

Clinical Assistant Professor

Adjunct Professors

Chaudhry, Humayun, D.O., M.S., Commissioner, Suffolk County Department of Health Services.
Graham, David G., M.D., M.P.H., Chief Deputy Commissioner, Suffolk County Department of Health Services.
Winslow, Jason, M.D., M.P.H., F.A.C.E.P, Associate Professor of Clinical Medicine, New York College of Osteopathic Medicine.
Zaki, Mahfouz, M.D., Consultant, Suffolk County Department of Health Services.

M.P.H. Degree

Curriculum Overview

M.P.H. Core (24 credits)

HPH 500 Contemporary Issues in Public Health (Two credits)
HPH 501 Introduction to the Research Process (Two credits)
HPH 506 Biostatistics I (Two credits)
HPH 507 Biostatistics II (Three credits)
HPH 508 Health Systems Performance (Three credits)
HPH 514 Epidemiology for Public Health (Three credits)
HPH 516 Environmental and Occupational Health (Three credits)
HPH 523 Social and Behavioral Determinants of Health (Two credits)
HPH 562 Data Management and Informatics (Two credits)
HPH 563 Cost Benefit and Cost Effectiveness Analysis (Two credits)

M.P.H. Culminating Experience (Six credits)
HPH 580 Practicum (Three credits)
HPH 581 Capstone Seminar: Population Health Issues (Three credits)

M.P.H. Concentration (15 credits)

Total Credit Hours for M.P.H. Program (45 credits)

M.P.H. Concentrations

Evaluative Sciences Concentration
Increasingly, the health field is challenged to adopt an evidence-based approach to preventing and treating disease and disability. The concentration in Evaluative Sciences will play a critical role in meeting this challenge by providing public health professionals with the analytical and statistical skills necessary to benchmark and evaluate health improvement initiatives in community and health-care settings. The concentration includes courses in advanced biostatistics, clinical outcomes research, demographic theory and methods, and health services research. There is a special emphasis on integrating cost effectiveness and cost benefit concepts into the curriculum so that resource allocation issues are considered.

The faculty has training in research design, implementation of research projects, and analysis of data as well as expertise in evaluating the performance of specific areas of the health-care system. Faculty members study a variety of health issues including health-care quality improvement, patient decision-making, and determinants of health and disease. Some work with physicians to improve clinical outcomes for patients with heart disease, cancer, asthma, and other conditions. Others work with health-care administrators to increase efficiency in the use of health-care resources in hospitals and other medical care settings. Some work with basic and clinical scientists such as geneticists, environmental scientists, molecular biologists, and social scientists to develop our understanding of how to prevent disease and disability.

(Courses from Department of Preventive Medicine, Division of Evaluative Sciences, or Department of Economics)

Required Courses
HPH 555 Demographic Theory and Methods (Three credits)
HPH 560 Advanced Biostatistics (Three credits)
HPH 565 Health Services Research Applications (Three credits)
HPH 567 Clinical Outcomes Research (Three credits)

Selectives (Three credits from courses listed below. Each course may not be offered every year.)

HPH 510 Advanced Epidemiology (Three credits)
HPH 513 Decision-Making in Medicine and Public Health (Three credits)
HPH 517 Continuous Quality Improvement Methods (Two credits)
HPH 519 Independent Study (variable credits)
HPH 528 Survey Research Methods (Two credits)
HPH 566 Clinical Trials (Two credits)
HPH 570 Multilevel and Longitudinal Analyses (Two credits)
HPH 646 Continuous Quality Improvement in Healthcare (Three credits)
HPH 657 Demographic Economics I (Zero to three credits)
HPH 664 Economics of Health (Three credits)
HPH 665 Health Economics (Three credits)

Or, with approval of advisor, other community health-related courses in the University may be substituted.

Public Health Practice Concentration
Students in this concentration are required to take the History of Public Health and Medicine, Strategic Management of Public Health Organizations, Demographic Theory and Methods, Public Health Law, and Management Accounting and Financial Decision Analysis (ten credits total). The remaining three credits are selected from the following list of courses. Working with one of the Public Health Practice advisors, students select courses that are related to their professional goals.

Required Courses
HPH 524 Strategic Management of Public Health Organizations (Two credits)
HPH 530 History of Public Health and Medicine (Two credits)
HPH 549 Public Health Law (Two credits)
HPH 555 Demographic Theory and Methods (Three credits)
HPH 660 Management Accounting and Financial Decision Analysis (Three credits)

Selectives (select three credits from courses below; each course may not be offered every year)

(Courses from Department of Preventive Medicine, Division of Evaluative Sciences)

HPH 504 Surveillance and Control of Infectious Diseases (Two credits)

HPH 505 Topics in Population Health (One-half to three credits)

HPH 510 Advanced Epidemiology (Three credits)

HPH 513 Decision-Making in Medicine and Public Health (Three credits)

HPH 517 Continuous Quality Improvement Methods (Two credits)

HPH 519 Independent Study (variable credits)

HPH 528 Survey Research Methods (Two credits)

HPH 542 Introduction to Global Health (Two credits)

HPH 560 Advanced Biostatistics (Three credits)

HPH 565 Health Services Research Applications (Three credits)

HPH 566 Clinical Trials (Two credits)

HPH 567 Clinical Outcomes Research (Three credits)

(Courses from Department of Health Care Policy and Management, School of Health Technology and Management)

HAS 545 Ethics and Health Care (Three credits)

HAS 559 Health Behavior and Risk Reduction (Three credits)

(Course from Department of Molecular Genetics and Microbiology)

HPH 659 Biology of Cancer (One credit)

(Course from School of Social Welfare)

HPH 620 Parameters of Social and Health Policy I (Three credits)

HPH 621 Parameters of Social and Health Policy II (Three credits)

HPH 626 Overview of Substance Abuse (Two credits)

HPH 630 Chemical Dependency in Special Populations (Two credits)

HPH 631 Cultural Competence: An Ingredient Enhancing Treatment Outcomes (Two credits)

HPH 632 Psychopathology and Psychopharmacology (Two credits)

HPH 633 Childhood Sexual Abuse and Long-Term Sequelae (Two credits)

HPH 634 Program Evaluation (Three credits)

HPH 635 Seminar on Family Violence (Two credits)

HPH 636 Community Analysis and Health Promotion (Two credits)

HPH 638 Qualitative Health Research Methods (Three credits)

(Course from Department of Anthropology)

HPH 655 Use of Remote Sensing and GIS in Environmental Analysis (Three credits)

(Courses from Department of Economics)

HPH 657 Demographic Economics I (Zero to three credits)

HPH 664 Economics of Health (Three credits)

HPH 665 Health Economics (Three credits)

(Courses from School of Marine and Atmospheric Sciences or Department of Technology and Society)

HPH 653 Introduction to Homeland Security (Three credits)

HPH 654 Nuclear Safeguards and Security (Four credits)

HPH 655 Chemical and Biological Weapons: Safeguards and Security (Four credits)

HPH 656 Risk Assessment, Regulation, and Homeland Security (Four credits)

HPH 661 Methods of Socio-Technological Decision-Making (Three credits)

HPH 662 Systems Approach to Human-Machine Systems (Three credits)

HPH 671 Marine Pollution (Three credits)

HPH 672 Marine Management (Three credits)

HPH 673 Groundwater Problems (Three credits)

HPH 675 Environment and Public Health (Three credits)

HPH 676 Environmental Law and Regulation (Three credits)

HPH 683 Air Pollution and Air Quality Management (Three credits)

HPH 684 Environmental and Waste Management in Business and Industry (Three credits)

HPH 686 Risk Assessment and Hazard Management (Three credits)

HPH 687 Diagnosis of Environmental Disputes (Three credits)

HPH 688 Principles of Environmental Systems Analysis (Three credits)

HPH 689 Simulation Models for environmental and Waste Management (Three credits)

Or, with approval of academic advisor, other courses in the University related to the student's goals may be substituted.

B.S. in Applied Mathematics and Statistics/M.P.H. Degree

The graduate program in Public Health offers a combined Bachelor of Science (B.S.) degree in Applied Mathematics and Statistics with the Master of Public Health (M.P.H.) degree, with a concentration in Evaluative Sciences. Students take all required courses for their Applied Mathematics and Statistics undergraduate major, all required general education courses, and the full 45-credit M.P.H. program. Students use 12 M.P.H. credits to fulfill credit requirements for the undergraduate degree. The program is highly selective.

The B.S. in Applied Mathematics and Statistics is an excellent preparation for the M.P.H. program, particularly the Evaluative Sciences concentration, which focuses on the highly quantitative areas of biostatistics and research design. The current demand for M.P.H. graduates with quantitative skills is strong, and this combined B.S./M.P.H. program is intended to help attract talented quantitative students into the public health field. There is no similar B.S./M.P.H. degree program at any other public or private institution in New York State.
Admission to the B.S./M.P.H. Program

Ordinarily, students will be considered for admission into the combined B.S./M.P.H. degree program after completing their junior year of undergraduate study—either before the start of their senior year or during their senior year. Students with exceptional records may be admitted during the junior year. Students who transfer to Stony Brook after their junior year must complete one semester at Stony Brook before they will be considered for admission to this combined B.S./M.P.H. program. The admissions requirements for students entering the combined degree program are as follows:

A. Overall Stony Brook undergraduate GPA of at least 3.3
B. GPA in courses required in the Applied Math major of at least 3.5
C. Letters of recommendation from two faculty who rank the student in the top 10 percent of their classes

B.S./M.P.H. Required Course Work

The degree requirements for the B.S./M.P.H. degree program do not differ from the requirements for the undergraduate program and the M.P.H. program. The benefit of the joint degree is that 12 graduate M.P.H. credits count toward the student's undergraduate degree, with eight of the 12 credits counting as upper-division electives in the Applied Mathematics and Statistics major including: HPH 506, Biostatistics I (two credits), HPH 507 Biostatistics II (three credits), and HPH 555 Demographic Theory and Methods (three credits). Four additional M.P.H. graduate credits may be counted towards the 120 total credits required for the B.S. degree. All required courses and DEC/General Education requirements remain.

Completion Timetable

Students in the combined B.S./M.P.H. program can complete both degrees in ten semesters. For the first three years (first six semesters) of a student's career, he/she would complete required undergraduate coursework for DEC/General Education and the undergraduate major. During the fourth year (seventh and eighth semesters), the student would take a combination of undergraduate and graduate courses. During the fifth year (ninth and tenth semesters) the student would complete the remaining graduate requirements for the M.P.H. degree.

M.P.H./M.B.A. Degree

The graduate program in Public Health and the College of Business offer a combined M.P.H./M.B.A. degree program to prepare students for a management career in the health field. The M.P.H./M.B.A. program includes 19 to 20 credits (seven courses) of overlap, which reduces the total number of credits in the joint program to 71 to 78 credits, depending on which M.P.H. concentration is chosen. Students will receive both degrees upon completion of the entire program.

Admission to the M.P.H./M.B.A. Program

Students who wish to be considered for admission into the combined M.P.H./M.B.A. degree program must comply with all the requirements of admission for the M.P.H. degree alone. The M.P.H. Admissions Committee will review completed M.P.H./M.B.A. applications initially and recommend eligible applicants to the Admissions Committee of the School of Business for approval. M.P.H./M.B.A. degree applicants may submit GMAT scores in lieu of GRE scores.

Curriculum Overview

M.P.H. Core (20 Credits)

- HPH 500 Contemporary Issues for Public Health (Two credits)
- HPH 506 Biostatistics I (Two credits)
- HPH 507 Biostatistics II (Three credits)
- HPH 514 Epidemiology for Public Health (Three credits)
- HPH 516 Environmental and Occupational Health (Three credits)
- HPH 523 Social and Behavioral Determinants of Health (Two credits)
- HPH 562 Data Management and Informatics (Two credits)

M.B.A. Requirements (24 credits)

- MBA 502 Finance (Three credits)
- MBA 504 Financial Accounting (Three credits)
- MBA 505 Marketing (Three credits)
- MBA 506 Leadership, Teamwork and Communications (Three credits)
- MBA 511 Technological Innovations (Three credits)
- MBA 512 Business Planning and Strategic Management (Three credits)

M.B.A. Electives (six credits)

- MBA 503 Data Analysis and Decision Making (Three credits) (in lieu of M.P.H. selective)
- MBA Elective (in lieu of MPH selective)
- HPH 549 Public Health Law (Two credits) (in lieu of MBA 507)
- HPH 508 Health Systems Performance (Three credits) (in lieu of MBA 507 Ethics and Law)
- HPH 563 Cost Benefit and Cost Effectiveness Analysis (Two credits) or
- MBA 501 Managerial Economics (Three credits)
- MBA 580 Practicum (Three credits) or
- MBA 521 Industry Project

M.B.A./M.P.H. Overlap Courses

- MBA 502 Finance (Three credits)
- MBA 504 Financial Accounting (Three credits)
- MBA 505 Marketing (Three credits)
- MBA 506 Leadership, Teamwork and Communications (Three credits)
- MBA 511 Technological Innovations (Three credits)
- MBA 512 Business Planning and Strategic Management (Three credits)

M.B.A. Elective (in lieu of MPH elective)

- HPH 549 Public Health Law (Two credits) (in lieu of MBA 507)
- HPH 508 Health Systems Performance (Three credits) (in lieu of MBA 507 Ethics and Law)
- HPH 563 Cost Benefit and Cost Effectiveness Analysis (Two credits) or
- MBA 501 Managerial Economics (Three credits)
- MBA 580 Practicum (Three credits) or
- MBA 521 Industry Project

- HPH 508 Health Systems Performance (Three credits) (in lieu of MBA elective)
HPH 563 Cost Benefit and Cost Effectiveness Analysis (Two credits)
or
MBA 501 Managerial Economics (Three credits)
MBA 589 Operations Management (Three credits)
(in lieu of HPH 524 Strategic Management of Public Health Organizations)
MBA 504 Financial Accounting (Three credits) (in lieu of HPH 660)
MBA 503 Data Analysis and Decision Making (Three credits)
(in lieu of HPH Concentration Selective)

Courses

Core Courses

HPH 500 Contemporary Issues in Public Health
This course will mainly examine the role of medicine and public health in improving the health of the Suffolk County population. Students will be exposed to Field Preventive Medicine as performed by public health practitioners including investigations of infectious disease outbreaks and cancer clusters. As Suffolk is one of the most heavily mosquito- and tick-infested counties in the country, the course will emphasize arthropod-borne diseases. The impact of drinking water standards and frequently encountered contaminants such as synthetic organic compounds and pesticides will be studied. Sanitary regulations and public health law will be discussed, as will bioterrorism and the modes most threatening to residents of Long Island. Global issues will include infectious diseases and food-borne illnesses that affect morbidity and mortality worldwide.

2-3 credits, ABCF grading

HPH 506 Biostatistics I
This two-term course is intended to provide students and researchers in public health with an introduction to the principles of statistical methods and their application in biomedical and public health research. This course includes introductions in the use of computers for statistical analysis, summarizing and exploring data, probability theory, discrete and continuous probability distributions, populations and samples, sampling distributions and statistical inference, hypothesis testing, sample size and power, two-sample comparisons, analysis of variance, association and correlation, simple linear regression and simple logistic regression.

2-3 credits, ABCF grading

HPH 507 Biostatistics II
This two-term course is intended to provide students and researchers in public health with an introduction to the principles of statistical methods and their application in biomedical and public health research. This course includes introductions in the use of computers for statistical analysis, summarizing and exploring data, probability theory, discrete and continuous probability distributions, populations and samples, sampling distributions and statistical inference, hypothesis testing, sample size and power, two-sample comparisons, analysis of variance, association and correlation, simple linear regression and simple logistic regression.

2-3 credits, ABCF grading

HPH 514 Epidemiology for Public Health
This course presents basic epidemiologic concepts used to study health and disease in populations. It provides an overview of the major causes of morbidity and mortality, including methods of measurement (e.g., incidence, prevalence). Observational and experimental epidemiologic studies will be described and their advantages and disadvantages compared. The course aims for students to begin developing the skills needed to evaluate data, interpret reports, and design and conduct studies. Students will be introduced to the various areas of epidemiologic study—cancer, molecular/genetic, environmental, occupational, social and behavioral, and infectious disease/surveillance. The course comprises both lectures and small group seminars for in-depth discussions of previously assigned topics.

3 credits, ABCF grading

HPH 516 Environmental and Occupational Health
This course is designed to provide the fundamentals of environmental and occupational health and to educate students on issues related to major environmental and occupational concerns. It will provide a forum for the discussion of local and national environmental and occupational public health issues. The content of the course will focus on major pollutants, their detection, impact on health, and principles of remediation. Using various teaching techniques, students will be exposed to current environmental and occupational topics and prevention and treatment. The course will emphasize the most recent research in the field.

3 credits, ABCF grading

HPH 523 Social and Behavioral Determinants of Health
This course introduces students to population health as one of the organizing concepts in public health and the orientation that differentiates public health from medicine. Consistent with public health tradition, health is discussed from an ecological perspective, and the course presents current knowledge about the multiple determinants of population health including socioeconomic status, the physical environment, medical care, individual behavior, and genetics and the interaction of these factors. Also covered is the measurement of population health, sources of data about population health, and methods for assessing population health improvements.

3 credits, ABCF grading

HPH 524 Capstone Seminar: Population Health Issues
This course will assist students in synthesizing the basic public health knowledge through completion of a Capstone Project. Attendance at Public Health Grand Rounds will also be required for this course. Most core and concentration course work must be complete before the student can participate in the Capstone Seminar.

3 credits, S/F grading

HPH 550 Health Systems Performance
This course introduces students to the system that we have developed to deliver health care in the United States, with international comparisons. The topics include the organization and financing of health-care systems, access to health care including health insurance, regulation and policy issues, and the health-care workforce.

3 credits, ABCF grading

HPH 556 Data Management and Informatics
This course provides students with an introduction to the principles of public health informatics and data management using the SAS systems. Lectures and labs will be aimed at developing hands-on skills about how to create, maintain, and manage databases using the SAS Systems for Windows, a major software package used frequently in public health and clinical research. In addition, the student will learn how to retrieve and summarize information about population health from major public health information systems in the U.S.

2 credits, ABCF grading

HPH 557 Cost Benefit and Cost Effectiveness Analysis
The course will introduce the uses and conduct of cost benefit and cost effectiveness analyses as decision-making aids in the health-care research. It will provide students with an understanding of the roles and limitations of cost benefit and cost effectiveness analyses and criteria for evaluating those studies. Critical issues regarding measuring cost and effectiveness, evaluating outcomes, discounting, and dealing with uncertainty will be discussed.

2 credits, ABCF grading

Culminating Experience Courses

HPH 580 Practicum
The Practicum is a planned experience in a supervised and evaluated public health related practice setting. A journal of fieldwork and a project, with a written report, are required. Students will be expected to demonstrate their capacity to organize, analyze, interpret and communicate knowledge in an applied manner. Health departments, as well as a variety of other local organizations, offer a wide array of potential sites for the Practicum experience.

2-3 credits, ABCF grading

HPH 581 Capstone Seminar: Population Health Issues
This course will assist students in synthesizing the basic public health knowledge through completion of a Capstone Project. Attendance at Public Health Grand Rounds will also be required for this course. Most core and concentration course work must be complete before the student can participate in the Capstone Seminar.

2-3 credits, S/F grading

HPH 510 Advanced Epidemiology
This course will introduce advanced statistical methods for epidemiological investigations for infectious and non-infectious diseases. The topics include interaction, standardization of rates and ratios, conditional logistic regres-

332
sion, life tables, and survival analysis.

Prerequisites: HPH 511 and HPH 511 or other mathematically oriented introduction to statistics
3 credits, ABCF grading

HPH 555 Demographic Theory and Methods
This course introduces students to the basic theory and methods employed in the study of demography. The students will understand life table methodology, population projection, sources of demographic data, patterns in global fertility and mortality, the demographic transition, current patterns in fertility, marriage, and work, abortion and contraception, and fertility/mortality interrelationships.
3 credits, ABCF grading

HPH 560 Advanced Biostatistics
This course will discuss aspects of practice and statistical theory relevant to the design of scientific investigations in the health sciences. Topics will include sample size considerations, basic principles of experimental design, block designs, and factorial experiments, and multivariate analysis for continuous and categorical data.
3 credits, ABCF grading

HPH 565 Health Services Research Applications
The course is designed to introduce students to the application of standard methods in health services research. The student will learn the principles, methods, and terminology specific to this field. Threats to validity, information bias, and the methods of control will be explored. Lectures will include risk adjustment, benchmarking, outcomes, and effectiveness research. This course will emphasize the theory of sampling and survey methods and their application to health service research.
2-3 credits, ABCF grading

HPH 567 Clinical Outcomes Research
This course will: (i) introduce the basic concepts, methods, and topics in clinical outcomes research; and (ii) introduce the skills necessary to evaluate the efficacy, effectiveness, and cost effectiveness of devices, interventions, processes of care, and health-care delivery systems. The specific topics to be covered include: outcomes measurement, population health assessment, valuing health outcomes, risk adjustment, case-mix adjustment methods, effectiveness, efficacy, and cost effectiveness in clinical outcomes research, and analysis methods.
2 credits, ABCF grading

Community Health Concentration (Required Courses)

HAS 527 Principles and Practice of Public and Community Health
Provides an overview of the public health system, the philosophy and purpose of public and community health, the managerial and educational aspects of public health programs, how the public health sector responds to disease prevention, environmental issues, community public health provisions and other core public and community health components. The impact of federal health-care reform on the public health delivery system and the economic and fiscal implications of the system on state and local governments will be discussed. Students will analyze the critical elements of a health-care system.
3 credits, ABCF grading

HAS 545 Ethics and Health Care
Provides an overview of ethics in health care in a rapidly changing society. Teaches students to approach ethical dilemmas using theoretical frameworks and decision making processes. Explores ethical issues surrounding health-care reform and public health policy and includes distribution of resources and rationing of services. Introduces students to the ethical perspectives of euthanasia, reproduction, transplants, and HIV/AIDS through case studies. Reviews classic cases in health-care ethics and their shaping of health policy. Discusses patient education and professional codes of ethics and standards.
3 credits, ABCF grading

HAS 557 Planning and Implementing Community Health Programs
Prepares students to conduct needs assessments of various diverse populations and to plan, implement, and evaluate programs to meet the needs. Plans include detailed goals, behavioral objectives, methods, resource and budget allocation, including grant and contract considerations.
3 credits, ABCF grading

HAS 559 Health Behavior and Risk Reduction
Discusses the impact of behavior on the health and well-being of the public. Addresses the leading causes of death and disability that are largely attributable to behaviors that can be modified or prevented through changes in individual, community, and institutional or organizational behavior. The course is designed to help students acquire knowledge of theories and concepts to describe, explain, and predict health-related behaviors as well as behavioral responses to risk communication; learn the skills to apply this knowledge to evaluate the effectiveness of behavioral and health communication interventions; and develop a health-related behavioral intervention project proposal that includes a plan to evaluate behavior change outcomes.
3 credits, ABCF grading

HAS 560 Evaluation of Community Health Programs
Addresses basic principles and practices of program evaluation including identifying the goals of a community health program; designing an evaluation plan that can determine if program goals are achieved; implementing an evaluation plan; interacting with stakeholders, and using the results of the program evaluation to improve performance. Students are required to design an evaluation component for the community health program they developed in HAS 557.
Prerequisite: HAS 557
3 credits, ABCF grading

Public Health Practice Concentration (Required Courses)

HPH 524 Strategic Management of Public Health Organizations
This course introduces concepts and tools needed to plan and implement health programs within a public health setting. It covers evidence-based best practices that will ensure the effectiveness and efficiency of health programs, including performance issues related to planning, developing, managing, and evaluating.
2 credits, ABCF grading

HPH 530 History of Public Health and Medicine
This course explores major themes and interpretations in the history of public health and medicine since the 18th century. Particular emphasis is placed on the influence of social and cultural developments on medicine and public health, and vice versa. American developments will be placed in a broad comparative perspective including both Western and non-Western nations.
2 credits, ABCF grading

HPH 549 Public Health Law
This course is a survey of legal and policy issues that have special relevance for public health professionals. Topics may vary, but typically will include many of the following: structure of the U.S. legal system; power of state governments in matters affecting health care; governmental power and the right to privacy; constitutional issues in social welfare benefits; governmental regulation of health-care providers and payers; the scope and discretion of administrative agencies in health care; the antitrust laws; the fraud and abuse laws; and negligence in the delivery and financing of health care.
2 credits, ABCF grading

HPH 555 Demographic Theory and Methods
This course introduces students to the basic theory and methods employed in the study of demography. The students will understand life table methodology, population projection, sources of demographic data, patterns in global fertility and mortality, the demographic transition, current patterns in fertility, marriage, and work, abortion and contraception, and fertility/mortality interrelationships.
3 credits, ABCF grading

HPH 660 Managerial Accounting and Financial Decision Analysis
Fundamentals of financial and managerial accounting with emphasis on concepts, ratio and break-even analysis, financial structure, cost analysis, replacement of assets, and cash flow management.
Fall, 3 credits, ABCF grading

Selective Courses

HPH 504 Surveillance and Control of Infectious Diseases
This course introduces the methods of surveillance and control of infectious diseases in the community and in health-care organizations including the design, implementation, and eval-
PUBLIC HEALTH

HPH 505 Topics in Population Health Studies
This course presents current topics and issues in population health studies. 1-3 credits, ABCF grading

HPH 510 Advanced Epidemiology
This course will introduce advanced statistical methods for epidemiological investigations for infectious and non-infectious diseases. The topics include interaction, standardization of rates and ratios, conditional logistic regression, life tables, and survival analysis.
Prerequisites: HPH 515 and HPH 511 or other mathematically oriented introduction to statistics
3 credits, ABCF grading

HPH 513 Decision Making in Medicine and Public Health
This course is designed to introduce the student to the methods and range of applications of decision analysis in health-care technology assessment, medical decision making, and health resource allocation. Students will learn the basics of decision science and how to organize complex problems into an analyzable framework as a basis for decision making and its applications in public health and clinical settings.
This course will cover the following areas: making use of probabilities in medicine, choice and interpretation of diagnostic tests, decision tree construction and analysis, quantifying patient preferences, and cost-effectiveness analysis. Students will learn methodologies for dealing with complex decisions both on an individual patient level and at a policy level, and will have hands-on experience in applying these to a problem of their choosing.
Prerequisite: Biostatistics I and II; introductory economics is recommended but not required
3 credits, ABCF grading

HPH 517 Continuous Quality Improvement Methods
This course introduces the principles and methods of continuous quality improvement (CQI) for public health and health-care organizations including benchmarking, development of pertinent information systems, timely and regular analysis of data, and presentation of performance results. The course also discusses implementation issues including availability of relevant data and achieving administrative and staff support.
2 credits, ABCF grading

HPH 519 Independent Study
Intensive reading, under supervision of one or more instructors, of material not covered in the formal curriculum, or execution of a research project under the supervision of one or more faculty members.
Prerequisite: Permission of program director
1-6 credits, ABCF grading
May be repeated up to five times for credit

HPH 521 Seminar in Evaluative Sciences
This course introduces novice researchers to the steps required to plan a clinical research project and teaches some of the most basic principles involved in each step. This eight-hour seminar will discuss reviewing the literature and building a library; developing a research project including study design, sampling, data collection and management, data analysis, and presenting results. Grant resources and the application process; copyright rules; human subjects protection and institutional review boards (including HIPAA); and when and how to use a statistics consultant will also be introduced. Students are encouraged to use this seminar to develop their own research idea and leave the seminar with a timeline for achieving their own research goals.
0.5-3 credits, ABCF grading
May be repeated three times for credit

HPH 526 Issues for Public Health Organizations
Not all organizational change improves upon the past and most change is difficult. This course discusses the challenges facing public health managers who are intent on implementing organizational change. Top management processes for public health leaders will be explored including strategic planning, resource allocation, decision-making, learning, and managing.
2 credits, ABCF grading

HPH 528 Survey Research Methods
This course will introduce survey research methods for community populations. It will include measurement of health status and other factors related to the health of community populations including socioeconomic status, health behavior, occupation, and social support. Topics will include sampling and design strategies, instrument development, scaling, assessment of reliability, validity and responsiveness to change; principal Component analysis and factor analysis; and item response theory. The course will introduce students to the many existing sources of community health survey data including the recurrent national surveys such as the National Health Interview Survey.
2 credits, ABCF grading

HPH 542 Introduction to Global Health
This course will provide health personnel with a basic awareness of the problems of the world’s population with special focus on the poorest. To promote these objectives, this course has been designed to introduce medical and public health students to key population health topics from a global perspective, with special emphasis placed on the health and welfare of women and young children in low-income countries. The health impact of emergent infectious diseases will be reviewed. The design and effectiveness of foreign aid programs will be discussed. Students will be introduced to demography and the impact of population increases on the global environment. There will be discussions of the health problems of immigrants to the U.S. from tropical countries. Finally students will learn about vaccination and other safety issues related to traveling and working in the tropics.
2 credits, ABCF grading

HPH 556 Clinical Trials
This course introduces the design, conduct, and analysis of clinical trials. Topics will include types of clinical trials, study design, treatment allocation, randomization and stratification, quality control, sample size requirements, patient consent, and interpretation of results.
2 credits, ABCF grading

HPH 570 Multilevel and Longitudinal Analyses
The course covers methods for the analysis of repeated measures, correlated outcomes and longitudinal data, including the unbalanced and incomplete data sets characteristic of health service research. Topics include ANOVA, random effects and growth curve models, and generalized linear models for correlated data, including generalized estimating equations.
2 credits, ABCF grading

HPH 580 Parameters of Social and Health Policy I
Introduces students to U.S. social policy, with a special emphasis on political, economic, and social factors that have affected its historical development, particularly in reference to oppressed groups. Explores relationship of social policy to social work practice.
3 credits, ABCF grading

HPH 581 Parameters of Social and Health Policy II
Utilizes frameworks for social policy analysis. Explores continuing dilemmas in policy development. Stresses effects of social movements and social change on social policy.
Prerequisite: HPH 580
3 credits, ABCF grading

HPH 626 Overview of Substance Abuse
An examination of the history and development of alcohol and substance abuse problems in the United States. Focuses on the etiology, psychopharmacology, and legal ramifications of the use of licit and illicit substances in our culture. Provides information on a variety of services available to drug abusers, addicted individuals, and their families in the fields of prevention, education, and treatment. Co-scheduled with HWC 344.
2 credits, ABCF grading

HPH 630 Chemical Dependency in Special Populations
Covers alcoholism and substance abuse with populations that have been traditionally devalued and oppressed. Focuses on development of skills and sensitivity to the needs of ethnic groups, women, the elderly, the mentally ill and gay and lesbian people who are chemically dependent. Explores policy and practice issues related to these populations.
3 credits, ABCF grading

HPH 631 Cultural Competency: An Ingredient in Enhancing Treatment Outcomes
Demonstrates that cultural competency, like computer literacy, is a necessity. Outlines how prevention messages and treatment modalities provided within a cultural context are likely to change attitudes or redirect behaviors. There is a new wave of immigrants and a growing assertion of cultural...
identity by groups who were born in the United States. Therefore, a new communication ethic or dialogue is fast becoming part of one's professional mandate. Hence, the ability to interact with people who are culturally different from the professional is a prerequisite to providing culturally competent services to these groups. Co-scheduled with HWC 357.

2 credits, ABCF grading

HPH 633 Childhood Sexual Abuse and Long-Term Sequelae: Assessment and Intervention

Introduces students to the incidence and prevalence of childhood sexual abuse as a national problem. Covered are definition issues, sequelae during childhood, family constellation, and adult sequelae. Addressed are assessment and current treatment modalities, particularly for families and offenders, ethical and legal dilemmas and the subsequent health-related difficulties of this childhood trauma. Special attention is paid to the cultural dynamics in sexual abuse. Students are expected to develop an awareness of and critically analyze current research. Focus is also on examination of policy issues and legislation.

2-3 credits, ABCF grading

HPH 634 Program Evaluation

Provides an in-depth analysis of the technical requirements of program evaluation and the organizational and political constraints that influence the evaluation process. Covers techniques in the design and implementation of evaluation research in the health and human service fields.

Prerequisites: HWC 511 and 512

2-3 credits, ABCF grading

HPH 635 Seminar on Family Violence

An overview of the phenomenon of family violence in the United States including child abuse, partner abuse, and elder abuse. Explores theories of etiology, including patriarchy, intergenerational family dynamics, and substance abuse. Examines programmatic approaches including the legal system and programs for battered women by utilizing guest speakers from Suffolk County agencies.

2 credits, ABCF grading

HPH 636 Community Analysis and Health Promotion

Explores diverse concepts of community, analyzes a range of community structures, processes, and power relationships. Investigates contemporary models, strategies, and tactics of community organizing and health promotion in the United States and in selected other countries. Emphasizes efforts by poor people, ethnic minorities of color, and women to organize and mobilize community groups and movements. Highlights group and community analysis and organization skills.

2-3 credits, ABCF grading

HPH 638 Qualitative Health Research Methods

The class works as a team on a joint project. Topics include problem formulation, instrument construction, sampling strategy, interviewing, data transcription, and data analysis. Crosslisted with HWC 588.

Prerequisites: HWC 511 and 512

2-3 credits, ABCF grading

HPH 653 Introduction to Homeland Security

The course is a combination of lectures and laboratory experience to introduce students to critical issues and needs for homeland security. The course includes invited lectures by experts on special topics such as fundamentals of nuclear, chemical, and biological weapons and the associated threat to the transportation of goods and the public. The students will learn about cyber security, devices to safeguard nuclear materials from terrorist threats, safety of nuclear power plants and water supply, forensics, and emergency preparedness. The students will submit a term paper on a selected topic in lieu of the final exam. Crosslisted with ESM 550 and HPH 643.

Prerequisites: Undergraduate level biology, chemistry, and physics

Fall and spring, 3 credits, ABCF grading

HPH 654 Nuclear Security

The course will familiarize students with the fundamentals of nuclear physics, radiation, mining, weapons, and fuel cycle, other than those related to nuclear power plants. Topics include nuclear detection, devices to safeguard nuclear materials from terrorist threats, needed physical protection for safe handling and its relevance to Homeland Security. The course combines lectures with hands-on experience at the newly installed nuclear detection facility located at the nearby United States Department of Energy's Brookhaven National Laboratory. Crosslisted as EST 553 or HPH 654.

Prerequisite: Undergraduate equivalent physics and chemistry

Fall and spring, 4 credits, ABCF grading

HPH 655 Chemical and Biological Weapons: Safeguards and Security

This course deals with the fundamentals of chemistry and biochemistry related to chemical weapons (CW) and biological weapons (BW) that could be used by terrorists. Topics include CW and BW history, production, control, detection, identification, and emergency response management to deal with intended or unintended release and escape, and security measures to protect and control stockpiles. Crosslisted with EST 554 and HPH 655.

Prerequisite: Undergraduate equivalent chemistry, biochemistry, and microbiology

Fall and spring, 4 credits, ABCF grading

HPH 656 Risk Assessment, Regulation, and Homeland Security

The course focus is on risk assessment associated with nuclear, chemical, and biological weapons as it relates to Homeland Security. Topics include air dispersion, uncertainty analysis, exposure measurements, epidemiology, toxicology, regulatory issues, risk management, risk communication, risk perception, and risk preparedness. The course will also cover laws and regulations, discouraging terrorism, disaster preparedness, and various acts passed by the U.S. Congress to regulate water, air, and controlled substances. Crosslisted as EST 656 and HPH 656.

Prerequisite: Undergraduate equivalent physics, math, and chemistry

Fall and spring, 4 credits, ABCF grading

HPH 657 Demographic Economics I

This course deals with the economics of the family. It utilizes recently developed techniques in economics and demography to deal with questions concerning marriage, divorce, fertility, contraception, the intrafamily distribution of resources, and the intergenerational distribution of resources. Students will do original theoretical and empirical research under the professor's supervision.

Prerequisite: ECO 501; Graduate standing in Economics or permission of the graduate program director

Spring, 0-3 credits, ABCF grading

HPH 658 The Use of Remote Sensing and GIS in Environmental Analysis

An introduction to the use of aerial and satellite imagery in environmental analysis and the manipulation of geographic data sets of all types using Geographic Information Systems. This course is designed to teach students in archaeology, physical anthropology, and related disciplines, how satellite imagery combined with various maps can be manipulated using GIS software to perform powerful geographic analysis. Although students are eventually likely to use these tools in many different parts of the world, this course focuses on Long Island as a research area, and each student designs and completes a research project on a particular section of the area, focusing on the habitats of local wildlife, the locations of archaeological sites, coastal regimes, etc. This course assumes computer literacy and familiarity with database management. This course is offered as both ANT 526 and DPA 526 or HPH 658.

Fall, 3 credits, ABCF grading

HPH 659 Biology of Cancer

A short course with the emphasis on cancer as a disease of man. Lectures address human cancer as seen by the clinician and as basic research relates to human disease. This course provides students with a link between courses in cell and molecular biology and the application of this basic information to tumor management.

Spring, even years, 1 credit, ABCF grading

HPH 661 Methods of Socio-Technological Decision Making

Focus is on the application of decision-making techniques to analyze problems involving technology, particularly its social impacts. Areas of study include decision making under uncertainty, decision making in a passive vs. active environment, sequential decisions, estimating payoffs, forecasting, and technology assessment. These systems-analysis techniques are used to formulate and solve a variety of socio-technological problems, especially those that arise in educational, industrial, and environmental professions.

Prerequisite: Graduate standing in department or permission of instructor

Fall, 3 credits, ABCF grading

HPH 662 Systems Approach to Human-Machine Systems

Systems concepts (feedback, stability, chaos, ergonomics) and analytical tools applied to dynamic systems in which technologies and/
or natural environments interact with human users, regulators, or designers. Examples: ecological systems, nuclear power plant operations, space shuttle missions, computer/Web educational technologies, regional planning. Students prepare a systems design study of an industrial, educational, or environmental device, technology, or management system. Prerequisites: EST 581 or permission of instructor; graduate standing in the Department Spring, 3 credits, ABCF grading

HPH 664 Health Economics I
Theoretical and econometric analysis of selected aspects of the health-care delivery system, such as the demand for medical services, the supply and distribution of physician services, the utilization of non-physician medical personnel, alternative models of hospital behavior, third-party insurance reimbursement, national health insurance and cost, and price inflation in the hospital and long-term care sectors. Coscheduled as ECO 646 or HPH 664. Prerequisites: ECO 501, ECO 521; graduate standing in Economics or permission of the Graduate Program Director Spring, 0-3 credits, ABCF grading

HPH 665 Health Economics
This course applies advanced economic theory and econometrics to issues within the health market in more detail. Theoretical and econometric analysis of the health-care delivery system, such as the demand for medical services, the supply and distribution of physician services, hospital behavior, third-party reimbursement, national health insurance and cost, and price inflation in the hospital and long-term care sectors. Coscheduled as ECO 645. 2 credits, ABCF grading

HPH 671 Marine Pollution
Review of the physical and chemical characteristics and speculation in the marine environment of organic pollutants, metals and radionuclides including bioavailability, assimilation by marine organisms, toxicity, and policy issues. Coscheduled as MAR 512 or HPH 671. Prerequisites: MAR 502, MAR 503 Fall, 3 credits, ABCF grading

HPH 672 Marine Management
The course discusses waste management issues particularly affecting the marine environment. Topics include ocean dumping, sewage treatment, fish kills, beach pollution, and nuisance algal blooms. Techniques for managing the waste stream are presented. Crosslisted as HPH 672 or MAR 514. Prerequisite: Permission of instructor Spring, 3 credits, ABCF grading

HPH 673 Groundwater Problems
Discussion of the hydraulic processes and technologies that are central to the management and monitoring of groundwater resources including special problems of coastal hydrology and saltwater intrusion, as well as the fate of contaminants. Remediation approaches are also examined. Crosslisted as MAR 521 or HPH 673. Prerequisite: Permission of instructor Summer, 3 credits, ABCF grading

HPH 675 Environment and Public Health
Review of the interactions of humans with the atmosphere and water resources, especially in the Long Island coastal community. An introduction is provided to the field of environmental health and the practices relevant to an urban/suburban and coastal setting. Crosslisted with HPH 675. Prerequisite: Permission of instructor Spring, 3 credits, ABCF grading

HPH 684 Environmental and Waste Management in Business and Industry
Environmental and waste management practices in industrial and other institutional settings. Technologies of hazardous waste prevention, treatment, storage, transportation, and disposal are considered. Topics include information systems and software tools for environmental audits, regulatory monitoring and compliance, cost estimation, recycling programs, air, land, and water emission controls and permits. Employee health, safety, and education and quality management are examined. Field trips to several Long Island institutions. Cross-listed as EST 588 or HPH 684. 3 credits, ABCF grading

HPH 686 Risk Assessment and Hazard Management
A case-study approach to the assessment of risk and the management of natural and technological hazards, with emphasis on those that can harm the environment. The course focuses on technological hazards involving energy, transportation, agriculture, natural resources, chemicals, technology, nuclear technology, and on natural hazards such as climatic changes, droughts, floods, and earthquakes. The first part of the course consists of readings on risk assessment and hazard management and discussions of published case studies. During the second part of the course, students conduct their own case studies and use them as the basis for oral and written reports. Coscheduled as EST 593 or HPH 686. 3 credits, ABCF grading

HPH 687 Diagnosis of Environmental Disputes
Diagnosis of disagreements about environmental and waste problems. Tools for evaluating disputes about (1) scientific theories and environmental models, (2) definitions and analytical methodologies for estimating risk, “real” cost, net energy use, and life-cycle environmental impact, (3) regulatory and legal policy, (4) siting of controversial environmental facilities, and (5) fairness and other ethical issues. These diagnostic tools are brought to bear upon cases studies of pollution prevention, recycling, nuclear waste disposal, and climate change. This course is offered as CEY 594, EST 594, and HPH 687. 3 credits, ABCF grading

HPH 688 Principles of Environmental Systems Analysis
This course is intended for students interested in learning systems engineering principles relevant to solving environmental and waste management problems. Concepts include compartmental models, state variables, optimization, and numerical and analytical solutions to differential equations. Crosslisted as EST 595 or HPH 688. Prerequisites: MAT 132 and one year of quantitative science such as physics, chemistry, or geology; or permission of instructor Fall, 3 credits, ABCF grading

HPH 689 Simulation Models for Environmental and Waste Management
This course is intended for students interested in developing computer models for technology assessment and for environmental and waste management. Concepts developed in EST 595 Environmental Systems Engineering and Analysis are applied to real-world problems. Techniques in model development are presented in the context of applications in surface and groundwater management, acid rain, and health risks from environmental contamination. Coscheduled as EST 596 or HPH 689. Prerequisite: EST 585 or permission of instructor Spring, 3 credits, ABCF grading

HPH 501 Introduction to the Research Process
This course provides an overview of the research process, including formulation of a research problem, conceptualization of the research design, construction of the instrument for data collection, selection of the sample, collection of data, processing of data, and writing the research report. Topics include how to identify a research question and, correspondingly, how to formulate a clear, concise hypothesis or set of hypotheses; reasons and procedures for reviewing the literature; overview of observational and interventional research designs; review of measurement theory, types of scales, and commonly used measures in public health-related research; data collection methods including survey and qualitative methods; and the ethical conduct of research. Through the introduction of these topics, the course provides a general background for individuals who are interested in learning the fundamentals of how to prepare a research proposal. 2 credits, ABCF grading

HPH 503 Research Ethics
This course presents issues in the ethical conduct of research. Topics include data collection and management, research fraud, academic misconduct, conflict of interest, federal and institutional guidelines regarding research using human and animal subjects, vulnerable populations, confidentiality, and the Institutional Review Board (IRB). 1 credit, ABCF grading

HPH 509 Methods for Population Health Studies
This course introduces population health studies methods and their importance for evidence-based public health practice. Topics include the design, implementation, and analysis of community surveys, qualitative studies, and evaluation studies for health programs. Sources and uses of existing data for population health studies, including census, mortality,
administrative, and survey, will be discussed.

HPH 539 Global Epidemiology and Preventive Medicine

This course focuses on strategies to reduce mortality and morbidity from specific conditions. The conditions selected are mainly infectious diseases that account for the majority of preventable deaths and disability in low-income countries, especially among children. Detailed discussion of disease due to protozoa and parasites will, however, be deferred to another course. In addition, the increase in mortality from tobacco-related disease and trauma in poor countries will also be addressed.

3 credits, ABCF grading

HPH 540 Medical Anthropology, Culture, and Ethics

This course focuses on how patients in non-western societies view issues related to health and disease and how medical interventions can be integrated into local beliefs and customs. Particular attention will be devoted to the role of women in improving the health status of their communities. Region-specific overviews will be provided on how history and culture have influenced health in sub-Saharan Africa and Latin America. Ethical issues related to resource allocation and medical and public health research in low-income countries will also be addressed in this course.

3 credits, ABCF grading

HPH 541 Provision of Health Care in Low-Income Countries

This course focuses on the practical implementation of interventions to reduce disability and premature death in low-income countries. It will cover funding and organization of health care; primary health-care programs; role of expatriate health workers; and emergency medical care of refugee populations.

3 credits, ABCF grading

HPH 544 Development and Demography

This course focuses on broad issues of international aid and development policies that impact human health and the global environment. The course will help place the specific clinical interventions discussed in other courses into a wider socioeconomic context. Topics will include demography, poverty, health, and development; international and U.S. aid policies; and global environment for sustainable development.

3 credits, ABCF grading

HPH 545 Clinical, Laboratory, and Epidemiological Parasitology and Protozoology

This is an integrated and detailed course on the subjects of parasitology and protozoology. The epidemiology, microbiology, clinical presentation, and management, as well as laboratory diagnosis, of these conditions will be covered. The human and economic impact of these conditions will be discussed. Preventive measures will be discussed in detail. It will be assumed that students have minimal or no prior knowledge of these conditions.

3 credits, ABCF grading

HPH 561 Design of Scientific Investigations

This course is an overview of the theory and methods relevant to health sciences research, beginning with the philosophy of scientific investigations, the role of literature in the advancement of science and moving to problem identification, formulation of research questions, research design, and issues of sampling and sample selection, measurement, and analysis.

2 credits, ABCF grading

HPH 564 Research Methods for Community Populations

This course will introduce the design, measurement, and analysis of research for community populations. It will include measurement of health status and other factors related to the health of the community populations including socioeconomic status, health behavior, occupation, and social support. Topics will include instrument development, scaling, assessment of reliability, validity, and responsiveness of principal component analysis and factor analysis; and item response theory. The course will introduce the many existing sources of community health information including the recurrent national surveys such as the Health Interview Survey.

2 credits, ABCF grading

HPH 568 Overview of Molecular Medicine and Genomics

The course will introduce basic concepts of molecular diagnostics currently in clinical use. The principal topics to be covered include: an introduction to the human genome; principles of human genetics; microarray, genomic, and bioinformatics approaches to human disease; cancer genetics; animal models of human diseases; emerging pathogens; principles of genetic testing and test development; emerging molecular therapeutics; regulatory, patenting, and licensing issues of relevance to drug discovery and test development.

2 credits, ABCF grading

HPH 569 Modeling for Evaluative Sciences

This course will present an introduction to the methods of data mining and predictive modeling, with particular emphasis on applications to health services research and clinical outcomes research. Basic concepts and philosophy of data mining as well as appropriate applications will be discussed. Topics covered will include multiple comparisons adjustment and predictive model building through logistic regression, classification and regression trees (CART), multivariate adaptive splines (MARS), and neural networks.

2 credits, ABCF grading

HPH 571 Research Synthesis and Meta-Analysis

This course concerns the use of existing data to inform clinical decision-making and health-care policy. The course focus is research synthesis (meta-analysis). The principles of meta-analytic statistical methods are reviewed, and the application of these to data sets is explored. Application of methods includes considerations for clinical trials and observational studies. The use of meta-analysis to explore data and identify sources of variation among studies is emphasized, as is the use of meta-analysis to identify future research questions.

2 credits, ABCF grading

HPH 572 Introduction to Clinical Trials

Targeted to graduate medical trainees and junior clinical faculty, this course provides an overview of topics related to the design, conduct, and analysis of clinical trials. Topics will include types of clinical trials, study design, treatment allocation, randomization and stratification, quality control, sample size requirements, patient consent, and interpretation of results.

2 credits, S/P grading

HPH 601 Health Behavior and Risk Reduction

Discusses the impact of behavior on the health and well-being of the public. Addresses the leading causes of death and disability that are largely attributable to behaviors that can be modified or prevented through changes in individual, community, and institutional or organizational behavior. The course is designed to help students acquire knowledge of theories and concept to describe, explain, and predict health-related behaviors as well as behavioral responses to risk communication; learn the skills to apply this knowledge to evaluate the effectiveness of behavioral and health communication interventions; and develop a health-related behavioral intervention project proposal that includes a plan to evaluate behavior change outcomes.

3 credits, ABCF grading

HPH 644 Medical Anthropology, Culture, and Ethics

This course concerns the use of multiple intellectual and ethical perspectives to understand and interpret the normal and/or abnormal behavior of individuals, groups, and societies in their social, cultural, and historical contexts, and to develop the skills to apply this knowledge to evaluate the effectiveness of behavioral and health communication interventions; and develop a health-related behavioral intervention project proposal that includes a plan to evaluate behavior change outcomes.

3 credits, ABCF grading

HPH 649 Health Physics

The course is the study of health physics, integration of radiation with matter, radiological and biological effects of radiation, and radiation protection. The course will emphasize both the theoretical and operational aspects of health physics. Crosslisted as CEM 539 or HPH 649.

Prerequisite: Permission of instructor

3 credits, ABCF grading

HPH 660 Management Accounting and Financial Decision Analysis

Fundamentals of financial and managerial accounting with emphasis on concepts, ratio, and break-even analysis, financial structure, cost analysis, replacement of assets, and cash flow management.

Fall, 3 credits, ABCF grading

HPH 674 Environmental Toxicology and Public Health

Principles of toxicology and epidemiology are presented and effects associated with major classes of toxic chemicals and radiation on human and environmental health are examined in case study format.

Spring, 3 credits, ABCF grading

HPH 695 Applied Linear Algebra

Review of matrix operations. Elementary matrices and reduction of general matrices by elementary operations, canonical forms, and inverses. Applications to physical problems. Crosslisted as AMS 565 or HPH 695.

Fall, 3 credits, ABCF grading
HPH 696 Introduction to Probability
The topics include sample spaces, axioms of probability, conditional probability and independence, discrete and continuous random variables, jointly distributed random variables, characteristics of random variables, law of large numbers and central limit theorem, Markov chains. Note: Crosslisted as AMS 507 or CET 551 or HPH 696.
3 credits, ABCF grading

HPH 697 Mathematical Statistics
Sampling distribution; convergence concepts; classes of statistical models; sufficient statistics; likelihood principle; point estimation; Bayes estimators; consistency; Neyman-Pearson Lemma; UMP tests; UMPU tests; Likelihood ratio tests; large sample theory. Crosslisted as HPH 697 or AMS 571.

Prerequisite: AMS 312; AMS 570 is preferred but not required
3 credits, ABCF grading

HPH 698 Data Analysis I
Introduction to basic statistical procedures. Survey of elementary statistical procedures such as the t-test and chi-square test. Procedures to verify that assumptions are satisfied. Extensions of simple procedures to more complex situations and introduction to one-way analysis of variance. Basic exploratory data analysis procedures (stem and leaf plots, straightening regression lines, and techniques to establish equal variance). Crosslisted as AMS 572 or HPH 698.

Prerequisite: AMS 312 or permission of instructor
Fall, 3 credits, ABCF grading

HPH 699 Design of Experiments
Discussion of the accuracy of experiments, partitioning sums of squares, randomized designs, factorial experiments, Latin squares, confounding and fractional replication, response surface experiments, and incomplete block designs. Crosslisted as AMS 582 or HPH 699.

Prerequisite: AMS 572 or equivalent
3 credits, ABCF grading
School of Social Welfare

Dean: Frances L. Brisbane, Health Sciences Center, Level 2, Room 093, (631) 444-2139
Graduate Program Director: Jeanne Finch, Health Sciences Center, Level 2, Room 093, (631) 444-3174
Doctoral Program Director: Joel Blau, Health Sciences Center, Level 2, Room 093, (631) 444-3149
Administrative Assistant for Master’s Program: Kathy Albin, Health Sciences Center, Level 2, Room 093, (631) 444-3141
Administrative Assistant for Doctoral Program: Edie Lundgren, Health Sciences Center, Level 2, Room 093, (631) 444-8361

Degrees awarded: M.S.W. in Social Work; M.S.W./J.D. (with Touro Law Center); Ph.D. in Social Welfare

The M.S.W. Program in Social Work

The School of Social Welfare offers an accredited two-year graduate program and a one-year advanced standing option (open only to students who are graduates of a C.S.W.E. accredited baccalaureate program) leading to the Master of Social Work degree, which prepares students for entry into advanced social work practice.

The M.S.W. program provides students with the needed theoretical and practice expertise needed to function with maximum competence at different administrative or policy levels in social welfare and in the provision of direct services to individuals, families, groups, and communities. The school provides opportunities for study and practice that utilize the wealth of interdisciplinary resources available in the Health Sciences Center and the University. The curriculum provides for a general foundation year of courses and field instruction for all students. In the second year, students concentrate in advanced social work practice. Field instruction practice sites are located throughout Nassau and Suffolk counties and in some of the boroughs of New York City. In addition, the program offers one specialization in health with sub-specializations in alcohol and substance abuse or public health, and another specialization in student-community development.

In addition to the regular full-time two-year program, the school has two alternative pathways that extend the time necessary to achieve the degree. Students who are employed in the field of social welfare may, under certain conditions, use their employment site to fulfill a part of the field instruction requirements. Some courses are offered in concentrated form during the semesters, intersession, and summer session.

A separate bulletin is available describing the M.S.W. program curriculum and requirements for admission. To receive a copy of this bulletin and further information, contact:
Office of Admissions and Student Services
School of Social Welfare
Health Sciences Center
Stony Brook University
Stony Brook, NY 11794-8230
(631) 444-3141

Apply online for the M.S.W. program at www.ukmc.sunysb.edu/studserv/applyloc.html.

Dual Degree Program in Social Work and Law

This program offers the opportunity to earn an M.S.W. from the School of Social Welfare and a Juris Doctor (J.D.) from Touro Law Center in four years rather than in the five that would be required if the degrees were earned separately. Applicants may apply for the dual-degree program prior to matriculation or during their enrollment in the first year at either school. Applicants must apply to and be accepted by both schools. If accepted by both schools, the student is automatically eligible for the dual-degree program. The first year may be spent at either school, with the choice being up to the student. The second year is spent at the other school, the third year is divided between the two schools, and the fourth year is spent primarily at the law school. A detailed description of the program is available through the School of Social Welfare's Admissions and Student Services Office.

The Ph.D. Program in Social Welfare

The primary purpose of the Ph.D. program is to produce scholars who can use systematic methods to develop through research, and disseminate through teaching and writing, knowledge concerning social welfare problems and professional social work practice. Professional social work practice includes direct service with clients, the organization and management of service delivery systems, and the formulation and analysis of social welfare policies.

Drawing upon the social, behavioral, and health sciences as well as social work knowledge and experience, the graduates of this program will have the skills to expand the base of tested knowledge that can guide the profession of social work in its efforts to address major social problems.

A second purpose is to develop leaders and educators who can effectively contribute to contemporary social work practice as defined in this school's mission statement.

The core of this program is education for scholarly research leading to careers as teachers, researchers, and policy analysts with a focus on the content areas of health, mental health, and substance abuse. The strength of such a program lies in its location within the Health Sciences Center. This is a natural setting in which to bring together the basic sciences and theoretical disciplines in applied policy/program analysis and thereby contribute to research in the social dimensions of health and mental health.

Program Structure and Content

The structure of this program consists of 12 required classroom courses (36 credits) as follows:

Statistics I and II
Research Methods I and II
Social Welfare Policy Analysis I and II
Social Welfare Administration
Knowledge Building in Social Work: The Philosophy of Applied Social Research
Theories of Social Work Intervention
Seminar in Social Work Education
Dissertation Seminar I and II

Also required are three electives (9 credits), a research practicum of 10 hours per week for two semesters under mentorship (6 credits), a teaching practicum under mentorship (3 credits), oral and written qualifying examinations,
a scholarly paper of publication quality, and the production and defense of a scholarly dissertation. Fifty-four credits are required for graduation. In the first three years, students take three courses each semester. The full-time program is designed to be completed in a minimum of four years. The scholarly research paper of publication quality is required at the end of the fourth semester.

A comprehensive examination is given when 36 credits of required coursework are completed. Once all coursework and the qualifying exams are completed successfully, students select a preliminary dissertation chair and committee and develop an approved dissertation proposal. The student is then advanced to candidacy and begins dissertation research. The fourth year is spent on completion of the dissertation and defense.

The Part-Time Option

Students who are approved for the part-time option take a minimum of six credits each semester until the 54-credit sequence has been completed. In order to meet residence requirements, they must take nine credits in each of two consecutive semesters. Part-time students sit for their qualifying examinations at the end of the semester when 36 credits of required coursework are completed (usually the second semester of the third year). At the end of the third year, once all coursework and the qualifying exams are completed successfully, part-time students submit a research paper of publication quality for their oral exam. In the fourth year, they develop an approved dissertation proposal and select a dissertation sponsor. They are then advanced to candidacy. Dissertation research begins in the fifth year.

Criteria and Procedures for Student Admission

Newly admitted students may begin classes during the fall semester only. Applications for admission the following fall should be received by February 1.

Admission requirements include:

A. A master's degree from a program accredited by the Council of Social Work Education

B. Academic promise as evidenced by superior achievement in undergraduate and master's level education

C. Satisfactory performance on the Graduate Record Examination

D. A personal interview

E. Professional competence as demonstrated through substantial experience in responsible social work and/or human services positions supported by three letters of reference including one, if possible, from someone familiar with the applicant's capacity to conduct research

F. A sample of writing in the form of a published article, a manuscript submitted for publication, a document completed for the applicant's agency or in connection with a research interest, or a paper prepared in your previous graduate studies

G. Personal qualities indicating a potential for leadership, compatibility with the School's mission statement, flexibility and openness to new ideas, maturity, a spirit of inquiry, and a commitment to furthering the knowledge base of the profession of social work

H. Competence in quantitative skills as evidenced by performance on the Graduate Record Exam and a college level course in statistics completed with a grade of B or better

Under special circumstances, applications from persons who do not meet all of these requirements will be considered. Applicants without the M.S.W. degree must have a master's degree in a closely related field and must demonstrate a high potential for success in the program.

Requirements for the Ph.D. Degree

A. One year in residence

B. Satisfactory completion of all required and elective courses (54 credits)

C. Satisfactory completion of research and teaching practicum

D. Submission of a research paper of publication quality prior to the qualifying examinations

E. Satisfactory performance on the qualifying examinations

F. Advancement to candidacy by vote of the doctoral committee upon successful completion of all coursework and the qualifying examinations

G. Completion of a dissertation

H. Successful defense of the dissertation

I. Completion of all work toward the degree within seven years of admission to the program. Upon evidence of substantial progress, the Graduate School may grant a one-year extension.

A separate application and bulletin are available describing the Ph.D. program in more detail, its curriculum, and requirements for admission. To receive a copy of this bulletin, application and further information, contact the School of Social Welfare's Ph.D. program office in writing or by telephone at (631) 444-8361.

Faculty

Professors

Blau, Joel, Director of the Ph.D. Program, D.S.W., Columbia University: Social policy; history of social welfare; poverty; homelessness; the political economy of social welfare; comparative social welfare.

Brandwein, Ruth, Ph.D., Brandeis University: Family violence, welfare, and poverty; women in administration; organizational and social change; single-parent families; feminist frameworks; history of U.S. social policy; international social welfare.

Brashe, Frances, Dean, Ph.D., Union Graduate School: Alcoholism; counseling with people of color; complementary medicine.

Farberman, Harvey A., Ph.D., University of Minnesota: Philosophy of social work; public mental health services; research.

Lurie, Abraham, Ph.D., New York University: Mental health; case management; the aged.

Associate Professors

Berger, Candyce S., Ph.D., University of Southern California: Health policy; social work practice in health-care settings; structure and financing of health-care delivery; administration and leadership; resizing and restructuring strategies; case management; women's health.

Campos, Angel P., Executive Associate Dean, Ed.D., Columbia University: Hispanics/Latinos in the United States; the Hispanic/Latino family; mental health and the Hispanic/Latino; cross-cultural social work practice; cultural competency in social work practice; social gerontology; social work education.

Lewis, Michael A., Ph.D., City University of New York Graduate Center: Poverty and social policy; the application of sociology; economics; moral philosophy in the examination of social policy and social programs.

Monahan, Kathleen, D.S.W., Adelphi University: Siblings and sexual abuse; battered women; domestic violence; disability.

Robbins, Charles, Associate Dean for Academic Affairs and Director of Social Work, University Hospital, D.S.W., Yeshiva University: Violence in intimate relationships and as public health problem; health-care policy; social work and health care; the use of complementary medicine.
Courses

HWC 500 Field Instruction I
Placement in practice settings under supervision of an MSW. Must be taken concurrently with HWC 513.
*Prerequisite: Admission to graduate Health Sciences Center program
4-6 credits, S/F graded

HWC 501 Field Instruction II
A continuation of HWC 500. Must be taken concurrently with HWC 514.
*Prerequisites: HWC 500 and 513; admission to graduate Health Sciences Center program
4-6 credits, S/F graded

HWC 502 Field Instruction III
Placement in advanced social work practice settings. Supervision provided by a qualified MSW. Must be taken concurrently with HWC 515 and 516.
*Prerequisites: HWC 500, 501, 512, and 514; admission to graduate Health Sciences Center program
4-6 credits, S/F graded

HWC 503 Field Instruction IV
A continuation of HWC 502. Must be taken concurrently with HWC 517 and 518.
*Prerequisites: HWC 502, 515, and 516; admission to graduate Health Sciences Center program
4-6 credits, S/F graded

HWC 504 Human Behavior and the Social Environment I
Introduces a framework for understanding how individuals and families grow, develop and change within their social environment. Critiques interpersonal, intrapersonal and sociocultural theories and their impact on special populations that have been exploited and alienated in society.
*Prerequisite: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 505 Human Behavior and the Social Environment II
A continuation of HWC 504. Emphasizes an understanding of the life course, the role of time, social events, trauma and the developmental process. Examines the social institutions and their impact on people generally oppressed in society and the role of empowerment.
*Prerequisite: HWC 504; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 506 Social Work in Health
Introduces health as an organizing theme for social work knowledge and practice. Surveys the history of social work in health care settings, public health concepts and public problems, and social stratification of health and illness. Critically examines the structure of the health care system, reimbursements, interdisciplinary relationships, and models for social work practice in health care delivery in the 21st century.
*Prerequisite: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 507 Master's Project
Students complete a Master's Project under the sponsorship of a faculty member.
*Prerequisite: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 508 Continuation of Master's Project
A continuation of HWC 507 for students who did not finish their Master's Project during the term in which they had registered for it.
*Prerequisites: HWC 507; admission to graduate Health Sciences Center program
S/F graded

HWC 509 Parameters of Social and Health Policy I
Introduces students to U.S. social policy, with a special emphasis on political, economic, and social factors that have affected its historical development, particularly in reference to oppressed groups. Explores relationship of social policy to social work practice.
*Prerequisite: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 510 Parameters of Social and Health Policy II
Utilizes frameworks for social policy analysis. Explores continuing dilemmas in policy development. Stresses effects of social movements and social change on social policy.
*Prerequisite: HWC 509; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 511 Research I
Examines the basic concepts and methods of data collection (e.g., surveys, experimental designs, field research, unobtrusive designs) used in social research. Primarily prepares the student to understand and develop a research proposal and to critique methods used in research articles that address critical issues in social work practice.
*Prerequisite: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 512 Research II
Provides instruction in the computation, interpretation, and application of data analytic procedures used in social research. Covers procedures such as descriptive statistics, correlations, chi-square and t-test. Examines their relevancy for analyzing issues in social work practice.
*Prerequisite: HWC 511; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 513 Social Work Practice I
Provides the foundation for generalist practice, including the knowledge base, values and skill development necessary for effective practice with individuals, families, groups and communities. Challenges students to work politically, innovatively and with self-awareness in the service of alleviating human pain and enhancing people's abilities and...
strengths within a framework of social justice. Must be taken concurrently with HWC 500. HWC 504 must have been completed or taken concurrently.
Prerequisites: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 514 Social Work Practice II
A continuation of HWC 513. Emphasizes work with small groups, community and program systems. Deepens knowledge of generalist practice and skill development. Must be taken concurrently with HWC 501. HWC 505 must have been completed or taken concurrently.
Prerequisites: HWC 500, 501, and 513; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 515 Advanced Social Work Micro Practice I
Focuses on helping process with integration of increased understanding of the significance of transactions between people and their environments. Emphasizes development of advanced theory and practice skills. Must be taken concurrently with HWC 502 Field Instruction III and HWC 516 Advanced Social Work Macro Practice I.
Prerequisites: HWC 500, 501, 513, and 515; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 516 Advanced Social Work Macro Practice I
Emphasizes the development of advanced theory and practice in strategic planning, management, evaluation, policy analysis and development, and program development as applied in the health and social welfare fields. Must be taken concurrently with HWC 502 Field Instruction III and HWC 516 Advanced Social Work Macro Practice I.
Prerequisites: HWC 500, 501, 513, and 515; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 517 Advanced Social Work Micro Practice II
Emphasizes professional responsibilities for ongoing self-assessment. Examines agency effectiveness in meeting client needs and providing services. Focuses on further skill development in helping individuals, families and groups and on strategies for achieving necessary changes in agency policy and service delivery systems to meet client needs. Must be taken concurrently with HWC 503 Field Instruction IV and HWC 517 Advanced Social Work Micro Practice II.
Prerequisites: HWC 500, 501, 513, and 515; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 518 Advanced Social Work Macro Practice II
Emphasizes advanced theory and practice skills in program planning and management decisions based on the use of consumer oriented methodologies. Focuses on professional responsibility for continuing self-assessment and evaluation. Must be taken concurrently with HWC 503 Field Instruction IV and HWC 517 Advanced Social Work Micro Practice II.
Prerequisites: HWC 502, 515, and 516; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 519 Aging and the Law
Provides an overview of the many laws and programs affecting the quality of life, concerns, and needs of the aged, with particular emphasis on health care policy. The major entitlement programs for the aged, including Social Security, SSI, Medicare and Medicaid are covered as well as institutions and programs serving the aged including nursing homes, protective services and home care. Health care decision making, including health care proxies, the “right to die” and other ethical and legal issues are emphasized.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 520 Advanced Social Work Practice with the Aged
Examines concepts and strategies for working with the elderly at the primary, secondary, and tertiary levels of intervention. Presents and critically analyzes a variety of approaches in working with the elderly and their families. Examines interventions with the well elderly living in the community, the elderly who suffer some disabilities but who are still living in the community and the elderly who are institutionalized.
Prerequisites: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 521 Ethnic Sensitive Social Work Practice
Provides a theoretical framework and focuses on the development of the skills necessary to provide effective culturally sensitive social work services to diverse individuals, families, groups and communities. The special problems faced by groups traditionally devalued and oppressed are examined. Emphasizes skills in working for institutional change and social justice. Co-scheduled with HWC 324.
Prerequisites: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 522 Human Sexuality
Identifies personal attitudes and judgments about sexually related behaviors. Critically examines factual information derived from research in human sexuality and covers a wide range of sexual behavior from a knowledge base.
2 credits, ABCF grading

HWC 523 Growing Old in America: The Social Context—Policy and Practice Implications
Explores the social, political and economic conditions related to aging including long-term care in this society. Identifies social policies and program formats that enhance wellness and support dependencies from a positive perspective. Co-scheduled with HWC 225.
2 credits, ABCF grading

HWC 524 Children and Adolescents Who Grieve
Focuses on issues related to bereavement in children and young people. Children and adolescents who struggle with the crisis of loss is a special population that is often overlooked. Students explore the emotional response of young people who grieve. Mental health professionals that provide treatment to this population must acquire specialized knowledge and skills to assist in healing wounded children. Upon completion students will have an increased understanding of the developmental implications of loss in childhood, assessment of bereavement, and treatment interventions specific to bereaved children and adolescents. Co-scheduled with HWC 524.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 525 Anger Management
Presents concepts of anger management within a bio-psychosocial context. Students learn how to recognize presentations of anger in themselves, clients, organizations and communities. Focus is on assessment of clients' ability to both recognize anger (“residual” as well as anger “masking underlying feelings”) and methods used for coping. Anger management concepts and skills at the micro, mezzo and macro levels of practice are explored, including anger management strategies that can be taught to clients as part of an intervention plan. Environmental and societal factors as “igniting events” of anger in individuals, families, groups and communities are examined. Appropriate assessment and interventions at all levels of practice are delineated. Co-scheduled with HWC 325.
2 credits, ABCF grading

HWC 526 Health Care Delivery with Diverse Populations
An overview of the many facets of health care delivery. Various systems and diverse populations and how they are treated by the health care systems are examined. Covered are community-based health care services, hospital care, long-term care and the health care needs and impact of the health care system on women, African Americans, Latinos, the developmentally disabled, children and the aged. Co-scheduled with HWC 326.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 527 Social and Behavioral Aspects of Public Health Practice
The psychosocial determinants of behavioral risk factors that affect health across the life span are examined within the conceptual framework for planning health promotion/disease prevention programs. Social, economic, environmental and cultural variations in health, disease and quality of life are addressed,
including the influence of race, ethnicity, gender, sexual orientation and biological and genetic factors. Barriers to access and utilization, strategies for health behavior of their culture and methods of developing health promotion/disease prevention programs are examined.

2-3 credits, ABCF grading

HWC 528 Management and Technology in Health Care

Examines the new management styles and methodologies currently utilized in the health care delivery systems. Complements the knowledge gained in HWC 582. Students will develop an understanding of the new technologies that are critical in today's health care delivery systems and their appropriate applications.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 529 Complementary and Alternative Medicine

Human service workers are often required to discuss issues of health and healing. Many diverse cultural experiences and/or choice, often adhere to a combination of nontraditional and traditional beliefs regarding health care. Familiarizes students with those methods and beliefs most often found in specific cultures. Students will develop an appreciation of each practice in order to interact with clients from a strengths perspective and will gain an international perspective on health care modalities.

Co-scheduled with HWC 329.

2-3 credits, ABCF grading

HWC 530 Case Management in Human Services

Case management has grown dramatically in the human service field over the last twenty years in response to the growing service needs of the individuals and families facing complex life situations and issues. Examines both the macro level and micro level issues facing case managers and agencies as they provide quality services to often-oppressed populations.

Co-scheduled with HWC 339.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 531 Advanced Market Research

Includes advanced theory and applications of market research to health, mental health, and human service issues. Includes a research practicum focused on testing the feasibility of new methods of service delivery.

Prerequisite: Admission to graduate Health Sciences Center program

2-3 credits, ABCF grading

HWC 533 Family Intervention in Health and Mental Health

Focuses on family and marital problems. Examines the environmental, social, economic, psychological and institutional pressures that affect family functioning. Emphasizes intervention skills.

Prerequisites: HWC 501, 514, or permission of instructor; admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 538 Death and Dying: Loss and Separation

Explores student values, attitudes, fears and conceptions relating to death and dying. Examines issues of death and separation in relation to various age groups, cultural orientations and societal expectations. Focuses on the acquisition of bereavement counseling skills.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 539 Ancestral Medicine

There is an increasing integration of complementary medicine and allopathic medicine. As health professionals, it is important to understand the beliefs and practices of our clients in order to maximize their options and choices.

Professionals must be knowledgeable about the healing traditions anchored in different cultures and ethnicities. This course provides two days of classes on campus and three full days at a homeopathic clinic in Aruba or the United States. Students will have the opportunity to learn from presentations given by doctors at the clinic as well as by observing their work.

Co-scheduled with HWC 339.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 540 Social Issues in Popular Culture

Theorists have been a useful medium that can illustrate current social issues and family dynamics as well as policy and research dilemmas. Each week a film with a central practice/research/policy issue provides the basis for a lecture and class discussion. Topics focus on a variety of social issues such as family dynamics, bereavement, adoption, domestic violence, adolescent pregnancy and research.

Co-scheduled with HWC 340.

2 credits, ABCF grading

HWC 541 Youth and Violence

Examines the etiology of youth at risk for violence, using ecological and interpersonal perspectives. Familiarizes students with definitions and risk factors outlined as well as assessment, intervention and treatment issues. Successful prevention programs are highlighted.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 542 Children of Chaos: The Social Worker's Role

Designed to provide an understanding of the special issues and concerns surrounding work with children. Professional dilemmas and guidelines to aid practice are identified. Special issues involved in work with young children are highlighted. Although the focus is on direct work with children, a family-centered approach is presented. Practitioner roles, the impact of service settings, policy and legislation affecting this area of practice are reviewed as is the knowledge base that serves to guide practice, including formulations of practice theory and research findings.

Co-scheduled with HWC 342.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 543 Ethics in Health Care Practice

Students will learn basic ethical principles and concepts. Utilizing a problem based learning model, students will have the opportunity to examine many of the critical ethical issues that are impacting professional practice today. Students will use a professional Code of Ethics and examine its implications for practice.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 544 Overview of Substance Abuse

An examination of the history and development of alcohol and substance abuse problems in the United States. Focuses on the etiology, psychopharmacology and legal ramifications of the use of licit and illicit substances in our culture. Provides information on a variety of services available to drug abusers, addicted individuals and their families in the fields of prevention, education and treatment.

2 credits, ABCF grading

HWC 545 Individual, Group and Family Treatment of Alcoholics and Substance Abusers

Covers alcoholism and substance abuse as family illnesses and their stages of development, as well as the impact these illnesses have on the families of active and recovering alcoholics and substance abusers.

Focuses on self-help groups and on traditional and relatively recent modalities used in the treatment of addicted individuals and their families.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 546 Working with Adult Children of Alcoholics and Substance Abusers

Focuses on adult children of alcoholic parents and how parents' illness affects their children's social, emotional, and educational development from infancy to adulthood and into old age. Discusses survival roles of children in alcoholic families and how these affect adult functioning.

Examines the continuing effect family alcoholism has on adult children and the intervention strategies used in treatment.

Prerequisite: Admission to graduate Health Sciences Center program

2 credits, ABCF grading

HWC 547 Managing Conflict

A major concern for health and human service managers is conflict in organization, community and group settings. The various types of conflicts and the concepts of negotiation and mediation as intervention strategies will be considered. Delicate and experiential learning experiences are utilized. Focus is on analyzing conflict situations and selecting intervention strategies to reduce, contain or heighten the conflict situation. Oppressive conditions, structures and processes are considered major determinants of human suffering and individual and social problems; students examine how these oppressive conditions are present in conflict situations and consider ways of dealing with them.

Co-scheduled with HWC 347.

2-3 credits, ABCF grading
HWC 548 Adolescent Development and Health Promotion
Examines the effect on adolescent development of physiological changes, relationships with peers and family, and societal expectations. Emphasis is on the development of assessment and engagement skills for working with adolescents and their families to help counteract adolescent self-destructive behavior and promote well-being.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 549 Overview of Social Work with Special Populations
Examines the issues that social workers must consider when working with traditionally disenfranchised populations. Emphasis will include micro and macro issues when intervening with gay and lesbian individuals, members of diverse racial and ethnic groups, and women, as well as others. The historic and current experiences of these individuals' interactions with the health and human service delivery system will be explored. Co-scheduled with HWC 349.
2 credits, ABCF grading

HWC 550 Culture Centered Social Work Practice
Provides students with an opportunity for self growth while preparing to work with individuals and their families from a culture centered value base. The culture centered foundation practice will provide students with a frame of reference for better understanding and appreciation of the differences of their own culture from the cultures of others.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 551 Law and Social Change
Introduces students to the interrelationship of the legal process in the United States and the profession of social work. Focuses on the legal process in general, social welfare law, in particular, and the implications for effective social work practice. Co-scheduled with HWC 351.
2 credits, ABCF grading

HWC 552 Lesbians and Gay Men: Issues in Health Care
An examination of the critical impact that health care policies and services have on lesbians and gay men in American society. Issues related to access to care, discrimination, services, health insurance, health care resources within geographical areas, and the health status of lesbians and gay men are examined. Focuses on the issues that lesbians and gay men encounter in their interactions with the health care system.
Prerequisite: Admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 553 Chemical Dependency in Special Populations
Covers alcoholism and substance abuse with populations that have been traditionally devalued and oppressed. Focuses on development of skills and sensitivity to the needs of ethnic groups, women, the elderly, the mentally ill and gay and lesbian people who are chemically dependent. Explores policy and practice issues related to these populations.
2-3 credits, ABCF grading

HWC 554 Working with African Americans and Hispanics
Teaches students to empower, counsel and work with African Americans and Hispanics in the context of their racial, cultural, social, economic, and political reality. Emphasizes students' need to make a conscious inventory of their own backgrounds, including their race, culture and geographic area of rearing and residence, as factors that contribute to working with African American and Hispanic individuals, families, groups and communities.
Prerequisite: Admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 555 Supervision in Health and Human Service Organizations
Prepares social workers for the variety of tasks related to supervisory practice in health care agencies. Supervision is introduced as a teaching process, as an administrative function and as a program development tool. Emphasis is on helping workers function effectively with culturally diverse clients, populations at risk and the chronically ill. Content includes the historical perspective of supervisory practice; supervisor and agency structure; the organizational context of practice; learning, behavioral concepts of power, authority, and accountability; ethical and clinical issues; supervisory techniques, skill and self awareness; staff and program development and evaluation.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 556 Proposal Writing in the Health and Human Service Fields
Provides a comprehensive study of the principles and methods used to prepare program, training, research, demonstration and other types of proposals. Includes extensive workshop practice in developing appropriate writing skills and in locating and accessing funding sources. Co-scheduled with HWC 356.
2-3 credits, ABCF grading

HWC 557 Cultural Competency: An Ingredient in Enhancing Treatment Outcomes
Demonstrates that cultural competency, like computer literacy, is a necessity. Outlines how prevention messages and treatment modalities provided within a cultural context are likely to change attitudes or redirect behaviors. There is a new wave of immigrants and a growing assertion of cultural identity by groups who were born in the United States. Therefore, a new communication edict of cultural dialogue is fast becoming part of one's professional mandate. Hence, the ability to interact with people who are culturally different from the professional is a prerequisite to providing culturally competent services to these groups. Co-scheduled with HWC 357.
2 credits, ABCF grading

HWC 558 Human Service Administration
An introduction to the practice of administration of public and non-profit agencies, theories of management including alternative decision-making models, understanding of organizational structure and process, external and internal functions including interagency collaboration and personnel and financial management, affirmative action and ethical issues. Combines theory with case examples, practical exercises and other experiential learning modes.
Prerequisite: Admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 559 Mental Health Evidence-Based Practice for Social Workers
Develops the knowledge and skills necessary for working with individuals with a diagnosis of serious mental illness using recovery-oriented evidence-based practices. Designed for MSW students and MSW mental health practitioners. Familiarizes students with evidence-based practices, within a recovery-oriented paradigm, as a general approach to practice as well as specific evidence-based interventions to use for individuals with a diagnosis of serious mental illness. Students should have a basic knowledge of serious mental illness as pre- or co-require; however, a review will be provided. Will examine research literature to determine the various levels of support for specific interventions and essential principles for translating research into practice. Identifies the appropriate treatment outcomes that reflect effective quality mental health practice. Focus is on providing assessment and treatment to a diverse group of individuals with a diagnosis of serious mental illness. Will be discussed in detail.
Prerequisite: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 560 Implications of Racism for Social Welfare
Examines personal and institutional racism in the United States and the effect racism has on the delivery of services to individuals who do not fit the traditional “American model.” Examines the historical relationship between racism and social welfare policies, programs and practice, and contemporary strategies for change. Co-scheduled with HWC 360.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 561 Homelessness, Politics, and Public Health
Analyzes homelessness as an issue of social policy, including its history, recent causes, and current demographics. Emphasizes the political and economic context that has made homelessness a major social problem. Co-scheduled with HWC 363.
2-3 credits, ABCF grading
HWC 566 Student-Community Development Student Portfolio Project
Provides an opportunity for students to create a portfolio composed of various components that integrates the student's educational experiences and achievements in the Student-Community Development Specialization. Components may include literature reviews, abstracting research articles, analysis of field placements, review of President's Symposium, etc.
Prerequisite: Admission to graduate Health Sciences Center program
1-3 credits, ABCF grading

HWC 567 Psychopathology and Psychopharmacology
An overview of the DSM IV(TM) system of Classification of Mental Disorders. Emphasizes the social work component within the interdisciplinary team. Special emphasis on assessment. Introduces psychopharmacology and the social work role related to drug management including side effects, risks and changes over time. Critiques value systems involved within the social work role related to drug management. Introduces psychopharmacology and the social work role related to drug management including side effects, risks and changes over time. Critiques value systems involved in diagnosis and definition of disorders.
Prerequisites: HWC 501-505 or permission of instructor; admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 568 The Workings of the Brain: Practice Issues for Social Workers
Addresses the organization, development, and functions of the brain and how this influences how we think, feel and behave. Causes of organic changes in the brain such as substance abuse, disease and injury are addressed. Advances in neurocience that have aided in diagnosis and social work practice are covered. Innovative treatment modalities such as EMDR, biofeedback and vagal nerve implants are presented. Strongly emphasizes the combination of science and practice issues.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 569 Childhood Sexual Abuse and Long-Term Sequelae: Assessment and Intervention
Introduces students to the incidence and prevalence of childhood sexual abuse as a national problem. Covered are definition issues, sequelae during childhood, family constellation and adult sequelae. Addressed are assessment and current treatment modalities, particularly for families and offenders, ethical and legal dilemmas and the subsequent health related difficulties of this childhood trauma. Special attention is paid to the cultural dynamics in sexual abuse. Students are expected to develop an awareness of and critically analyze current research. Focus is also on examination of policy issues and legislation.
Prerequisite: Admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 570 Computer Technology for Research and Administration in Health and Human Service Organizations
Introduces students to the application of information technology for health and human service programs and research. Serves as an introduction to the nature, function and use of the computer in the human services. Emphasis is placed upon computer applications relating to client case management systems, report writing, fundraising, and research. Students acquire elementary skills in report generation, information management, and in the use of the internet. Students are introduced to the worldwide web and how it can be used in practices, administration and research. Extensive hands-on experience is provided.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 575 Child Welfare: An Overview
Covers the impact of historical and contemporary developments within the field of child welfare. Examines the evaluation of child welfare services and the role of child care workers. Examines out-of-home care, foster care, group home care and institutional care within the context of traditional public/voluntary structure of services and function and context. Covers services in relation to the changing roles of the family, emergence of child care.
Prerequisite: Admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 577 Program Evaluation
Provides an in-depth analysis of the technical requirements of program evaluation and the organizational and political constraints that influence the evaluation process. Covers techniques in the design and implementation of evaluation research in the health and human service fields.
Prerequisites: HWC 511 and 512
2-3 credits, ABCF grading

HWC 579 Special Topics in Social Work
Examines significant timely issues confronting the profession. Topics include violence as a public health problem, issues of aging, racism, gender, AIDS, the media, spirituality, forensic social work, international social work, and others. Topics vary each term as faculty develop specific modules that address one or more of these issues. Co-scheduled with HWC 579.
1-3 credits, ABCF grading
May be repeated 4 times for credit

HWC 580 Seminar on Family Violence
An overview of the phenomenon of family violence in the United States including child abuse, partner abuse and elder abuse. Explores theories of etiology, including patriarchal, intergenerational family dynamics and substance abuse. Examines programmatic approaches including the legal system and programs for battered women by utilizing guest speakers from Suffolk County agencies.
2 credits, ABCF grading

HWC 581 Public Health and Community Health Intervention
Examines many of the critical public health issues of today. Students gain an understanding of the concepts underlying social epidemiology and develop an appreciation of the ways in which the health status of different populations in this country is differentially impacted. Examines community health planning strategies (e.g., health promotion and health education).
2-3 credits, ABCF grading

HWC 582 Organizational Dynamics and Legal and Ethical Issues in Health Care
Examines some of the traditional, as well as newer, models through which health care services are delivered. Particular emphasis will be given to the issue of access to health services as well as the location of the professional social worker within these systems. Students will gain the ability to conceptualize many of the critical ethical and legal issues impacting the field today.
2-3 credits, ABCF grading

HWC 583 Theories of Social Work
An examination of some basic epidemiological issues followed by a consideration of conceptual frameworks potentially useful in studying social work practice. Focus is on the recent intellectual contributions to the social work literature, which enlighten professional practice, course work, and recruitment. Emphasizes efforts by poor people, ethnic minorities of color and women to organize and mobilize community groups and movements. Highlights group and community analysis and organization skills.
2-3 credits, ABCF grading

HWC 584 Community Analysis and Health Promotion
Explores diverse concepts of community, analyzes a range of community structures, processes, and power relationships. Investigates contemporary models, strategies and tactics of community organizing and health promotion in the United States and in selected other countries. Emphasizes efforts by poor people, ethnic minorities of color and women to organize and mobilize community groups and movements. Highlights group and community analysis and organization skills.
2-3 credits, ABCF grading

HWC 585 Health and Social Planning
Provides a generic understanding of the planning process and exposure to the planning processes used in the organization and delivery of health services. Explores the various backgrounds, lifestyles, and coping mechanisms of patients, with particular attention given to class, race, age, and sex and how the planning process includes or excludes these factors.
Prerequisite: Admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 586 Managed Care and Health Care Delivery
Managed care is currently the main method being used for controlling costs and delivering medical care to clients. Much of what social workers do in the future will take place within the context of managed care. Covers the history of managed care in the United States, the promises and pitfalls of managed care relative to other payment strategies and how managed care affects the delivery of services to people. Particular attention is
paid to barriers to care and how managed care affects people from disadvantaged backgrounds (e.g., the homeless and mentally ill).
Prerequisite: Admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 587 Empowering the Disenfranchised
Designed as a practicum that aims to enhance the student’s ability to promote and work with grass-roots community leaders as they mobilize themselves toward being a positive force in the arena of state politics on behalf of those in need.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 588 Qualitative Health Research Methods
The class works as a team on a joint project. Topics include problem formulation, instrument construction, sampling strategy, interviewing, data transcription, and data analysis.
Prerequisites: HWC 511 and 512; admission to graduate Health Sciences Center program
2-3 credits, ABCF grading

HWC 589 Biostatistics
An introduction to the analysis and interpretation of quantitative data using biostatistical methods. Examines three interrelated issues: the nature of quantitative data and their relationship to social, psychological, and biological concepts, the different ways data can be presented to help others understand research questions and the answers to those questions and the basic and intermediate biostatistical techniques available to analyzing data. Focuses on how data relate to research questions that are of interest to workers in the health care field.
Prerequisites: HWC 512 or equivalent; admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 590 HIV/AIDS
Focuses on central aspects of the HIV/AIDS pandemic, including the current state of medical knowledge, HIV/AIDS and the law, prejudice and discrimination, AIDS activism and organizing, grief/death/dying, psychosocial issues, redefining the medical model, homophobia, racism, sexism and ableism in research, treatment and policy, IV drug use, drug treatment and other related issues. Upon completion of this course, students will have met the educational requirements established by the HIV Primary Care Medicaid Provider Agreement. This requirement is needed to conduct HIV pre- and post-test counseling in hospitals and clinic settings. Co-scheduled with HWC 590.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 591 Student-Community Development Independent Reading/Colloquium I
Introduces the Student-Community Development Model as an integrated application of social work, community organizations, and student development theories and practice modalities. Examines the history of higher education as related to the evolution of the American college campus and changes in student culture and needs.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 592 Student-Community Development Independent Reading/Colloquium II
A continuation of HWC 591.
Prerequisite: Admission to graduate Health Sciences Center program
2 credits, ABCF grading

HWC 593 Student-Community Development Seminar I
Examines how political, socio-economic, cultural and health issues impact higher education. Emphasizes how these systems influence and shape student community wellness on the college campus. Critically examines contemporary higher education organizational structures, planning modalities and intervention strategies.
Prerequisite: Admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 594 Student-Community Development Seminar II
A continuation of HWC 593. Explores and develops intervention strategies, organizational structures and planning parameters utilizing campus-based case studies. Examines the role and placement of change agents within the campus life-arena.
Prerequisites: HWC 593; admission to graduate Health Sciences Center program
3 credits, ABCF grading

HWC 595 Independent Study
Independent study with an individual faculty member.
Prerequisite: Admission to graduate Health Sciences Center program
1-3 credits, ABCF grading
May be repeated three times for credit

HWC 596 Marketing for Health and Human Service Organizations
Provides instruction in the computation, interpretation, and application of data analytic procedures used in social research. Discusses procedures such as descriptive statistics, chi-square, and t-tests, while examining their relevancy for analyzing issues in social work practice.
Prerequisite: Admission to graduate Health Sciences Center program
Fall, 3 credits, ABCF grading

HWC 597 Case Management
Open only to students who have completed the Case Management Certificate Program and have completed 15 additional hours of assignments.
Prerequisite: Admission to graduate Health Sciences Center program
4-6 credits, S/F graded

HWC 598 Issues in Higher Education
Examines current issues that arise in institutions of higher education, utilizing alternative conflict resolution and mediation to provide the framework to examine a variety of social issues on college campuses. Explores such issues as diversity, violence, substance abuse, and mental health.
2 credits, ABCF grading

HWC 599 Maintenance of Matriculation
For students who are maintaining matriculation while engaged in consultation with faculty regarding completion of courses and/or the Master’s Project.
Prerequisite: Admission to graduate Health Sciences Center program
May be repeated six times for credit

HWC 600 Statistics I
Provides instruction in the computation, interpretation, and application of data analytic procedures used in social research. Discusses procedures such as descriptive statistics, chi-square, and t-tests, while examining their relevancy for analyzing issues in social work practice.
Prerequisite: Admission to graduate Health Sciences Center program
Fall, 3 credits, ABCF grading

HWC 601 Statistics II
Introduces students to multivariate techniques used in the analysis of various kinds of data. Analysis of Variance, Multiple Regression Analysis, Logistic Regression Analysis, and Log-Linear Regression Analysis, as well as more advanced techniques, such as path analysis and survival analysis, are discussed.
Prerequisites: HWC 600 Statistics I or a comparable course and successful completion of a waiver examination; admission to graduate Health Sciences Center program
Spring, 3 credits, ABCF grading

HWC 602 Research Methods I
Introduces students to research methodologies utilized in social science and social work, with the goal of providing students with the knowledge and competencies needed to develop and conduct their own research. The course will lead to a sophisticated understanding of the research process, including the formulation of research questions, hypothesis development and testing, and choice of research method, involving both quantitative and qualitative methods. Material on qualitative designs will include experimental and quasi-experimental designs, data collection methodologies, scaling, instrument development, and sampling procedures. Material on qualitative designs will address focus groups, interviews, key informant interviews, participant observation, unobtrusive observation, text and content analysis, and the use of archival and historical data. Special attention is given to ethical and political issues in the conduct of research.
Prerequisite: Admission to graduate Health Sciences Center program
Fall, 3 credits, ABCF grading
Prerequisite: Admission to graduate Health Sciences Center program

HWC 608 Social Welfare Policy Analysis I
An analytical approach to public policy formulation in the areas of health, mental health, and substance abuse involving the impact of environmental forces on policy content. Considered are the effects of various institutional arrangements and political processes as well as inquiry into the consequences of various contemporary public policies. Tools and frameworks of policy analysis are examined. Policy alternatives and policy development and implementation are also considered.
Prerequisite: Admission to graduate Health Sciences Center program

Fall, 3 credits, ABCF grading

HWC 609 Social Welfare Policy Analysis II
A continuation of HWC 608.
Prerequisite: HWC 608; admission to graduate Health Sciences Center program

Spring, 3 credits, ABCF grading

HWC 610 Organizational Theory and Social Welfare Administration
The focus is on theories and methods available to planners and administrators who function in complex organizational settings. Decision making, political and economic factors, information systems, value conflicts, and adaptations of rational models to emerging realities will be studied. Health and mental health programs will be utilized as exemplars.
Prerequisite: Admission to graduate Health Sciences Center program

Fall, 3 credits, ABCF grading

HWC 611 Knowledge Building in Social Work: The Philosophy of Applied Social Research
An examination of the major currents of thought that shape the meta-theoretical, theoretical, and methodological issues related to knowledge building in social work. The impact of pragmatic philosophy on the current “science versus non-science” debate within social work is reviewed. Special attention is given to epistemological approaches and their relationship to qualitative and quantitative research strategies.
Prerequisite: Admission to graduate Health Sciences Center program

Fall, 3 credits, ABCF grading

HWC 612 Theories of Social Work
An examination of some basic epistemological issues followed by a consideration of conceptual frameworks potentially useful in studying social work practice. Attention will be focused on recent intellectual contributions to social work literature that enlighten professional practice, purpose, and function, as well as historical developments. Students will utilize a critical analytic perspective to assess the status of the art in social work practice. Special emphasis will be directed to the program areas of health, mental health and substance abuse, and formulations related to social change. Issues and priorities for research will be considered.
Prerequisite: Admission to graduate Health Sciences Center program

Fall, 3 credits, ABCF grading

HWC 613 Seminar in Social Work Education
Focus is on the place of social work education in the university with attention to issues of current concern such as the integration of professional education with the scholarly research focus of other academic disciplines. Consideration will be given to educational program structure, content, curriculum development, evaluation, and teaching methodologies. Students will be required to teach a course in the B.S.W. or M.S.W. curriculum under mentorship of a senior faculty member.
Prerequisite: Admission to graduate Health Sciences Center program

Fall, 3 credits, ABCF grading

HWC 614 Teaching Practicum
The teaching practicum is a supervised experience in teaching at the master's or undergraduate level in the School of Social Welfare, or in some aspect of academic administration, such as curriculum development, project planning, and/or proposal development. The educational practicum is typically available to doctoral students in the third year. An individualized plan will be developed for implementing the teaching practicum. Practice may include teaching a section of a required graduate/undergraduate course, working as a teaching assistant with a faculty member, and/or co-teaching and working with the curriculum committees and area sequences in curriculum development.
Prerequisite: Admission to graduate Health Sciences Center program

Spring, 3 credits, SU grading

HWC 615 Dissertation Seminar I
Students are expected to survey the current state of the art in their area of interest and to develop a written proposal for a question suitable for dissertation research. In the second semester, students will refine dissertation proposals through presentation and critique in the seminar. Specific techniques and alternatives in studying a variety of dissertation questions are considered.
Prerequisite: Admission to graduate Health Sciences Center program

Fall, 3 credits, ABCF grading

HWC 616 Dissertation Seminar II
A continuation of HWC 615.
Prerequisite: Admission to graduate Health Sciences Center program

Spring, 3 credits, ABCF grading

HWC 617 Independent Study
Prerequisite: Admission to graduate Health Sciences Center program

HWC 699 Dissertation Research on Campus
Dissertation research under direction of advisor.
Prerequisite: Advancement to candidacy (G5); major portion of research will take place on SBU campus, at Cold Spring Harbor, or at Brookhaven National Lab; admission to graduate Health Sciences Center program

Fall, spring, and summer, 1-9 credits, SU grading

HWC 700 Dissertation Research Off Campus-Domestic
Prerequisite: Advancement to candidacy (G5); major portion of research will take place off-campus, but in the United States and/or U.S. provinces. Please note: Brookhaven National Labs and the Cold Spring Harbor Lab are considered on-campus. All international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor; admission to graduate Health Sciences Center program

Fall, spring, and summer, 1-9 credits, SU grading
May be repeated for credit
HWC 701 Dissertation Research Off Campus-International
Prerequisites: Advancement to candidacy (G5); major portion of research will take place outside of the United States and/or U.S. provinces. Domestic students have the option of the health plan and may also enroll in MEDEX. International students who are in their home country are not covered by a mandatory health plan and must contact the Insurance Office for the insurance charge to be removed. International students who are not in their home country are charged for the mandatory health insurance. If they are to be covered by another insurance plan they must file a waiver by the second week of classes. The charge will be removed only if another plan is deemed comparable. All international students must receive clearance from an International Advisor; admission to graduate Health Sciences Center Program Fall, spring, and summer; 1-9 credits, S/U grading
May be repeated for credit

HWC 800 Full-Time Summer Research
Prerequisite: Admission to graduate Health Sciences Center program
0 credits, S/U grading
May be repeated for credit
The Department of Sociology, in the College of Arts and Sciences, offers a nationally ranked graduate program leading to the Ph.D. degree. It also grants an M.A. degree as a sign of progress toward the doctorate and as a terminal degree in a variety of specialties.

The Department provides graduate training in sociology that is informed by a global perspective. Whether a sociological question addresses individual-level processes, ideas, or organizations, there are often global influences and implications connected to that phenomenon. Students pursuing an advanced degree in sociology will have opportunities to focus on global sociology and to learn how sociological methods and theories can be applied to the study of global social, cultural, political, and economic processes.

The Sociology program grants the doctorate to three to six students per year. Most of these go on to university or college teaching positions or postdoctoral programs at other universities. A few enter government service or business.

Facilities
The Ward Melville Social and Behavioral Sciences Building is networked by computers to a divisional network, University mainframes, and the Internet, as well as to the Social Sciences Data Lab's computing facilities and data library. The Department of Sociology has the only putting facilities and data library. The Ward Melville Social and Behavioral Sciences Building is networked by computers to a divisional network, University mainframes, and the Internet. The Sociology program grants the doctorate to three to six students per year. Most of these go on to university or college teaching positions or postdoctoral programs at other universities. A few enter government service or business.

Admission
Admission to the Ph.D. and M.A. Programs in Sociology
For admission to graduate study in sociology, the following, in addition to the minimum Graduate School requirements, are normally required:

A. A bachelor's degree or its equivalent, as attested to by transcripts of previous academic work

B. Undergraduate statistics course
C. Undergraduate grade point average of 3.0 or above
D. Satisfactory results on the Graduate Record Examination (GRE) General Test (International students, in addition to taking the GRE, must take the TOEFL exam and receive a score of 550 or better to be considered for admission)
E. Satisfactory recommendations from former instructors
F. Acceptance by both the Department and the Graduate School

Faculty
Distinguished Professors
Cole, Stephen, Ph.D., 1967, Columbia University: Science; gender; theory.
Gagnon, John H., Emeritus, Ph.D., 1969, University of Chicago: AIDS research; simulations; sexual conduct; social control; cognitive.

Distinguished Service Professors
Arjomand, Said, Ph.D., 1980, University of Chicago: Comparative; historical; political; religion.
Goodman, Norman, also a Distinguished Teaching Professor, Ph.D., 1963, New York University: Social psychology; family; socialization; emotions.

Distinguished Teaching Professor
Tanur, Judith, Emerita, Ph.D., 1972, Stony Brook University: Statistics; methodology; survey research; social psychology.

Professors
Barthel-Bouchier, Diane, Chair, Ph.D., 1977, Harvard University: Culture; community; historical; gender.
Feldman, Kenneth, Ph.D., 1965, University of Michigan: Social psychology; higher education; socialization.
Kimmel, Michael, Ph.D., 1981, University of California, Berkeley: Comparative and historical development; social movements; gender and sexuality.
Roxborough, Ian, Ph.D., 1977, University of Wisconsin, Madison: War and military; historical; revolutions; economic.
Rule, James B., Emeritus, Ph.D., 1969, Harvard University: Theory; political; technology.
Schwartz, Michael, Ph.D., 1971, Harvard University: Methodology; historical; political economy; business structure; social movements.
Tyree, Andrea, Emerita, Ph.D., 1968, University of Chicago: Demography; social stratification; ethnicity; marital violence.

Associate Professors
Auyero, Javier, Ph.D., 1997, The New School for Social Research: Collective behavior; social movements; political; urban poverty and social inequality; Latin American studies; social and cultural theory.
Chase, Ivan, Ph.D., 1972, Harvard University: Social organization; behavioral processes in small groups; resource allocation; collective action; cross-species comparisons.
Collier, O. Andrew, Emeritus, Ph.D., 1964, University of California, Berkeley: Human ecology; urban community; demography.
Ley, Daniel, Ph.D., 1999, Columbia University: Political sociology; comparative/historical sociology; global sociology.
Moran, Timothy, Graduate Program Director, Ph.D., 2000, University of Maryland: Comparative; social inequality; economic; political; stratification; quantitative methods.
Oyewumi, Oyeronke, Ph.D., 1993, University of California, Berkeley: Gender; race; family; culture; knowledge; social inequalities; globalization.

Assistant Professors
Oits, Eileen M., Ph.D., 2003, University of California-Davis: Global sociology; sex and gender; economy and society.
Smith, Tammy, Ph.D., 2007, Columbia University: Comparative/historical sociology; political sociology; world conflict.
van de Rijt, Arnout, Ph.D., 2007, Cornell University: Social networks; migration and immigration; quantitative methodology.

Research Faculty
Schwartz, Joseph, Professor, Ph.D., 1978, Harvard University: Quantitative methods; social stratification; sociology of work and occupations; social networks.

Number of teaching, graduate, and research assistants, Fall 2007: 28
1) Recipient of the President's Award for Excellence in Teaching, 1992
2) Joint appointment, Department of Psychology
Degree Requirements
Requirements for the Ph.D. Degree in Sociology

In addition to the minimum Graduate School requirements, the following are required:

A. Residence

Minimum residence is one year of full-time study. Students may be admitted to the Ph.D. program on a part-time basis, but these arrangements usually require that the students appear on campus during certain periods of the normal working day. Full-time study entails 12 or more graduate credit hours per semester for those students entering without prior graduate study or fewer than 24 graduate credit hours, and nine or more graduate credit hours per semester for those students entering with more than 24 graduate credit hours or with advanced standing provided by prior graduate work. Since a graduate traineeship is considered part of the academic program, credit hours will be given for teaching or research assistantships as well as supervised teaching. Under specific conditions credit may be given for individual research work outside formal courses but under the supervision of faculty members.

B. Courses

Course requirements for a Ph.D. in sociology include five designated courses, two in sociological theory and three in statistics and methods, all taken in the first year of graduate study. Of an additional nine required courses, one must be taken in introduction to global sociology and another, which must provide additional methodological training, can be chosen by the student from a variety of suitable offerings specified by the department.

Three of the remaining eight required courses may be taken outside the department, upon written approval from the department’s graduate committee. These three courses must be completed with at least a B average.

During the first year of study full-time students who have fewer than 24 graduate credit hours take eight courses; full-time students who have 24 or more graduate credit hours from prior graduate study take six courses. These must include two two-course sequences, one in sociological theory (SOC 505 and 506) and one in statistics (SOC 501 and 502), plus a methods course (SOC 504) and one elective course. For those holding graduate traineeships, a teaching assistantship under the supervision of a faculty member would consist of two of the eight courses (one each semester).

C. M.A. Degree

A student is awarded the M.A. degree as a sign of progress toward the Ph.D. To receive the M.A. a student must complete:

1. Two consecutive semesters of full-time study, achieving a 3.0 grade point average for 30 hours of graduate work
2. One of the two papers required by the writing option (Section D, Option 2) for the Ph.D. program

D. Professional Competence Options

Continuing doctoral students have two options for completing the first half of the doctoral program before moving on to work in a special field and on their dissertation.

Option 1—Comprehensive Examination and M.A. Research Report: In this rather traditional option, the adequacy of a student’s general preparation is evaluated by means of a written comprehensive examination. This examination, to be taken between the beginning of the fifth semester and the beginning of the sixth semester of graduate study, must be passed at the standard set by the department for doctoral-level work. A student who fails to pass this examination at the required level, but whose performance is satisfactory in all other aspects, may be permitted to take a terminal M.A. by completing 30 credits of graduate coursework and submitting an acceptable research report. Upon passing the comprehensive examination, the student must submit a research report that demonstrates ability to analyze empirical data and to present findings clearly and systematically. Upon successful completion of all of the above requirements, along with completion of a minimum of 30 hours of graduate credit, the department will recommend to the dean of the Graduate School that the student be awarded the M.A. degree as a sign of progress toward the Ph.D. Recipients of the terminal M.A. will not be granted permission to continue.

Option 2—The Two Papers: In this option, a student can meet M.A. requirements and proceed to the second half of doctoral work through the submission of two papers written under faculty supervision. These should normally be completed by the end of the third academic year; each of the two papers is designed to allow students to demonstrate a different competence. Each paper should be more substantial than a seminar paper and less substantial than an M.A. thesis; two different substantive areas must be represented in the papers. The two papers are designed to demonstrate competence in the kinds of skills that students will need in the profession of sociology. One of these papers must be a theoretical/empirical paper and the second can be either a second theoretical/empirical paper, an analytical review of the literature, or an analytical review of the literature embedded in a grant proposal. In other words, one paper must be theoretical/empirical and the second may be chosen from among the three possible kinds of papers described below.

1. Mandatory Theoretical/Empirical Paper: The majority of sociological articles use empirical data to answer theoretical questions. Such questions often arise from previous research. They can also be the result of juxtaposing two or more theories, or finding that a theory could use further development or clarification on a point, and then showing how the proposed development or clarification better explains some specific aspect or aspects of social reality.

The empirical data explained or clarified by the theory or theories can take a number of forms. It can be the product of ethnographies, comparative
and/or historical research, social surveys, small group or experimental laboratory research, content analyses, etc. The important point is to combine theory and empirical research.

2. Analytical review of the literature: This paper is to be an assessment of the state of the art in some substantive area of sociology. This paper can take various forms. One possibility is a review essay and examples of this form can be found in the Journal of Economic Literature, The Psychological Review, or the Annual Review of Sociology. A second approach could be a review of a field that could serve as the substantive underpinning for a graduate seminar.

3. Analytical review of the literature embedded in a grant proposal: This is to be a major grant proposal. It should normally include a review of the relevant literature, statements of the theoretical framework being used, the hypotheses to be tested, and methodology to be employed in the project. The proposal does not have to be submitted to a funding agency, but all the materials required by a particular agency or foundation must be completed and, in addition, the project must receive CORIHS (Committee on Research Involving Human Subjects) approval, if human subjects are involved. This proposal must also be of substantial size. A very short proposal of just a few pages is not adequate even if that is acceptable to some particular agency.

Upon successful completion of all of the above requirements, along with completion of 30 hours of graduate credit, the student may proceed to the advanced stage of his or her doctoral work.

E. Teaching Requirement

Graduate training includes supervised teaching experience. In the fall semester of their third year, students enroll in a teaching practicum to prepare them to teach their own course, under supervision, the following semester or in the Fall semester of their fourth year.

F. Preliminary Examination

This takes the form of an oral examination in the student’s specialty to be given only after all the above requirements have been met. It is designed to appraise the depth of knowledge in the broad area from which the student has selected a dissertation topic. The content of this area is to be defined individually for each student. It consists of a generally recognized, broad subfield and must deal with related materials from other subfields.

G. Advancement to Candidacy

The department’s recommendation that a student be advanced to candidacy for the Ph.D. is based on passing the preliminary examination and approval of a dissertation proposal.

H. Doctoral Dissertation

This must be an independent piece of research and scholarship representing an original contribution, the results of which are worthy of publication. Upon oral defense and acceptance of the dissertation, the department will recommend to the dean of the Graduate School that the student be awarded the Ph.D. degree.

The progress of every student will be evaluated by the department at the end of the first full year of graduate study. Those whose performance and ability are clearly below the standard established by the department for the Ph.D. will be asked to withdraw before they have made a costly investment of time. If more than seven years have elapsed since the student completed 24 hours of graduate courses in the department, the student’s Ph.D. candidacy will lapse. After the first year, a progressively larger proportion of a student’s time will be spent as a participant in research activities, under the supervision of faculty members. Ordinarily, a student with adequate preparation and involved in full-time study should be able to earn a Ph.D. within five to six years from the start of graduate work.

Students who arrive with an M.A. degree in sociology or with three semesters of work in the discipline will be expected to complete some of the requirements above more quickly than indicated.

Courses

Please refer to the Undergraduate and Graduate Class Schedules for specific semester offerings.

SOC 501 Multivariate Statistics for Social Science

This course is an advanced treatment of descriptive and inferential statistics with emphasis on the latter. Students will gain practical experience in analyzing current data from the social sciences through the use of statistical computer programs. Topics include: sampling, measures of central tendency and dispersion, probability theory, hypothesis testing, point and interval estimation, the normal, binomial, and chi-square distributions, parametric and non-parametric measures of association and correlation, and bi-variate regression.

3 credits, ABCF grading

SOC 502 Multivariate Regression Techniques

This course provides an in-depth overview of regression analysis, primarily focused on OLS modeling. Topics include: inferences in regression analysis, dummy variables, interaction terms, and diagnostics and remedial measures. The course concludes with an introduction to other regression techniques such as logistic and probability modeling.

3 credits, ABCF grading

SOC 504 Logic and Practice of Sociology

This course provides an introduction to the logic of empirical research in sociology. It takes a broad overview of both quantitative and qualitative methods; inductive and deductive reasoning; and the process of theory construction and testing, with an emphasis on research design and the logic of causal analysis. A knowledge of advanced statistics is not assumed. Topics covered include survey research, participant observation and field methods, the comparative method, experimental and quasi-experimental design, content analysis, and the logic of multivariate analysis.

3 credits, ABCF grading

SOC 505 Classical Sociological Theory

A review of the intellectual development of the discipline, its epistemological foundations, and classical theoretical statements.

Fall, 3 credits, ABCF grading

SOC 506 Contemporary Sociological Theory

A review of the current major theoretical orientations and newly developing theoretical perspectives.

Spring, 3 credits, ABCF grading

SOC 509 The Practice of Ethnography

This course has four major objectives: (1) to become familiar with contemporary ethnographies; (2) to acquaint students with the methodological literature on qualitative sociology; (3) to consider theoretical and epistemological issues in qualitative research; and (4) to put some data production techniques (observant participation, in-depth interviews, and life stories) into practice.

Fall or spring, alternate years, 3 credits, ABCF grading

May be repeated once for credit
SOC 510 Historical Methods in Sociology
Major approaches, philosophical problems of, and methods used in historical sociology. Topics covered include causal analysis, macrosociological comparisons, case-oriented versus variable-oriented approaches, ideal types, comparative typologies, narrative, and issues of significance and objectivity. Special attention is given to the problem of concept formation. 3 credits, ABCF grading

SOC 512 Global Sociology, Identities, and Organizations in Global Perspective
This course examines how increasing global integration impacts human societies. It reviews the broad trends that foster globalization in the economic, political, cultural, and social spheres, as well as the consequences of global change has had on how individuals and communities identify themselves and how they organize for collective goals. Core issues on the global agenda, such as conflict, environment, technological and economic development, demographic change, gender, and human rights will be addressed; research methods for the study of global society will be introduced. 3 credits, ABCF grading

SOC 514 Advanced Topics in Global Sociology
This course provides an advanced treatment of major topics and debates in the increasingly globalized social sciences. The course is based on research activities of the faculty and students. Topics may include global inequality; globalization and gender; sociology of human rights; war and revolution; transnational social movements; comparative political economy; globalization and immigration; globalization and work; issues in global culture. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 516 Social Inequality
Causes, consequences, and explanations of a prevailing social, political, and economic phenomenon. The course assesses long-run trajectories of inequalities in their various forms and dimensions, and analytically and theoretically considers the topic at the local, national, and global levels. Fall or spring, 3 credits, ABCF grading May be repeated once for credit

SOC 518 Sociology of Gender
This course will familiarize students with the field through a broad survey. Topics include theoretical debates about construction of gender identity, conceptual and empirical issues in the study of gender dynamics, and empirical studies of the way gender is constituted by social institutions such as family, education, workplace, and media. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 519 Advanced Topics in Gender Studies
This advanced course will continue the discussion of the graduate seminar on Sociology of Gender by examining theoretical debates or controversies, examining specific gender identities, examining the gender of a specific institution (i.e., labor, law), or the gendered dynamics of social interaction (in, for example, romantic relationships or sexuality). Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 521 Social Psychology
An analysis of the three major domains of social psychology: (1) symbolic interactionism with a focus on the topic of identity; (2) psychological social psychology with a focus on the topics of personal perception and attitudes; and (3) social structure and personality with a focus on the topics of norms, roles, and socialization. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 523 Sociology of Education
Relationships between education and other institutions. Internal dynamics of the school and the classroom. 3 credits, ABCF grading

SOC 531 Economic Sociology
This course reviews the fundamental principles of economic sociology and looks carefully at the main areas of research in the resurgence that began in the 1970s. The course covers classic texts and considers key areas that have animated the field in the recent era. Subjects would include the rise of the large corporation, ownership and control debate (including the overlapping issues of corporate interlocks and finance capital), the issue of markets and transaction costs, the development of the embeddedness perspective, labor markets and the nature and extent of globalization. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 532 Organizations
This course will review classic and current research in the area of organizations. It will cover issues of organization, beginning with classic Weberian theory, and also it will continue by reviewing contemporary approaches to human relations theory. It will survey the literature on interorganizational relations and dynamics, such as the development of new institutionalism. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 542 Deviance
Survey of recent research literature on various kinds of deviance (crime, delinquency, and morally stigmatized behavior). Controversial issues in theory and research methods. 3 credits, ABCF grading

SOC 545 Social Movements
Unorganized collectives and their role in social movements and other collective behavior episodes. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 549 Social Change
The image of technological, generational, and cultural forces on social organization from historical and comparative perspectives. 3 credits, ABCF grading

SOC 555 War and the Military
A comparative and historical study of the social organization of war and the military; causes, conduct, and consequences of war. 3 credits, ABCF grading

SOC 556 Political Sociology
The study of political institutions and of the politically relevant actions and attitudes of individuals and groups. Particular stress is placed on the reciprocal relationship between social movements and political institutions. 3 credits, ABCF grading

SOC 561 Cultural Sociology
Cultural sociology is a multifaceted approach used to analyze phenomena as varied as the arts and popular culture, social identities, social movements, markets, and politics. In this course the major theoretical approaches are presented along with the most significant empirical work done in recent years. Classical as well as contemporary texts are considered. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 562 Sociology of the Arts
The relations between social structure, social change, and the development of major art forms. 3 credits, ABCF grading

SOC 566 Funding and Grant Writing in Sociology
This course will provide students with the skills necessary to write grant proposals for both government and private agencies. The main requirement will be to prepare a proposal suitable for submission to a particular agency that funds the kind of research the student plans to do. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 568 Dissertation Seminar
Under the direction of the seminar leader, students help one another (1) prepare for the Preliminary Specialty Field Exam (which includes putting together a reading list) and (2) work on a dissertation proposal and its defense. The details of selecting a dissertation committee and writing a dissertation are also explored. Fall or spring, alternate years, 3 credits, ABCF grading May be repeated once for credit

SOC 590 Independent Study
Intensive reading, under supervision of one or more instructors, of material not covered in the formal curriculum. 1-12 credits, S/U grading May be repeated for credit
SOC 591 Special Seminars
Topics to be arranged. The seminar is built around actual research activities of students and faculty. The following topics have been covered: Cultural Theory; Sociology of Technology; Micro-sociology; Advanced Topics in Marxist Theory; Sociology of Emotions; Historical Methods; Ethnic Relations; Biosociology; Comparative Stratification; Max Weber; Sociology of the Future; Science of Sociology and Everyday Life; The Study of the World’s Advanced Societies; Methods of Behavioral Observation; Social Structure; Sociology of the Family; Cognitive Sociology; Sociology of Work; Transnational Social Movements; Economic Sociology; War and Revolution; Sociology of Gender; Sociology of Culture; Development of Capitalism; Film as a Sociological Research Tool; Funding and Grant Writing; The Three Faces of Social Psychology; A Structural Approach to Organizational Behavior; Professionals and Professionalism; Sociology of Modernity; Globalization and Immigration; Research Support in Sociology; Sociology of Sexual Behavior; Global Sociology; Gender and the Law; Poverty and Homelessness.
3 credits, ABCF grading
May be repeated for credit

SOC 595 Special Seminars
Topics to be arranged. The seminar is built around actual research activities of students and faculty. The following topics have been covered: Cultural Theory; Sociology of Technology; Micro-sociology; Advanced Topics in Marxist Theory; Sociology of Emotions; Historical Methods; Ethnic Relations; Biosociology; Comparative Stratification; Max Weber; Sociology of the Future; Science of Sociology and Everyday Life; The Study of the World’s Advanced Societies; Methods of Behavioral Observation; Social Structure; Sociology of the Family; Cognitive Sociology; Sociology of Work; Transnational Social Movements; Economic Sociology; War and Revolution; Sociology of Gender; Sociology of Culture; Development of Capitalism; Film as a Sociological Research Tool; Funding and Grant Writing; The Three Faces of Social Psychology; A Structural Approach to Organizational Behavior; Professionals and Professionalism; Sociology of Modernity; Globalization and Immigration; Research Support in Sociology; Sociology of Sexual Behavior; Global Sociology; Gender and the Law; Poverty and Homelessness.
3 credits, ABCF grading
May be repeated for credit

SOC 604 Advanced Topics in Quantitative Analysis
The use of personal documents, official records, field observations, and interviews.
3 credits, ABCF grading

SOC 691 Practicum for Teaching and Graduate Assistants
Individually supervised initial (first two semesters) teaching assistance. Discussion, examination construction, student consultation, and grading. Register for section of supervising instructor.
3 credits, S/U grading

SOC 692 Practicum in the Teaching of Sociology
The exploration of teaching goals, processes, and outcomes. Practice lectures are videotaped and discussed; classroom visits; planning, outlining, selection of course material; writing of syllabus for Introductory Sociology section to be taught as part of SOC 693 in following semester.
3 credits, ABCF grading

SOC 693 Practicum for Graduate Teaching Interns
Supervised teaching of a section of Sociology 105 using the outlines, materials, and techniques developed in SOC 693. Includes weekly meetings of all persons registered for SOC 693 and observation of classes by both faculty and fellow graduate students.
Prerequisite: SOC 692
3 credits, ABCF grading

SOC 699 Dissertation Research On Campus
Dissertation research under direction of advisor.
Prerequisite: Advancement to candidacy (G5); major portion of research must take place on SB campus, at Cold Spring Harbor, or at Brookhaven National Lab
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit

SOC 700 Dissertation Research Off Campus–Domestic
Prerequisite: Must be advanced to candidacy (G5); major portion of research will take place off campus, but in the U.S. and/or U.S. provinces (Brookhaven National Lab and Cold Spring Harbor Lab are considered on campus); all international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor
Fall, spring, and summer, 1-9 credits, S/U grading
May be repeated for credit
Technology and Society (EST)

Chair: David L. Ferguson, Harriman Hall Room 347, (631) 632-8763
Graduate Program Director: Sheldon J. Reaven, Harriman Hall Room 343A, (631) 632-8768
Assistant to the Chair: Rita Reagan-Redko, Harriman Hall Room 335, (631) 632-1057
Graduate Program Coordinator: Carole Rose, Harriman Hall Room 347A, (631) 632-8765

Advanced Graduate Certificates awarded: Advanced Graduate Certificate in Educational Technology and in Global Operations Management.
Degree awarded: M.S. in Technological Systems Management (concentrations: Educational Technology, Energy and Environmental Systems, Global Operations Management)

Technology shapes every facet of modern life. Familiarity with the characteristics, capabilities, and limitations of current and emerging technologies is indispensable to wise and effective decisions and practices in government, business, and personal life. At all levels and in all disciplines, careers in industry, government, and education ever more turn on the ability to see and seize the opportunities and address the problems that technology often presents. Technological developments are indeed re-defining these very careers and changing the workplace itself.

Managing modern technologies calls upon a synthesis of tools drawn from many areas: science and engineering, computers and information, economics and regulation, psychology and community values, design and assessment. The Master’s Degree in Technological Systems Management provides professionals in all fields and people planning such careers with state-of-the-art concepts, analytical tools, and practical skills for managing specific technological systems and improving their performance.

Students may pursue one of three areas of concentration: Educational Technology, Energy and Environmental Systems, or Global Operations Management. Students take a common core of six credits, a block of 15 credits specific to their concentration, and nine credits of electives. A master’s project also must be completed by students in the Energy and Environmental Systems and Educational Technology concentrations.

Both part-time and full-time students are accepted. Teaching or research assistantships are available to full-time students who qualify.

Advanced Graduate Certificate in Educational Technology

The Certificate prepares current and prospective teachers to use advanced technologies in learning and teaching, and helps business and industrial trainers and educators to develop and teach computer applications, multimedia technologies, and computer-based documentation. Students elect either the school track or the business/industry track.

Advanced Graduate Certificate in Global Operations Management

This Certificate helps managers develop their abilities to use advanced technologies in their companies, understand their business processes, reduce waste and inefficiencies, and improve the bottom line of their companies.

Facilities

Graduate students enrolled in the Department of Technology and Society have access to several computing facilities. The University maintains a wide range of mainframe facilities and personal computing laboratories. However, the Department uses its two in-house, state-of-the-art computer laboratories as hands-on enhancements of the graduate student’s experience. The first lab has 20 Pentium desktop computers that operate as stand-alone or within a basic network environment. The lab is integrated into the campus WAN, with full Internet access, and a wide array of educational, academic, and professional software. Video cameras, scanners, printers, laptops, and a projection system are available for student use within the lab.

The second computer laboratory is used for research and teaching related to computer-supported collaboration, e-learning technologies, and emerging educational technologies. The lab, available for faculty and students, consists of 20 Pentium desktop computers.

Both labs are designed for student work and as open laboratories to give students the broadest in-depth exposure to information technologies.

Admission

For admission to the M.S. program in Technological Systems Management the following are required:

A. A bachelor’s degree in engineering, natural sciences, social sciences, mathematics, or a closely related area from an accredited college or university.

For admission to the Energy and Environmental Systems concentration, one year of calculus (MAT 131, 132, or equivalent) is required. For admission to the Global Operations Management concentration, an introductory calculus course (MAT 123 or equivalent) is required;

B. A minimum undergraduate grade point average of 3.0;

C. Three letters of recommendation;

D. Graduate Record Examination (GRE) General Test scores;

E. Acceptance by the Department of Technology and Society and the Graduate School.

In special cases, applicants who do not satisfy requirement A or B may be admitted on a conditional basis, and may be subject to additional course requirements.

Appropriate courses taken in non-matriculated status may be applied towards the M.S. degree in Technological Systems Management; however, no more than 12 credits taken in non-matriculated status can be applied to the 30 credits for the M.S. degree.

For admission to the Advanced Graduate Certificate program, students must have a bachelor’s degree and an undergraduate GPA of at least 3.0. Students with lower averages may be admitted in non-matriculated status, which may be changed upon earning six or more graduate credits applicable to the Certificate with a GPA of 3.0 or higher.
Credits for Certificate program courses may be applied to requirements for the M.S. degree in Technological Systems Management, subject to Graduate School rules and limitations; however, no more than 12 credits may be transferred.

Faculty

Distinguished Service Professors
Ferguson, David L., Chair, Ph.D., 1980, University of California, Berkeley: Quantitative methods; computer applications (especially intelligent tutoring systems and decision support systems); mathematics, science, and engineering education.

Paldy, Lester G., M.S., 1966, Hofstra University: Nuclear arms control; science policy.

Distinguished Teaching Professor

Professors
Hogan, Joseph S., Emeritus, Ph.D., 1968, New York University: Planetary atmospheres; environmental satellites; climate change.

Teng, Tian-Lih, Ph.D., 1969, University of Pittsburgh: Electrical engineering; computer science; management of information systems; electronics commerce.

Visich, Marian Jr., Emeritus, Ph.D., 1956, Polytechnic Institute of Brooklyn: Aerospace engineering; technology-society issues.

Associate Professors
Kaplan, Edward, Visiting Associate Professor, Ph.D., 1973, University of Pennsylvania: Environmental systems engineering.

Morris, Samuel C., Visiting Associate Professor, Sc.D., 1973, University of Pittsburgh: Environmental science; risk analysis.

Reaven, Sheldon J., Graduate Program Director, Ph.D., 1975, University of California, Berkeley: Science and technology policy; energy and environment problems and issues; environmental and waste management, recycling and pollution prevention; risk analysis and life-cycle analysis; nuclear, chemical, and biological threats; technology assessment; homeland security and the war on terrorism.

Scarlatos, Lori L., Ph.D. 1993, Stony Brook University: Educational technology: tangible, physical, multi-modal, and collaborative human-computer interfaces; serious games; computer graphics; multimedia.

Assistant Professors
Abouelenean, Gamal, Ph.D., 1998, Suez Canal University: University P.E. (Alabama): Civil engineering; water resources engineering; hydraulics engineering; bridge hydraulics; bridge scour; numerical modeling; computer applications; GIS.

Tucker, Jessica M., Visiting Assistant Professor, Ph.D., 2006, Carnegie Mellon University: Engineering ethics; bioethics; engineering education; chemical engineering; biomaterials.

Sun, Guodong, Ph.D., 2001, Carnegie Mellon University: Energy and environmental policy; technology assessment; technology innovation management.

Tonges, David J., Ph.D., 1998, Stony Brook University: Environmental management (salt marshes, mosquito control, alternative energy sources); contamination (groundwater, pesticides); monitoring (groundwater, surface water, estuaries); public policy and communication (risk assessment, environmental impact analyses, environmental justice).

Adjunct Lecturers

Levanti, Gary, M.B.A., 1992, Binghamton University.

Lebel, Roy B.S., 1979, Dowling College: Aeronautics; aeronautical management.

Leonhardt, Nina, M.S., 1978, Stony Brook University: Technological systems management.

MacLeod, Charles, M.A., 2004, Stony Brook University: Liberal studies.

Moriarty, Kevin, M.B.A., Dowling College.

Petralia, Thomas, M.S., 1992, Stony Brook University: Technological systems management.

Schmid, Glenn, M.S., 1981, Stony Brook University: Technological systems management.

Siegel, Paul, M.S., 1997, Stony Brook University: Technological systems management.

Taveras, Marypat, M.S., 2002, Stony Brook University: Technological systems management.

Tong, Alvin, Ph.D., 1968, University of Minnesota: Electrical engineering.

Number of teaching, graduate, and research assistants, Fall 2007: 6

1) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1992; recipient of the President’s Award for Excellence in Teaching, 1993; Recipient of the Presidential Award for Excellence in Science, Mathematics, and Engineering Mentoring of Under-represented Minority Students, 1997

2) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1993; recipient of the President’s Award for Excellence in Teaching, 1993

Degree Requirements
Refer to the following lists for course requirements specific to each of the three concentrations. In general, students are expected to complete two core courses for six credits, five required courses specific to the concentration for 15 credits, and three eligible electives for nine credits.

Electives for consideration are listed for each concentration, but a student’s selection of electives must be approved by his or her advisor.

Requirements for the Advanced Graduate Certificate are also displayed.

M.S. Program in Technological Systems Management
(See course titles and descriptions below.)

Core Courses (six credits): EST 581, EST 582

Note: Entering students are presumed to have essential communications, computer, and mathematical skills. Otherwise, prerequisite study in these areas will be required.

Global Operations Management Concentration

Required Courses (15 credits): EMP 501, EMP 506, EMP 509, EMP 518, EST 520

Suggested Electives (nine credits): EMP 502, EMP 503, EMP 504, EMP 511, EMP 517, EMP 521, EMP 522, EMP 523, EST 530, EST 599

Educational Technology Concentration

Required Courses (15 credits): EST 568, EST 570, EST 571, EST 578, EST 590, Master’s Project

Suggested Electives (nine credits): EST 520, EST 574, EST 575, EST 576, EST 579, EST 585, EST 589, EST 591, EST 599

Energy and Environmental Systems

Required Courses (15 credits): EST 593, EST 594, EST 595, EST 596 or EST 597, EST 590, Master’s Project

355

TECHNOLOGY AND SOCIETY
Suggested Electives (nine credits):
EST 540, EST 550, EST 576, EST 584, EST 586, EST 588, EST 591, EST 592, EST 599, CEY 503, CEY 505, CEY 509

Advanced Graduate Certificate in Educational Technology
(See course titles and descriptions below.)
A total of 18 credits (four core courses and two electives) are required.
Core Courses: EST 565, EST 567 (formerly EST 572), EST 570, EST 571

School Track
Choose one of three:
EST 563 (formerly EST 583), EST 573, EST 585
Choose one of three:
EST 591, CEI 511, CEN 580

Business Track
Choose one of three:
EMP 509, EST 520, EST 530
Choose one of three:
EST 573, EST 591, EST 596

Advanced Graduate Certificate in Global Operations Management
Core Courses (all three must be taken):
EMP 502 Management Accounting and Financial Decision Analysis
EMP 506 Global Operations Management
EMP 509 Enterprise Information and Knowledge Systems Management

Required Courses (two of five must be taken):
EMP 501 Behavioral and Organizational Aspects of Management
EMP 503 Legal and Regulatory Aspects of Management
EMP 504 Quantitative Methods in Management
EMP 511 Starting a Business Venture
EMP 517 Quality and Value Management

Elective Courses (select one additional from required courses above or one from the following below):
EMP 518 Program/Project Management

EMP 521 New Product Development and Design
EMP 522 Strategic Marketing: Planning and Process
EMP 523 International Business and Management
EST 520 Computer Applications and Problem Solving
EST 530 Internet Electronic Commerce
EST 581 Methods of Socio-Technological Decision Making
EST 582 Systems Approach to Human-Machine Systems

Courses

EMP 501 Behavioral and Organizational Aspects of Management
This course provides an understanding of the management process by analyzing organizational behavior. Topics include behavioral aspects of management, interpersonal dynamics, and management decision making. The course covers the basics of management and is designed to provide a foundation for further study in management and related fields.

EMP 502 Management Accounting and Financial Decision Analysis
Fundamentals of financial and managerial accounting with emphasis on concepts, ratio, and break-even analysis, financial structure, cost analysis, replacement of assets, and cash flow management.

EMP 503 Legal and Regulatory Aspects of Management
A survey of business and regulatory law. Topics include contracts, sales, warranties, and intellectual property. An overview is provided of high technology topics such as computer law, product liability, and patent, trademark, copyright, and environmental law and their impact on business.

EMP 504 Quantitative Methods in Management
This course is a rapid introduction to the application of modern mathematical concepts and techniques in management science. Algebraic operations, mathematical functions and their graphical representation, and model formulation are reviewed. Topics covered include the following: mathematics of interest, annuity, and mortgage; algebraic and graphic methods of linear programming; PERT, CPM, and other network models; and inventory theory. Simple management-oriented examples are used to introduce mathematical formulations and extensions to more general problems. The computer laboratory is used to give students experience with PC software packages that solve problems in all course topics. Interpretation of computer outputs is also stressed.

EMP 506 Global Operations
A managerial approach to the concepts, issues, and techniques used to convert an organization’s resources into products and services. Topics include strategic decisions for planning products, processes, and technologies, performing decisions for planning production to meet demand, and controlling decisions for planning and controlling operations through teamwork and Total Quality Management (TQM). Operational problems in producing goods and services are reviewed.

EMP 507 Research and Special Topics in Industrial Management
An individual study course for students investigating special topics relating to global industrial management.

EMP 509 Enterprise Information and Knowledge Systems Management
This course covers the different types of enterprise systems, where they are used to manage an organization’s processes, re-engineering the business with enterprise systems, and the relationship among technology, organization, and management. Knowledge-based and Web-based features in modern enterprise systems will be emphasized. Database management, security, control, ethical, and social issues of enterprise systems will be discussed.

EMP 510 Starting a Business Venture
This course covers the necessities of beginning a business from turning a concept into a new venture and developing a business plan for a venture. Topics include how to identify and evaluate the product and its market potential; management and organization issues; production and channels of distribution; and how to present a plan to the financial community. Specific case studies and guest speakers are utilized.

EMP 517 Quality and Value Management
Modern management’s approach to quality has changed radically in the last 20 years; this course explains why and how. It covers methods used by both manufacturing and service organizations to achieve high quality: how each organizational function is involved in quality; how improving quality can reduce costs; importance of communication; importance of involving all employees; need to measure quality; and introduction to statistical quality control and how it is used.

EMP 518 Program/Project Management
We will examine how teams can be organized, directed, and monitored so that relatively
complex projects can be carried out efficiently.
Topics include: planning, organizing, and con-
trolling resources; monitoring progress toward
objectives; identifying and managing risks; resolv-
ing conflicts; communicating effectively;
setting priorities; and writing proposals. The
systems approach will be emphasized.
Fall, 3 credits, ABCF grading

EMP 521 New Product Development and
Design
This course covers how to manage enterprise
innovation, corporate innovation cultures,
ideation and creative thinking, product
design and development processes and phases,
issues in product design, collaboration
between R&D, and operations/marketing.
Also, this class will focus on how to use fore-
casting to ensure the successful launch of a
product. Case studies will be discussed.
3 credits, ABCF grading

EMP 522 Strategic Marketing: Planning and
Process
This course will examine the vital role that
strategic marketing and planning plays in all
businesses, as well as non-profit and govern-
ment organizations. Marketing's role in our
economy, society, and the appropriate mar-
keting target and mix of media will also be
presented. The various careers that exist in
marketing and the structure of marketing
plans and departments are studied. The class
will create a marketing plan based on real
products and present it.
3 credits, ABCF grading

EMP 523 International Business and
Management
This course covers the world's marketplace,
international environment, managing interna-
tional business, and managing international
business operations. Additional topics include
cultural issues in a global marketplace, the
impact of law and legal differences in the world
marketplace compared to the U.S., and
addressing competitive issues related to items
such as a need for local contact.
3 credits, ABCF grading

EST 520 Computer Applications and
Problem Solving
A problem-solving course for professionals
who use applications software to address
administrative and managerial problems.
Students develop skills in planning, forecast-
ning, and MIS requirements. The major
applications software packages used are
Excel and Access. Students learn to create
advanced-level spreadsheets and data files,
and use them to find optimal solutions to
problems in all professions.
Summer, 3 credits, ABCF grading

EST 530 Internet Electronic Commerce
Topics addressed in this course include:
technology infrastructure, business models and
concepts, technological skills needed to build
an E-Commerce Web site, marketing, commu-
nications, security and encryption, payment
systems in E-Commerce/M-commerce.
Financial transactions, advertising models,
content ownership, and the prospects for
E-Commerce are also covered.
Summer, 3 credits, ABCF grading

EST 540 Marine Management
The course discusses waste management
issues particularly affecting the marine envi-
ronment. Topics include ocean dumping,
sewage treatment, fish kills, beach pollution,
and nuisance algal blooms. Techniques for
managing the waste stream are presented.
Crosslisted as HPH 672 or MAR 514.
Prerequisite: Permission of instructor
Spring, 3 credits, ABCF grading

EST 541 Groundwater Problems
Discussion of the hydraulic processes and
technologies that are central to the manage-
ment and monitoring of groundwater
resources including special problems of coastal
hydrology and saltwater intrusion, as well as
the fate of contaminants. Remediation
approaches are also examined. Crosslisted as
MAR 521 or HPH 673.
Prerequisite: Permission of instructor
Summer, 3 credits, ABCF grading

EST 550 Introduction to Homeland Security
The course is a combination of lectures and
laboratory experience to introduce students
to critical issues and assess needs for home-
land security. The course includes invited lec-
tures by experts on special topics such as
fundamentals of nuclear, chemical, and bio-
logical weapons and the associated threat to
the transportation of goods and the public.
The students will learn about cyber security,
devices to safeguard materials from
terrorist threats, safety of nuclear power
plants and water supply, forensics, and
emergency preparedness. The students will
submit a term paper on a selected topic in
lieu of the final exam. Cross listed with
ESM 550 and HPH 643.
Prerequisites: Undergraduate level biology,
chemistry, and physics
Fall and spring, 3 credits, ABCF grading

EST 553 Nuclear Security
The course will familiarize students with the
fundamentals of nuclear physics, radiation,
mixing, weapons, and fuel cycle, other than
producing electricity, as it pertains to nuclear
power plants. Topics include nuclear detec-
tion, development of materials for
materials from terrorist threats, needed physical
protection for safe handling and its relevance to
Homeland Security. The course combines
lectures with hands-on experience at the newly
installed nuclear detection facility located at
the nearby U.S. Department of Energy's
Brookhaven National Laboratory. Crosslisted as
EST 553 and HPH 654.
Prerequisite: Undergraduate equivalent
physiology and chemistry.
Fall, spring, 4 credits, ABCF grading

EST 554 Chemical and Biological Weapons:
Safeguards and Security
This course deals with the fundamentals of
chemistry and biochemistry related to chemi-
cal weapons (CW) and biological weapons
(BW) that could be used by terrorists. Topics
include CW and BW histories, production, con-
trol, detection, identification, and emergency
response measures to deal with intended or
unintended release and escape, and security
measures to protect and control stockpiles.
Cross listed as EST 554 and HPH 655.
Prerequisite: Undergraduate equivalent
chemistry, biochemistry, and microbiology
Fall, spring, 4 credits, ABCF grading

EST 560 Risk Assessment, Regulation, and
Homeland Security
The course focus is on risk assessment associ-
ated with nuclear, chemical, and biological
weapons as it relates to Homeland Security.
Topics include air quality, uncertainty
analysis, exposure measurements, epidemiol-
ogy, toxicology, regulatory issues, risk manage-
ment, risk communication, risk perception, and
risk preparedness. The course will also cover
laws and regulation, discouraging terrorism,
and disaster preparedness, various acts passed
by the U.S. Congress to regulate
water, air, and controlled substances. Cross
listed as EST 560 and HPH 656.
Prerequisite: Undergraduate or equivalent
physics, math, and chemistry
Fall and spring, 4 credits, ABCF grading

EST 563 Computer Literacy for Educators
This course is an introduction to computer
and software basics and was formerly listed as
EST 583. Students will develop an under-
standing of the underlying concepts and prin-
ciples behind computers. Students will gain
sufficient knowledge to successfully navigate
the digital world. Emphasis will focus on
computer literacy areas used in education
and other professional environments.
Students will leave this course with the abil-
ty to grasp the risks and benefits surround-
ing new and current computer technologies.
The following areas will be addressed; elec-
tronic communication, application-based
projects, information management, assess-
ment, and the societal impacts of computer-
based technologies. Students having
completed EST 566 in a prior semester can-
not receive credit for EST 563. EST 563 and
EST 565 may be taken in the same semester.
Fall, 3 credits, ABCF grading

EST 565 Instructional Technologies
This course examines issues in teaching and
learning, especially the use of computers and
emerging technologies to investigate unique
types of learning that are made possible, or
may be more efficient, with this technology.
Exposure to generic software applications,
and an overview of commercial software
titles and applications are provided. Students
have the opportunity to work collaboratively
with others in this field, and will develop a
working application that could be used in an
educational environment.
Prerequisite: EST 563 or permission of
instructor
Fall, spring, and summer, 3 credits, ABCF grading

EST 567 The Internet and Networking for
E-Learning
Students will learn the basic design concepts
behind the Internet, as well as wired and
wireless communication networks. Students
learn effective use of the Internet and net-
works for active learning. Discussion topics
include: the role of the Internet as a 21st-cen-
tury global communication tool, ethical and
societal issues as they relate to educational
standards, and how to judge the benefits and

357
EST 568 Network Communication—Wired and Wireless
This course examines the range of technologies used in teaching, learning, and communication. Theoretical and practical principles underlying the development of the Internet and other networked communications tools. Emphasis will be placed on the assessment of these technologies in terms of societal impacts and learning outcomes. This course combines topics from EST 565 and EST 567.
Fall, spring, summer, 3 credits, ABCF grading

EST 570 Design of Courseware
Principles of designing courseware modules for K-12 schools, universities, and industry. Educational technologies used in courseware design. Courseware design specification. Each student will develop a courseware design specification that can be implemented for his/her master's project.
Fall, every year, 3 credits, ABCF grading

EST 571 Research Methodologies for Educational Technologies
This course evaluates the educational uses of computer technology. Course goals include understanding research methodology and literature, conducting a research study of educational technology, developing professional leadership skills, and exploring micro-worlds and constructivism. The course includes class discussions to assess the quality of research articles on educational technology.
Prerequisite: EST 565
Fall and spring, 3 credits, ABCF grading

EST 573 Design of Multimedia Courseware
This course was designed for school teachers, corporate trainers, and multimedia specialists who are interested in the use of multimedia design techniques as a teaching tool. The course is half lecture and half hands-on training in multimedia production tools. Students have a term project for which they have to create a courseware program.
Prerequisite: EST 565 or permission of instructor
Fall, 3 credits, ABCF grading

EST 574 Distance Education
Web-based distance learning applications are quickly growing within higher education institutions, K-12 schools, and corporate environments. This course is designed for higher education faculty, K-12 administrators and teachers, instructional computing coordinators, and corporate training personnel who would like to investigate ways to enhance their educational systems through the development and implementation of E-learning applications. The focus of this course is on the design and implementation of effective modes of E-learning.
Fall, summer, every year, 3 credits, ABCF grading

EST 575 Developing Grants and Managing Projects
This course will develop the skills necessary to take a program proposal from idea through reality with an emphasis on new technological resources available to help with this process. Topics include: techniques for successful fundraising, grant writing, program design, funding, publicity and outreach, and reporting and evaluation. It is designed for current educators and administrators, as well as students about to enter the education, social service, and health fields.
3 credits, ABCF grading

EST 576 Geographic Information Systems in Education and Research
Students use Geographical Information Systems (GIS) software to create, manipulate, and interpret layers of interactive maps and databases. Students collect and modify geographical materials from the Internet, satellite and aerial imagery, and field data. They design and test scientific inquiry-driven educational modules and/or visualizations for research and analysis on global and local geography, for use in economics, earth sciences, politics and civic action, history and sociology, global studies, and environmental planning and assessment.
Prerequisite: EST 565 or permission of instructor
Spring, 3 credits, ABCF grading

EST 578 Human-Computer Interaction Design for Construction
Principles of human-computer interaction applied to the design of educational courseware. Usability engineering, with a focus on the audience and learning objectives. Interface design principles. Human-computer dialogs. Multimedia as a communication tool, using images, audio, and video. Multimodal input devices and strategies. Students will use a multimedia authoring tool to create a prototype of an educational application or learning tool.
3 credits, ABCF grading

EST 579 Educational Games
Simulations and computer games as a learning tool. Traditional game and simulation genres, and their appropriate uses in education. Gameplay design. Game development process, from storyboarding to delivery. Assessing games as learning tools. Students will use a multimedia authoring tool to prototype an educational game or simulation of their own design.
Prerequisite: EST 578
Summer, 3 credits, ABCF grading

EST 581 Methods of Socio-Technological Decision Making
Focus is on the application of decision-making techniques to analyze problems involving technology, particularly its social impacts. Areas of study include decision making under uncertainty, decision making in a passive vs. active environment, sequential decisions, estimating payoffs, forecasting, and technology assessment. These systems-analysis techniques are used to formulate and solve a variety of socio-technological problems, especially those that arise in educational, industrial, and environmental professions.
Prerequisite: Graduate standing in Department or permission of instructor
Fall, 3 credits, ABCF grading

EST 582 Systems Approach to Human-Machine Systems
Systems concepts (feedback, stability, chaos, ergonomics) and analytical tools applied to dynamic systems in which technologies and/or natural environments interact with human users, regulators, or designers. Examples: ecological systems, nuclear power plant operations, space shuttle missions, computer/Web educational technologies, regional planning. Students prepare a systems design study of an industrial, educational, or environmental device, technology, or management system.
Prerequisite: EST 581 or permission of instructor
Spring, 3 credits, ABCF grading

EST 584 Air Pollution and Air Quality Management
The effects of air pollution on the environment and public health are explored. Primary pollutants, such as particulates, oxides of sulfur, nitrogen and carbon, hydrocarbons, lead and CFCs are considered, as are secondary pollutants, such as sulfuric acid, PAN, and surface ozone. The effect of atmospheric conditions on the dilution and dispersion of pollutants and the impact of pollution on the global atmosphere are explained. Air pollution disasters and the impacts and ramifications of the Clean Air Act of 1970, its 1990 amendments, and recent international accords are discussed. Case studies of air pollution reduction, management, and regulation in local industry are included. Other contemporary topics include the loss of stratospheric ozone and global warming due to human activities. Crosslisted as EST 584 or HPH 683.
Prerequisites: College chemistry and permission of instructor
Spring, 3 credits, ABCF grading

EST 585 Technology in Learning Systems
This course is designed to provide educators with an overview of uses of technology to improve instruction. Standard and innovative, nonconventional modes of learning are considered. Specific areas of study include a systems-based analysis of the design and function of learning environments. Individual applications related to the student's area of professional practice, and assessment of educational uses of technology today and tomorrow. Students are exposed to various educational technologies and they will make a formal presentation applying a technology to an educational system.
Prerequisite: EST 582, systems background, or permission of instructor
Fall, 3 credits, ABCF grading

EST 586 Environmental and Waste Management in Business and Industry
Environmental and waste management practices in industrial and other institutional settings. Technologies of hazardous waste pre-
vention, treatment, storage, transportation, and disposal are considered. Topics include: Information systems and software tools for environmental audits, regulatory monitoring and compliance, cost estimation, recycling programs, air, land, and water emissions controls and permits. Employee health, safety, education, and quality management are examined. Field trips to several Long Island institutions. Crosslisted as EST 586 or HPH 684.

3 credits, ABCF grading

EST 587 Today's Technology: Impact on Education and Economics

This course involves the student in studies of the science, technology, and economics of four selected areas: electronics, transportation, energy, and health sciences. Classroom time is supplemented by visits to appropriate facilities in each area; individuals and groups also plan for the use of the information in their specific areas of responsibility. For example, teachers are responsible for developing teaching strategies for use of the information in their classes and for student career advice and preparation. Those from commerce and industry learn of the powerful influence of technological development on regional economics. This knowledge is helpful in carrying out strategic planning and forecasting within the student's organization.

3 credits, ABCF grading

EST 588 Technical Communication for Management and Engineering

The ability to communicate technical ideas clearly and effectively is critical to success in management and engineering. Hours and money are wasted when confused, distorted writing and speaking obscure the information they are intended to convey. This course will provide managers, engineers, and other technical professionals with practical methods for making their memos, reports, and correspondence clear, comprehensible, and persuasive. Students learn strategies for communicating with both nonspecialist and technical audiences, stating their purpose clearly, organizing arguments most effectively, and expressing ideas concisely and precisely. Special attention is given to technical presentations and to communicating in meetings.

3 credits, ABCF grading

EST 589 Technology-Enhanced Decision Making

This course examines the use of technological devices, especially computers, as aids in decision making. A treatment is given of the cognitive science and artificial intelligence methods used in the structure and operation of some systems that support human decision-making. Medical diagnosis systems, business and industrial planning systems, and computer-aided dispatch systems are discussed. In addition, the application of high technology in air traffic control systems is examined.

Prerequisite: EST 581

Co-requisite: EST 582 or permission of instructor

3 credits, ABCF grading

EST 590 Seminar for MS, TSM Students

A forum for the discussion of research methods, project ideas, and proposal preparation. A final product of this seminar is an approved master's project proposal. Each student also leads a discussion of an important technology-society problem, such as censorship of the Internet, scientific decision making, or environmental regulations. Each student works with a faculty advisor on background research and preparation of the master's project proposal.

Fall, 3 credits, ABCF grading

EST 591 Independent Study in Technology and Society

The primary objective of independent study is to provide a student with opportunities to interact with faculty members who can be of assistance in his or her master's project. Students should consult individually with faculty members on workload and credit(s).

Prerequisite: EST 590 or permission of instructor

1-3 credits, ABCF grading

May be repeated for credit

EST 592 Sustainable Energy: Technologies, Systems, Markets, and Policies

The ample supply and appropriate use of energy is critical to the well being of human society. Energy plays an enormous role in environmental degradation, national insecurity, international conflict, and in solutions to these problems. This course aims to introduce the major energy issues to students in engineering, business, and public policy areas. It discusses energy choices to meet regional and global energy needs. Major renewable and conventional energy sources, energy supply technologies, and end-use efficiency options will be assessed in the context of political, social, economic, and environmental goals.

Prerequisite: Undergraduate major in science or engineering strongly preferred

3 credits, ABCF grading

EST 593 Risk Assessment and Hazard Management

A case-study approach to the assessment of risk and the management of natural and technological hazards, with emphasis on those that can harm the environment. The course focuses on technological hazards involving energy, transportation, agriculture, natural resources, chemical technology, nuclear technology, and biotechnology, and on natural hazards such as climatic changes, droughts, floods, and earthquakes. The first part of the course consists of readings on risk assessment and hazard management and discussions of published case studies. During the second part of the course, students conduct their own case studies and use them as the basis for oral and written reports. Crosslisted as EST 593 or HPH 686.

3 credits, ABCF grading

EST 594 Diagnosis of Environmental Disputes

Diagnosis of disagreements about environmental and waste problems. Tools for evaluating disputes about (1) scientific theories and environmental models, (2) definitions and analytical methodologies for estimating risk, "real" cost, net energy use, and life-cycle environmental impact, (3) regulatory and legal policy, (4) siting of controversial environmental facilities, and (5) fairness and other ethical issues. These diagnostic tools are brought to bear upon case studies of pollution prevention, recycling, nuclear waste disposal, and climate change. Cross-listed as EST 594 or CEY 594 or HPH 687.

3 credits, ABCF grading

EST 595 Principles of Environmental Systems Analysis

This course is intended for students interested in learning systems engineering principles relevant to solving environmental and waste management problems. Concepts include compartmental models, state variables, optimization, and numerical and analytical solutions to differential equations. Crosslisted as EST 595 or HPH 688.

Prerequisite: MAT 132 and one year of quantitative science such as physics, chemistry, or geology; or permission of instructor

Fall, 3 credits, ABCF grading

EST 596 Simulation Models for Environmental and Waste Management

This course is intended for students interested in developing computer models for technology assessment and for environmental and waste management. Concepts developed in EST 595 Environmental Systems Engineering and Analysis are applied to real-world problems. Techniques in model development are presented in the context of applications in surface and groundwater management, acid rain, and health risks from environmental contamination. Crosslisted as EST 596 or HPH 689.

Prerequisite: EST 593 or permission of instructor

Spring, 3 credits, ABCF grading

EST 597 Waste Management: Systems and Principles

Students will learn about the technologies and policy options in waste management, emphasizing recycling, incineration, landfilling, and source reduction options for municipal solid waste on Long Island. Problems concerning paper, glass, plastic, organic materials, and other waste stream components will be explored. Environmental impacts and economics of landfills, materials recovery facilities, and waste-to-energy systems are examined. The institutional and regulatory climate, current and planned practices in the region, and hazardous waste will be discussed. Cross-listed as CEY 597 or HPH 663 or EST 597.

3 credits, ABCF grading

EST 598 Teaching Practicum

Designed to give graduate students teaching experience. Note: These credits cannot be counted as part of the 30 credits required for the degree.

3 credits, S/U grading

EST 599 Special Projects and Topics

A technology assessment laboratory for emerging problems and focused research. May be run as a hands-on, group research study of an important educational, environmental or waste problem (perhaps to provide an assessment to a regulatory agency or administrative system).

Fall, spring, 3 credits, ABCF grading

EST 800 Summer Research

0 credit, ABCF grading

May be repeated for credit

359
Theatre Arts (THR, DRM)

The Department of Theatre Arts offers two graduate programs, a 30-credit Master of Arts in Theatre and a 60-credit Master of Fine Arts in Dramaturgy. Graduate study in this Department is unique in a number of ways. First, our program offers graduate students the chance to produce their own work in our theatres. Graduate students create their own theatre pieces, serve as dramaturgs for the season's offerings, and engage with directors and designers on mainstage productions. In the third year of the M.F.A. professional training program, our graduate students not only work in close contact with our faculty, but undertake internships with professional theatres. Second, we provide a multicultural curriculum, with classes in Eastern and Western styles of drama, styles of acting, and cultural studies. Third, our program reflects the interdisciplinary nature of the theatre arts. Among the faculty are designers, performers, playwrights, theorists, and dramaturgs, all of whom work closely with graduate students. Finally, we continue to develop an Art and Technology Laboratory in conjunction with the Departments of Music and Art. Our graduates have the opportunity to get training in computer graphics, interactive media studies, and digital performance.

The goals of the M.A. program are (1) to study the dramatic tradition and the history of the performing arts, (2) to develop an understanding of the vital relationship between theatre theory and onstage practice, and (3) to prepare students qualified to matriculate in programs of study at the M.F.A. or Ph.D. level.

The M.F.A. program focuses on the work of the dramaturg, sometimes called the literary manager. In the United States and throughout the world, the dramaturg takes a vital part in the direction of professional theatre. He or she is responsible for advising on choice of repertoire, choosing or commissioning translations of foreign plays, collaborating with directors and dramatists in research of many kinds, and making public statements about policy and productions. The dramaturg must be well informed in historical, critical, and comparative studies, and sensitive to every aspect of theatre practice. In a three-year M.F.A. professional training program, our graduate students work in close contact with our faculty and with professional theatres. Training in dramaturgy is useful even to students who later decide to pursue other careers in the theatre or other media, or in teaching at the university level. Professional dramaturgs often become directors, producers, administrators, drama critics, teachers, or playwrights, and many combine two or three different careers. Therefore, the Stony Brook program offers opportunities for students with a wide range of interests in theatre practice and dramatic criticism to pursue individual development within a professional orientation. As this program is built on the bond between theory and practice that we believe must lie at the heart of dramaturgical training, the program culminates in the professional internship and the M.F.A. project.

Interested students should request information and application forms as early as possible, especially if they plan to apply for financial aid.

Facilities

The Department of Theatre Arts is located in the Staller Center for the Arts, which houses a 1,106-seat prosenium stage and three black box theatres. Additional dance and theatre spaces are also available on campus. A newly acquired studio/theatre space in the basement of the Staller Center is the home of the Graduate Student Cabaret. This flexible, intimate, 50-seat performance space can also be used as a studio/classroom. The Cabaret is run by the Stony Brook M.F.A. Dramaturgy students as a production space and theatrical laboratory. Each year, eight to 12 productions are presented. The Department has a Laboratory for Technology in the Arts and an Electronic Classroom.

The University Library is adjacent to the Staller Center and holds in excess of 27,000 volumes related to the study of theatre arts. Special collections of play texts, including translations, and theatre archives are being developed continually. Manhattan is an easy commute by train, bus, or car, and its many theatres, exhibitions, archives, and libraries (most notably the New York Public Library of the Performing Arts at Lincoln Center) are easily accessible.

Admission

For admission to the M.A. program in Theatre Arts, the following, in addition to the minimum Graduate School requirements, are normally required:

A. A bachelor's degree from an accredited college or university;
B. Advanced undergraduate courses in theatre history, dramatic literature, and/or theatre practice;
C. Undergraduate grade point average of at least 3.0;
D. Three letters of recommendation;
E. Graduate Record Examination (GRE) General Test scores;
F. Supporting materials must include a sample of the applicant's writing as well as other materials such as scripts, essays, publications, portfolio, etc. (for the returned work, the applicant must include a stamped, self-addressed envelope with the completed application);
G. Acceptance by both the Department of Theatre Arts and the Graduate School;
H. If a student accepted into the M.A. program wishes to offer, either for credit toward the degree or for exemption from enrollment in courses required by Stony Brook, analogous courses taken at another university, he or she must present transcripts and other supporting materials for consideration by the graduate program director before the end of his or her first semester in the program (see Transfer of Credit from Other Universities).
Admission to the M.F.A. Program in Dramaturgy

This M.F.A. program is intensive, and admission to it is highly selective. For admission, the following, in addition to the minimum Graduate School requirements, are normally required:

A. A bachelor’s degree from an accredited college or university;

B. Advanced undergraduate courses in theatre history, dramatic literature, and/or theatre practice;

C. Undergraduate grade point average of at least 3.0;

D. Three letters of recommendation;

E. Graduate Record Examination (GRE) General Test scores;

F. Supporting materials must include a sample of the applicant’s writing as well as other materials such as scripts, essays, publications, portfolio, etc. (for the return of this work sample, the applicant must include a stamped, self-addressed envelope with the completed application);

G. Acceptance by both the Department of Theatre Arts and the Graduate School;

H. Applicants who already hold an M.A. in Theatre Arts from another institution may be admitted provisionally to the second year of the M.F.A. program. Such students are required to fulfill M.F.A. first-year course requirements not taken as part of their M.A. training elsewhere;

I. If a student accepted into the M.F.A. program wishes to offer, either for credit toward the degree or for exemption from enrollment in courses required by Stony Brook, analogous courses taken at another university, transcripts and other supporting material must be presented for consideration by the graduate program director before the end of the student’s first semester in the program (see Transfer of Credit from Other Universities);

J. If so indicated on the application, an applicant for the M.F.A. program in dramaturgy can also be considered for admission to the one-year (30-credit) M.A. program in theatre arts, which runs parallel to the first year of the M.F.A. If such an applicant is admitted instead to the M.A. program, he or she may then be considered, upon successful completion of the M.A., for admission to the second year of the M.F.A. program;

K. Students in the M.F.A. program are evaluated at the end of each year of study before permission is granted to continue. If a student completing his or her first year of study is not given permission to continue, he or she may instead be redesignated as a candidate for an M.A. degree. He or she must then fulfill all requirements for that 30-credit degree (see above).

Faculty

Professor

Associate Professors
Baldwin, Phillip, M.F.A., 1987, Yale University: Scene design; interactive media; cultural studies.

Kim, Theresa, Emeritus, Ph.D., 1988, New York University: Asian history; acting; Eastern styles.

Lutterbie, John, Ph.D., 1983, University of Washington: Theatre history; performance theory and criticism; dramaturgy; directing.

Mayo, Deborah, Director of Undergraduate Studies, M.F.A., 1973, Yale School of Drama: Acting.

Lecturers

Marsh, Steve, Interim Graduate Studies Director, M.F.A., 2000, Stony Brook University: Dramaturgy.

Morin, Margaret, Head of Production, M.F.A., 2001, Stony Brook University: Dramaturgy.

Adjunct Faculty

Jeffreys, Joe, Ph.D., 1996, New York University: Theatre history and criticism.

Kern, Maxine, M.F.A., 1992, University of Massachusetts, Amherst.

Ley, Jonathan, Distinguished Teaching Professor, Ph.D., 1966, Columbia University: Playwriting; theatre for children; dramatic criticism; Italian Renaissance drama.

Teaching assistants, Fall 2008: 15

1) Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1991

Degree Requirements

Requirements for the M.A. Degree in Theatre

In addition to the minimum Graduate School Requirements, the following are required:

A. Courses

Courses required for the degree are:

THR 500 Introduction to Graduate Studies
THR 510 and 521 Western Theatre History and South and Southeast Asian Theatre and Drama

Or:

THR 511 and 520 Far Eastern Theatre and Drama and Western Dramatic Literature
THR 535 Theories of Theatre

Or:

THR 635 Theories of Performance
THR 550 Teaching Practicum
THR 590 M.A. Thesis (six credits)

In addition, students select from among a range of courses in consultation with the graduate program director and a faculty advisor. A minimum of 30 credits is required for graduation.

B. Examination

Successful completion of the M.A. exam is required, normally at the end of the second semester of full-time residence.

C. Foreign Language

Proficiency in a foreign language must be demonstrated.

D. Teaching Experience

Teaching for at least one semester at the University level is required of all graduate students.

E. Master’s Thesis

A master’s thesis must be successfully completed under the direction of a faculty advisor.

F. Residency Requirement

This program is normally completed in one to two years of full-time residency. Students may be enrolled in the M.A. program on a full-time or part-time basis.

G. Time Limitations

Depending on the student’s first-time, matriculated enrollment in the Graduate School, full-time students must complete all degree requirements within three years, part-time students in five years.
Requirements for the M.F.A. Degree in Dramaturgy

In addition to the minimum Graduate School requirements, the following are required:

A. Courses

Courses required for the degree are:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THR 500 Introduction to Graduate Studies and Dramaturgy</td>
<td>3</td>
<td>Introduction to graduate studies and dramaturgy.</td>
</tr>
<tr>
<td>THR 505 Dramaturgy I: Production Dramaturgy</td>
<td>3</td>
<td>Focus on production dramaturgy.</td>
</tr>
<tr>
<td>THR 506 Dramaturgy II: Literary Management</td>
<td>3</td>
<td>Focus on literary dramaturgy.</td>
</tr>
<tr>
<td>THR 510 and 511 Western Theatre History and Far Eastern Theatre and Drama</td>
<td>6</td>
<td>Study of Western theatre history and Far Eastern theatre.</td>
</tr>
<tr>
<td>THR 520 and 521 Western Dramatic Literature and South and Southeast Asian Theatre and Drama</td>
<td>6</td>
<td>Study of Western and Southeast Asian theatre.</td>
</tr>
<tr>
<td>THR 535 Theories of Theatre</td>
<td>3</td>
<td>Introduction to theatre theories.</td>
</tr>
<tr>
<td>THR 550 Teaching Practicum</td>
<td>3</td>
<td>Focus on teaching practices in theatre.</td>
</tr>
<tr>
<td>THR 560 Acting: Theory and Practice</td>
<td>3</td>
<td>Focus on acting theory and practice.</td>
</tr>
<tr>
<td>THR 635 Theories of Performance</td>
<td>3</td>
<td>Focus on the theories of performance.</td>
</tr>
<tr>
<td>THR 640 Dramaturgy Workshop</td>
<td>3</td>
<td>Focus on dramaturgy workshop.</td>
</tr>
<tr>
<td>THR 650 Playwriting Workshop</td>
<td>3</td>
<td>Focus on playwriting in theatre.</td>
</tr>
<tr>
<td>THR 660 Acting Workshop</td>
<td>3</td>
<td>Focus on acting skills.</td>
</tr>
</tbody>
</table>

In addition, students select from a range of courses in consultation with the graduate program director and a faculty advisor. A minimum of 60 credits is required for graduation.

B. Examination

Successful completion of the M.F.A. exam is required, normally at the end of the second semester of full-time residency.

C. Projects

Successful completion of the following projects is required:

<table>
<thead>
<tr>
<th>Project</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>THR 680 Dramaturgy Workshop</td>
<td>6</td>
</tr>
<tr>
<td>THR 690 Internship</td>
<td>3</td>
</tr>
<tr>
<td>THR 691 M.F.A. Project</td>
<td>3</td>
</tr>
</tbody>
</table>

D. Foreign Language

Proficiency in a foreign language must be demonstrated usually through the translation of a play.

E. Teaching Experience

Teaching for at least one semester at the University level is required of all graduate students.

F. Residence Requirement

This program is normally completed in three years of full-time residency. One semester of the last year is spent in a professional internship program.

G. Time Limitation

The M.F.A. program is normally completed in three years. The time limit for completion of the M.F.A. program, given unusual circumstances, is six years.

University Requirements

The granting of master's degree is based upon the completion of any special Departmental requirements in addition to the items listed below.

A. Courses and Grade Point Average

A student must achieve a 3.0 overall grade point average for a minimum of 30 credits of graduate work to receive the M.A. degree and 60 credits for the M.F.A. degree.

At the discretion of the Department, a student who retakes a course for which an F grade was received may replace the F grade with the new grade in the G.P.A. calculation. The student may use this option for one F grade only.

B. Teaching

At least one semester of supervised teaching experience is required except for those programs in which teaching is not germane to the degree objectives.

C. Registration

Degree candidates must be registered in the program granting their degree for at least one credit in the semester in which the diploma is awarded.

Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THR 500 Introduction to Graduate Study in Theatre Arts</td>
<td>3</td>
<td>Introduction to the field of theatre scholarship.</td>
</tr>
<tr>
<td>THR 505 Dramaturgy I: Production Dramaturgy</td>
<td>3</td>
<td>Focus on production dramaturgy.</td>
</tr>
</tbody>
</table>

Research tools and methods, investigations of cultural and social history, critical writing, and issues in adaptation and translation are discussed. Means of facilitating communication within a production team and between actors, designers, and directors are examined. Other topics include season planning, promotion and publicity, educational outreach materials, preparation of protocols, post-play discussion, and other audience development techniques.

Prerequisite: Permission of instructor

Fall, 3 credits, ABCF grading

THR 506 Dramaturgy II: Literary Management

Examining the roles of the literary manager in the contemporary theatre, this course explores the process of new play development and the preparation of a new play for production. The ability to read and write sensitively about new plays, reading new plays and preparing sophisticated play reports, how to talk to playwrights about their plays, and how to facilitate discussions with directors and actors as they encounter a play for the first time are issues examined in this course. New plays from a variety of venues, including professional theatres in New York City, are read and discussed, and the process of developing new plays from staged readings through public performances is studied.

Prerequisite: Permission of instructor

Spring, 3 credits, ABCF grading

THR 507 Dramaturgy of Process: Theatre, Drama, and Performance

This course for advanced students of dramaturgy allows them to apply practical theatre skills to the development of new work. Students will assist in the workshop production of a new play. This will explore NPD process as it exists in the American Regional Theatre, and learn the practical skills of running a play-reading series, commissioning new plays, communicating with playwrights, casting, and marketing.

Spring, alternate years, 3 credits, ABCF grading

THR 508 Western Theatre History

Theatre forms in the Western tradition, from ancient to modern. This course is centered on a particular critical or theoretic problem or theme.

Spring even years, 3 credits, ABCF grading

May be repeated for credit as an independent study with the permission of the instructor.

THR 511 Far Eastern Theatre and Drama

Course surveys the traditional theatre of three Far Eastern (China, Korea, and Japan) countries as related to: history, dramatic literature (Yuan drama and Beijing Opera of China; Pongsan Korean Masked Dance-Drama; a Noh play cycle, Kabuki, and Joruri Puppet Theatre of Japan). The points of departure will be the Eastern world view (namely Shamanism, Confucianism, Daoism, and Buddhism) and theatre; the concept of the actor’s body and mind as microcosmic presentation of a macrocosmic universe; his performance as an act of becoming one with the macrocosmos and the total nature of all performing arts elements harmoniously operating together in creating beauty on stage.

Spring, every year, 3 credits, ABCF grading

May be repeated once for credit
THR 520 Western Dramatic Literature
Course surveys forms of Western drama, with particular reference to theatrical performance. Focus is placed on key periods and themes such as gender issues, political violence, death and dying, love, etc.
Spring, odd years, 3 credits, ABCF grading
May be repeated once for credit

THR 521 South and Southeast Asian Theatre and Drama
Course surveys the traditional and modern theatre of South and Southeastern Asia (India, Sri Lanka, Thailand, Indonesia, Tibet, Nepal, and Bhutan), as related to: mythic origins, history, dramatic literature, aesthetic theory, ritual functions, conventions of production, and actor training. The point of departure will be cosmology, especially that of Hinduism, and the world view of the people.
Fall, every year, 3 credits, ABCF grading
May be repeated once for credit

THR 523 Theatre in New York
A workshop seminar on contemporary, alternative performance forms and mainstream theatre. Emphasis is on the development of critical perspectives and the writing skills needed to articulate them through seminar discussions and writing workshops relevant to performances seen on trips to theatres in New York and the region.
Spring, 3 credits, ABCF grading

THR 525 Topics in Theatre and Drama
Intensive studies of selected forms of theatre and drama from various countries and periods, designed to supplement rather than repeat areas of study already undertaken in the curriculum.
Prerequisite: Permission of instructor
Fall or spring, alternate years, 1-3 credits, ABCF grading
May be repeated for credit

THR 530 Directed Reading in Theatre and Drama
Students read and evaluate the literature on a topic of special academic interest under the supervision of a faculty member.
Prerequisite: Permission of instructor
Fall and spring, 1-3 credits, ABCF grading
May be repeated for credit

THR 535 Theories of Theatre
Theories of the theatre, from the ancient to the contemporary, are read critically to develop a complex and varied conception of the philosophical basis underlying approaches to the theatre. Theorists read might include Aristotle, Plato, Diderot, Rousseau, Nietzsche, Artaud, Brecht, Stanislavski, Grotowski, Barba, Mnouchkine, Suzuki, and Zemi.
Fall, alternate years, 3 credits, ABCF grading

THR 540 Design Theory and Practice
Course surveys principal design areas, providing information about aesthetic theory and methods of stage design. Students address design problems and analyze a topic in design theory in conjunction with readings and instruction.
Fall, 3 credits, ABCF grading

THR 550 Teaching Seminar
Supervised student teaching of undergraduate courses accompanied by a seminar in methods and strategies of teaching theatre arts at the university level. An independent teaching project, in which the student works with a particular faculty member, may be substituted.
Fall or spring, 3 credits, ABCF grading

THR 560 Acting Theory and Practice
Course surveys the field of acting—its history, formal principles, primary techniques, and contemporary practice. Students develop course papers and/or projects in conjunction with advanced readings and instruction.
Spring, alternate years, 3 credits, ABCF grading

THR 570 Directing Theory and Practice
Course surveys the art and craft of the Director, with focus on contemporary practices of directing and approaches to pedagogy. Students will write papers and develop projects in conjunction with advanced reading and instruction.
3 credits, ABCF grading

THR 590 M.A. Thesis
Independent study and research for M.A. students, on special topics, theoretical or cultural issues, or problems. Development of material for research paper.
1-3 credits, S/U grading
May be repeated for credit

THR 591 Independent Project
Special project allowing advanced individual work in an area of theatre study or practice. Must be scheduled by arrangement with instructor. Should result in an advanced paper or project report.
Prerequisite: Permission of instructor
1-3 credits, ABCF grading
May be repeated for credit

THR 625 Theory and Criticism
Study of major issues in dramatic theory and criticism and in performance theory.
Fall or spring, alternate years, 3 credits, ABCF grading
Prerequisite: Permission of instructor to repeat course
May be repeated once for credit

THR 630 Dramaturgy Colloquium
Through interaction with theatre professionals, students develop independent projects around topics of common concern to the profession, and develop strategies for implementing alternate plans for improving and developing theatre.
Fall or spring, alternate years, 3 credits, ABCF grading
Prerequisite: Permission of instructor to repeat course
May be repeated once for credit

THR 635 Theories of Performance
This course examines different theories of performance as they relate to theatre and everyday life. Students explore ways of thinking about the performing body and different modes of cultural expression. There is a performing component to the course in addition to a final paper.
3 credits, ABCF grading
May be repeated once for credit

THR 640 Theatre Design Workshop
Advanced assignments in theatre design. May include design work on Departmental productions.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading
May be repeated once for credit

THR 650 Playwrighting Workshop
Students write and discuss original plays, evaluate their work, study techniques of composition and formal organization, and develop strategies for audience communication. Advanced students may study techniques for revision and the development of material for performance. Some plays may be selected for Department production.
Prerequisite: Permission of instructor
Fall, 3 credits, ABCF grading

THR 660 Acting Workshop
Intensive advanced study in a particular acting technique, such as Kutiyattam, Suzuki, musical theatre, Brecht, etc. Offered in conjunction with Departmental productions.
Prerequisite: Permission of instructor
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

THR 670 Directing Workshop
Advanced training in directing, which may involve concentrated scene work, formal experiments in performance, work on period styles and problems, or preparation of performances for public showing.
Prerequisite: Permission of instructor
Fall or spring, alternate years, 3 credits, ABCF grading
May be repeated for credit

THR 680 Dramaturgy Workshop
Students serve as dramaturgs for the production of a play, providing research support, studying editorial and interpretive techniques, attending rehearsals, and developing program materials for the audience.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

THR 690 Professional Internship
A full-term internship at a professional theatre. Students should submit an internship description in the first month of work, then a journal or evaluation of their work experience.
Prerequisite: Permission of graduate studies director
Fall or spring, 6 credits, ABCF grading

THR 691 M.F.A. Project
The project is to be undertaken at a professional theatre or as part of the mainstage production season at Stony Brook University. Students submit a proposal for a project in which they have a major responsibility as an assistant dramaturg on a production or in an equivalent position. All proposals for projects outside of the University must be submitted in writing to the faculty supervisor and graduate program director for approval.
Fall or spring, 3 credits, ABCF grading
THR 800 Summer Research
Independent study and research on special topics or problems related to work on the M.A. or M.F.A. degree.
0 credit, S/U grading
May be repeated

THR 850 Summer Teaching
Supervised student teaching of undergraduate courses accompanied by a tutorial in methods and strategies of teaching theatre arts at the University level.
0 credit, S/U grading
Women’s Studies (WST)

The Women's Studies program, in the College of Arts and Sciences, offers a course of study that leads to the Graduate Certificate in Women's Studies. The program has affiliated faculty members from more than 20 different programs in the social and behavioral sciences, humanities, and health sciences. The program is designed to allow students working toward a degree in departments such as English, Comparative Studies, History, Music, Philosophy, Psychology, Sociology, or Theatre to draw on faculty whose work deals with gender issues in a wide range of disciplines. Since Women's Studies has affiliates in nearly every department in the social sciences and humanities, the certificate program offers graduate students the opportunity for an unusually rich interdisciplinary experience.

The program is particularly strong in feminist theory, with faculty affiliates from the Departments of Art, Comparative Studies, English, Hispanic Languages and Literature, History, and Philosophy offering courses in this area. Other areas of concentration include European and Latin American women's history; women in British, American, and Caribbean literature; women in the Third World; women in science and medicine; and queer studies.

Normally, students begin their work in the program with a seminar in feminist theory and conclude the requirements with an interdisciplinary research colloquium in women's studies that considers research methods, pedagogy, epistemology, and curriculum development. Additional courses can be chosen from a list of seminars offered by faculty affiliates on an intermittent basis; these cover such topics as the psychology of women, modern British women writers, constructions of the body, women in American history, feminism and modern drama, women and social movements, music and gender, the history and literature of reproduction, anthropological perspectives on women, and the sociology of gender. Where courses are not available for a particular topic, students may arrange directed readings with an affiliated faculty member. Students may also count a relevant course offered in their home program toward the certificate.

It is expected that most students can fulfill the requirements for the Graduate Certificate in Women's Studies while working toward the master's, doctoral, or other degree. Students should consult with their home program to determine whether the credits earned in the certificate program can be used toward their degrees. Four teaching assistantships are typically available for student support. Since most students receive program support in their early years, these are usually assigned to advanced students. Students unaffiliated with another Stony Brook graduate program may also apply to Women's Studies for admission as a free-standing graduate certificate student. Such students are not eligible for teaching assistantships.

Admission

Admission to the Graduate Certificate Program in Women's Studies is open to any full-time student enrolled in a Stony Brook graduate degree-granting program, or to free-standing certificate students, who have completed their B.A.s. For applicants already admitted to the University, admission involves filling out a brief form. The forms and additional information are available through the Women's Studies office. For admission to the free-standing Graduate Certificate Program in Women's Studies, students are required to have earned a bachelor's degree and to have the intellectual skills to do advanced work in Women's Studies. The following material is required:

A. An official transcript of undergraduate record culminating in a bachelor's degree
B. A minimum grade point average of 2.75 (B-) in all undergraduate coursework
C. Letters of recommendation from three previous instructors
D. An official report of the Graduate Record Examination (GRE) General Test results
E. Acceptance by the Women's Studies Program and the Graduate School

Affiliated Faculty

Distinguished Professors

Inde, Don, Philosophy, Ph.D., 1964, Boston University: Phenomenology; philosophy of technology; hermeneutics.
Kaplan, E. Ann, English, and Director of the Humanities Institute, Ph.D., 1970, Rutgers University: 19th- and 20th-century British and American literature; women's studies; film.

Distinguished Service Professor

Paldy, Lester G., Technology and Society, M.S., 1966, Hofstra University: Nuclear arms control; science policy.

Distinguished Teaching Professors

Goodman, Norman, Sociology, Ph.D., 1963, New York University: Social psychology; family; socialization.

Lemay, Helen, History, Ph.D., 1976, City University: Medieval and Renaissance intellectual history; women in premodern Europe.

Professors

Bogart, Michelle, Art, Ph.D., 1979, University of Chicago: 19th- and 20th-century American and European art and culture.
Brandwein, Ruth, School of Social Welfare, Ph.D., 1978, Brandeis University: Family violence, welfare, and poverty; women in administration; organizational/social change; single-parent families; feminist frameworks; history of U.S. social policy; international social welfare.
Charnon-Deutsch, Lou, Hispanic Languages and Literature, Ph.D., 1978, University of Chicago: 18th- and 19th-century Spanish literature; feminist theory.
Hong, Young-sun, History, Ph.D., 1989, University of Michigan, Ann Arbor: Modern Germany; social theory; culture and politics in Modern Europe; gender history.
Huddy, Leonie, *Political Science*, Ph.D., 1987, University of California, Los Angeles: Political psychology; public opinion; women in politics.

Munich, Adrienne, *English*, Ph.D., 1976, City University of New York: Victorian studies; modern American women poets; feminist theory; women's studies.

Wright, Patricia C., *Anthropology*, Ph.D., 1985, City University of New York: Primate behavior and ecology; rainforest conservation; Madagascar.

Associate Professors

Cooper, Helen, *English*, Ph.D., 1982, Rutgers University: Victorian, Latin American, and Carribean literature; creative writing; women's studies.

Erickson, Christa, *Art History and Criticism; Studio Art*, M.F.A., University of California, San Diego: Electronic media; photography; video art.

Frank, Barbara, *Art History and Criticism; Studio Art*, Ph.D., Indiana University: African art history.

Hutner, Heidi, *English*, Ph.D., 1993, University of Washington: 17th- and 18th-century British literature; women writers; colonial discourse; feminist theory.

Lipton, Sarah, *History*, Ph.D., 1991, Yale University: Medieval studies; social and cultural history; gender history.

Oyewumi, Oyeronke, *Sociology*, Ph.D., 1993, University of California, Berkeley: Sociology of gender, race, and knowledge; transnational feminist theory; social inequalities (regional and global).

Rashkow, Ilona, *Comparative Studies*, Ph.D., 1988, University of Maryland: Renaissance literature; feminist literary criticism; the Bible as literature.

Sugarman, Jane, *Music*, Ph.D., 1992, University of California, Los Angeles: Ethnomusicology; Albanian, Yugoslavian, and Bulgarian folk music; music of Arabia, Turkey, and Iran; gender issues.

Wishnia, Judith, *Emerita, Social Sciences Interdisciplinary and History*, Ph.D., 1978, Stony Brook University: Women's history; labor history; European history; anti-war history.

Assistant Professors

Bacon, Jean, *School of Social Work*, Ph.D., 1997, University of South Carolina: Women and AIDS; student development; death and dying; treatment with people of color. *Clinical Assistant Professor.*

Hesford, Victoria, *Women's Studies*, Ph.D., 2001, Emory University: American studies; feminist histories; Feminist cultural memory; queer history and cultural studies.

Walters, Tracey, *Africana Studies and English*, Ph.D., Howard University: African American literature; Caribbean literature; African literature; Pan-African literature; Black British literature and culture; 20th-century American and British literature; journalism.

Lecturers

Calvin, Ritch, *Comparative Literature*, Ph.D., 2000, Stony Brook University: Latina and Chicana literature and culture; feminist science fiction; reproductive technologies.

Kuchner, Joan, *Social Sciences Interdisciplinary*, Ph.D., 1981, University of Chicago: Child and family studies; child development; parent-child relationships; play and recreation through the lifespan; social policy; children's environments.

Sternglanz, Sarah Hall, *Associate Graduate Program Director; Women's Studies and Psychology*, Ph.D., 1973, Stanford University: Psychology of women; sex role development; human ethology.

Requirements for the Graduate Certificate in Women's Studies

The Graduate Certificate Program in Women's Studies is designed to provide an interdisciplinary course of instruction for students already enrolled in a graduate degree-granting program or to those admitted to the free-standing Graduate Certificate Program. To earn the certificate, students must complete a minimum of 15 graduate credits in courses approved for the Certificate Program. Approved credits earned toward a graduate degree in another program or department may be applied toward the Graduate Certificate in Women's Studies. Students should consult with their home
programs to determine whether credits earned for the certificate can be applied to the master's or doctoral degree. Teaching assistantships may be available for advanced students.

Minimum Requirements for the Certificate

A. WST 600 History and Methods of Women's Studies;

B. One course in feminist theory (WST 601 Feminist Theory or WST 602 Social Perspectives on Feminist Theory);

C. An interdisciplinary research colloquium (WST 699 Practicum in Women's Studies). The syllabus developed in this course will be evaluated by the instructor, who will normally be the director of the Women's Studies Program;

D. The remaining six credits may be chosen from the list of approved Women's Studies graduate courses. A number of these courses are cross-listed or offered by faculty in other departments. At least three of the six credits must be taken outside the student's Ph.D. department. No more than three credits of WST 690 may be applied to the degree.

Courses

WST 510, 511, 512 Gender and Culture
A variable topics course on the many ways in which culture and gender interact. Possible topics include women in multinational America, women in the labor movement, and women and social policy.
Prerequisite: Permission of instructor
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

WST 550 Women of Color in the Modern World; Shifting Identities and Feminist Visions
This course explores the various ways in which gender, race, and class, along with other aspects of identity, shape the lives and experiences of women of color in the United States and globally. It presents the ongoing debates concerning the interconnections of gender, race, and shifting identities. It will examine the relationships between the construction of personal identities, identity statuses, cultural and ideological meaning systems, and the search for alternative images. Crosslisted with WST 550.
Prerequisite: Permission from advisor required
Fall, 3 credits, ABCF grading

WST 559 Gender and Health
This course explores gender differences in physical and mental health through the study of psychology, sociology, medicine, and epidemiology.
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

WST 595 Reading Colloquium in Women's History
A topics course dealing with such subjects as women in social movements, the place of gender in particular historical circumstances, imperialism and woman, changing views of sexuality, or relations between family policies and other political programs. This course is offered as both HIS 595 and WST 595.
Fall or spring, 3 credits, ABCF grading

WST 599 Directed Readings in Women's Studies
Students study any subject not ordinarily covered by a course offering if the reading course is supervised by a member of the Affiliates Network and approved by the director of the Graduate Certificate Program in Women's Studies.
Prerequisite: Permission of instructor
Fall or spring, 1-3 credits, ABCF grading
May be repeated as topic varies, but only three credits count toward the certificate.

WST 600 History and Methods of Women's Studies
A study of the emergence of modern Western feminism provides the context for an analysis of the formation of Women's Studies as an area of pedagogy and research. The course investigates the concepts and methods appropriate to interdisciplinary research on women and gender, and how these approaches define Women's Studies as a new area of knowledge. The effects of this interdisciplinary research on assumptions and methods in the traditional disciplines will be analyzed.
Prerequisite: Admission to the Graduate Certificate Program in Women's Studies
Fall or spring, 3 credits, ABCF grading

WST 601 Feminist Theory
This course covers critical works of feminist theory in the humanities. Readings focus on significant works that deal either with the theory and practice of feminism or with feminist methods of scholarship.
Prerequisite: Admission to the Graduate Certificate Program in Women's Studies
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

WST 602 Social Perspectives on Feminist Theory
This course introduces students to the main currents of feminist social, political, and intellectual theory. It will explore theories and texts and the linkages between developing feminism and such fields as economics, sociology, history, and philosophy.
Prerequisite: Admission to the Graduate Certificate Program in Women's Studies
Fall or spring, 3 credits, ABCF grading
May be repeated for credit

WST 610 Advanced Topics in Women's Studies
A variable topics seminar course in women's studies for the advanced student. Topics might include feminist peace politics, women in Third World cinema, feminist theology, or feminist philosophy.
Fall or spring, 3 credits, ABCF grading
May be repeated as topic varies

WST 611 Advanced Topics in Women's Studies
A variable topics seminar course in women's studies for the advanced student. Topics might include feminist peace politics, women in Third World cinema, feminist theology, or feminist philosophy.
Fall or spring, 3 credits, ABCF grading
May be repeated as topic varies

WST 690 Advanced Readings in Women's Studies
Advanced students read on any subject not normally covered by a course offering with any member of the Women's Studies Faculty Affiliates Network.
Prerequisite: Permission of instructor and Director of the Graduate Certificate Program in Women's Studies
Fall or spring, 1-3 credits, ABCF grading
May be repeated for credit

WST 699 Practicum in Women's Studies
An interdisciplinary colloquium. The syllabus developed in this course will be evaluated by the instructor who will normally be the director of Women's Studies.
Prerequisite: A graduate feminist theory course
Co-requisite: Completion of the requirements for the Graduate Certificate in Women's Studies
Spring, 3 credits, ABCF grading
The program in Writing and Rhetoric, in conjunction with the Departments of English and Linguistics, offers a course of study that leads to the Graduate Certificate in Composition Studies. The certificate program, a 15-unit graduate program accredited by the State University of New York, is designed to complement graduate work in literary studies or provide further professional development for those already teaching composition.

Composition Studies gained disciplinary status in the early 1970s because of a growing body of research focused specifically on the learning processes involved in gaining writing literacy. It is a multidisciplinary field, drawing its theories, research, and practices from psycholinguistics, sociolinguistics, cognitive psychology, language acquisition research, genre theory, rhetorical theory, and linguistic anthropology.

Teachers who are grounded in this body of theory and research will be better equipped to identify students’ writing problems and implement effective teaching strategies or to begin a doctoral research project in composition.

Individuals who could benefit from this certificate program include M.A. and M.A.T. candidates in English who are preparing for a teaching career in high school or community college teaching, Ph.D. candidates in English who would like a broad-based degree program and want to do research in Composition Studies, and high school and college teachers seeking advanced training, accreditation, or promotion.

The certificate may, but need not, be completed in four semesters and may be started in the first year of graduate study or in subsequent years. It is recommended that students begin their work in the fall semester, with one of the practicum courses, so that the theoretical work in subsequent courses is grounded in first-hand experience of working with students on their writing. Graduate students who have a teaching assistantship in the Writing and Rhetoric program would take WRT/EGL 698. Master’s-level students and public school teachers with a B.A. or M.A. degree would start with WRT/EGL 592, Problems in Teaching of Writing.

Admission

Admission to the Graduate Certificate Program in Composition Studies is open to any student enrolled in a graduate degree-granting program at Stony Brook University or to students who have completed their B.A.s who meet the admissions criteria.

For applicants already admitted to the University, admission involves filling out a brief form. For direct admission to the Certificate Program in Composition Studies, students are required to have earned a bachelor’s degree with a cumulative grade point average of 2.75 on a 4-point scale. The following must be submitted to the Program in Writing and Rhetoric for admission to the certificate program:

A. A letter of application stating the purpose of study
B. A Graduate School application form
C. An official transcript of undergraduate record culminating in a bachelor’s degree and graduate degree transcript if applicable
D. Two letters of recommendation from teaching supervisors and/or professors

The forms and additional information are available through the Program in Writing and Rhetoric Office.

Program in Writing and Rhetoric
Stony Brook University
Stony Brook, New York 11794-5340

Affiliated Faculty

Bashford, Bruce, English, Ph.D., 1970, Northwestern University: Literary theory and the history of criticism; rhetoric and the teaching of composition; the logic of interpretation and critical argument; humanism.

Broselow, Ellen, Linguistics, Ph.D., 1976, University of Massachusetts-Amherst: Phonology; phonetics; second language acquisition.

Dunn, Patricia, English, D.A., 1991, University at Albany: Composition and rhetoric; English education; disability studies.

Finer, Daniel, Linguistics, 1976, University of Massachusetts-Amherst: Syntax; semantics; language acquisition.

Lindblom, Kenneth, English, Director of the English Teacher Education Program, Ph.D. 1996, Syracuse University: English education; theory, history, and practice of composition-rhetoric; discourse pragmatics.

Martinez-Pizarro, Joaquin, English, Ph.D., 1976, Harvard University: Literary history of the Middle Ages; classical and medieval backgrounds; comparative studies.

Executive Committee

Glockner, Marvin, Associate Dean, School of Professional Development, Stony Brook University.

Joyce, Edward, Department of English, Suffolk Community College.

Kaufman, Dorit, Chair, TESOL Certification, Department of Linguistics, Stony Brook University.

Lewis, Lorna, Executive Director of Teaching and Learning, Three Village School District.

Rianna, Maria, Assistant Superintendent of Schools, Port Jefferson.

Schneider, Howard, Dean, School of Journalism, Stony Brook University.

Spector, Stephen, Chair, Department of English, Stony Brook University.

Certificate Requirements

The certificate, which can be completed in two years, consists of five required courses:

WRT 506/EGL 506 Studies in Literary Theory

WRT 509/EGL 509 Studies in Language and Linguistics or LIN 527 Structure of English

WRT 612/EGL 612 Composition Theory

WRT 613/EGL 613 Research in Composition

WRT 698/EGL 698 Practicum in Teaching of Writing (for Ph.D. candidates or teachers with an M.A. degree) or WRT 592/EGL 592 Problems in the Teaching of Writing (for M.A. and
M.A.T. candidates or teachers with a B.A. degree)

Note: Up to three units of coursework from another institution comparable to these required courses can be applied toward the certificate.

Courses

WRT 506 Studies in Literary Theory
Prerequisite: Matriculation in a graduate program or the composition studies certificate
3 credits, ABCF grading

WRT 509 Studies in Language and Linguistics
3 credits, ABCF grading

WRT 592 Problems in Teaching Writing or Composition
This course provides an overview of writing pedagogy as applied to tutoring in a writing center or in an English classroom. Included in the course is fieldwork in the campus Writing Center.
Fall, 3 credits, ABCF grading

WRT 612 Theories in Composition
This course explores the relationship between reading and writing skills, the differences between speech production and writing production, and the relationship between literacy, culture, and language politics.
Spring, alternate years, 3 credits, ABCF grading

WRT 613 Research in Composition
This course provides an introduction to the nature of empirical research in Composition Studies. Students will survey landmark research studies, learn how to read research reports critically, and conduct a mini-research project in their own classrooms or tutoring situations to analyze underlying causes of students’ writing problems.
Spring, alternate years, 3 credits, ABCF grading

WRT 614 Topics in Composition and Writing
This course can be a directed reading in particular areas of interest for classroom teachers, or a pilot study to prepare for the Ph.D. dissertation in Composition Studies. The shape of the course will be geared to the needs of those enrolled.
3 credits, ABCF grading
May be repeated for credit

WRT 690 Directed Readings
1-12 credits, ABCF grading
May be repeated for credit

WRT 698 Practicum in Teaching Writing
Students take the seminar in conjunction with teaching a section of WRT 101. This course provides hands-on experience and instruction in the basics of writing pedagogy, including designing writing assignments, sequencing assignments, motivating writing, writing skill development and evaluating writing. Students will also be given a preliminary overview of the major theories driving composition pedagogy.
Fall, 3 credits, S/U grading
Directories, Maps, Index, Subject Codes
STATE UNIVERSITY OF NEW YORK

General Statement
State University's 64 geographically dispersed campuses bring educational opportunity within commuting distance of virtually all New York citizens and compose the nation's largest centrally managed system of public higher education. When founded in 1948, the University consolidated 29 state-operated, but unaffiliated, institutions. In response to need, the University has grown to a point where its impact is felt educationally, culturally, and economically the length and breadth of the state.

More than 400,000 students are pursuing traditional study in classrooms or are working at home, at their own pace, through such innovative institutions as Empire State College, whose students follow individualized and often nontraditional paths to a degree. Of the total enrollment, approximately 36 percent of the students are 25 years of age or older, reflecting State University's services to specific constituencies, such as refresher courses for the professional community, continuing educational opportunities for returning service personnel, and personal enrichment for more mature persons.

State University's research contributions are helping to solve some of modern society's most urgent problems. It was a State University scientist who first warned the world of potentially harmful mercury deposits in canned fish, and another who made the connection between automobile and industrial exhaust combining to cause changes in weather patterns. Other University researchers continue important studies in such wide-ranging areas as immunology, marine biology, sickle-cell anemia, and organ transplantation.

More than 1,000 public service activities are currently being pursued on State University campuses. Examples of these efforts include special training courses for local government personnel, state civil service personnel, and the unemployed; participation by campus personnel in joint community planning or project work; and campus-community arrangements for community use of campus facilities.

A distinguished faculty includes nationally and internationally recognized figures in all the major disciplines. Their efforts are recognized each year in the form of such prestigious awards as Fulbright-Hayes, Guggenheim, and Danforth fellowships.

The University offers training in a wide diversity of conventional career fields, such as business, engineering, law, medicine, teaching, literature, dairy farming, medical technology, accounting, social work, forestry, and automotive technology. Additionally, its responsiveness to progress in all areas of learning and to tomorrow's developing societal needs has resulted in concentrations that include the environment, urban studies, computer science, immunology, preservation of national resources, and microbiology.

SUNY programs for the educationally and economically disadvantaged have become models for delivering better learning opportunities to a once forgotten segment of society. Educational Opportunity Centers offer high school equivalency and college preparatory courses to provide young people and adults with the opportunity to begin college or to learn marketable skills. In addition, campus-based Educational Opportunity Programs provide counseling, developmental education, and financial aid to disadvantaged students in traditional degree programs.

Overall, at its EOCs, two-year colleges, four-year campuses, and university and medical centers, the University offers more than 4,000 academic programs. Degree opportunities range from two-year associate programs to doctoral studies offered at 12 senior campuses.

The 30 two-year community colleges operating under the program of State University play a unique role in the expansion of educational opportunity. They provide local industry with trained technicians in a wide variety of occupational curricula, and offer transfer options to students who wish to go on and earn advanced degrees.

The University passed a major milestone in 1985 when it graduated its one millionth alumnus. The majority of SUNY graduates pursue careers in communities across the state.

State University is governed by a board of trustees, appointed by the governor, that directly determines the policies to be followed by the 34 state-supported campuses. Community colleges have their own local boards of trustees whose relationship to the SUNY board is defined by law. The state contributes 33 to 40 percent of their operating costs and 50 percent of their capital costs.

The State University motto is “To Learn—To Search—To Serve.”

Campuses
University Centers
State University of New York at Albany
State University of New York at Binghamton
State University of New York at Buffalo
State University of New York at Stony Brook

Colleges of Arts and Science
State University College at Brockport
State University College at Buffalo
State University College at Cortland
State University College at Fredonia
State University College at Geneseo
State University College at New Paltz
State University College at Old Westbury
State University College at Oneonta
State University College at Oswego
State University College at Plattsburgh
State University College at Potsdam
State University College at Purchase

Colleges and Centers for the Health Sciences
State University of New York Health Science Center at Brooklyn
State University of New York Health Science Center at Syracuse
State University of New York College of Optometry at New York City
Health Sciences Center at SUNY at Buffalo*
Health Sciences Center at SUNY at Stony Brook*

Colleges of Technology and Colleges of Agriculture and Technology
State University of New York College of Agriculture at Alfred
State University of New York College of Technology at Canton
State University of New York College of Agriculture and Technology at Cobleskill
State University of New York College of Technology at Delhi
State University of New York College of Technology at Farmingdale
State University of New York College of Agriculture and Technology at Morrisville
State University of New York College of Technology at Utica/Rome” (upper-division and master’s programs)
Fashion Institute of Technology at New York City***

Specialized Colleges
State University of New York College of Environmental Science and Forestry at Syracuse
State University of New York Maritime College at Fort Schuyler

Statutory Colleges****
New York State College of Agriculture and Life Sciences at Cornell University
New York State College of Ceramics at Alfred University
New York State College of Human Ecology at Cornell University
New York State School of Industrial and Labor Relations at Cornell University
New York State College of Veterinary Medicine at Cornell University
Community Colleges
(Loosly sponsored two-year colleges under the program of State University)

Adirondack Community College at Glens Falls
Broome Community College at Binghamton
Cayuga County Community College at Auburn
Clinton Community College at Plattsburgh
Columbia-Greene Community College at Hudson
Community College of the Finger Lakes at Canandaigua
Corning Community College at Corning
Dutchess Community College at Poughkeepsie
Erie Community College at Williamsport, Buffalo, and Orchard Park
Fashion Institute of Technology at New York City
Fulton-Montgomery Community College at Johnstown
Genesee Community College at Batavia
Herkimer County Community College at Herkimer
Hudson Valley Community College at Troy
Jefferson Community College at Watertown
Mohawk Valley Community College at Utica
Monroe Community College at Rochester
Nassau Community College at Garden City
Niagara County Community College at Sanborn
North Country Community College at Saranac Lake
Onondaga Community College at Syracuse
Orange County Community College at Middletown
Rockland Community College at Suffern
Schenectady County Community College at Schenectady
Suffolk County Community College at Selden, Riverhead, and Brentwood
Sullivan County Community College at Loch Sheldrake
Tompkins Cortland Community College at Dryden
Ulster County Community College at Stone Ridge
Westchester Community College at Valhalla

* The Health Sciences Centers at Buffalo and Stony Brook are operated under the administration of their respective university centers.

** This is an upper-division institution authorized to offer baccalaureate and master’s degree programs.

*** While authorized to offer such baccalaureate and master’s degree programs as may be approved pursuant to the provisions of the Master Plan in addition to the associate degree, the Fashion Institute of Technology is financed and administered in the manner provided for community colleges.

**** These operate as “contract colleges” on the campus of independent universities.

Board of Trustees
Carl T. Hayden, Chair
Randy A. Daniels, Vice Chair
Amaryn I. Audi
Robert J. Bellafiore
Donald E. Boyce
Christopher P. Conners
Edward F. Cox
Thomas F. Egan
Gordon R. Gross
Stephen J. Hunt
H. Carl McCall
Michael E. Russell
Linda S. Sanford
Kay Stafford
Harvey F. Wachsman
Gerri Warren-Merrick
Carl P. Wiezalis

STONY BROOK UNIVERSITY

Members of the Council
Subject to the powers of State University trustees defined by law, the operations and affairs of Stony Brook University are supervised locally by a council. The council is appointed by the Governor, with the exception of a student member, who has all the rights and responsibilities of the other members, and who is elected by the student body. All positions listed as of June 1, 2008.

Richard T. Nasti, Chair
Leonard A. Benedict
John C. Cochrane
John J. Corrado
Robert H. Flynn
John C. Cochrane
Leonard A. Benedict
June 1, 2008.

Officers of Administration
All positions listed as of June 1, 2008.

Shirley Strum Kenny, President
Eric Kaler, Provost and Senior Vice President for Academic Affairs
Peter Baigent, Vice President for Student Affairs and Enrollment and Retention Management
Barbara Chernow, Vice President for Facilities and Services
Richard N. Fine, Dean, School of Medicine
Karol Kain Gray, Vice President for Finance
Gail Habicht, Vice President for Research
Lance King, Vice President for Advancement and President of the Stony Brook Foundation
Yacov Shamash, Vice President for Economic Development and Dean, College of Engineering and Applied Sciences
Steven L. Strongwater, M.D., CEO of Stony Brook University Hospital

Frances Brisbane, Dean, School of Social Welfare
David Conover, Dean, School of Marine and Atmospheric Sciences
Paul J. Edelson, Dean, School of Professional Development
E. Christian Filtz, Dean and Director of Libraries
James Fiore, Director of Athletics
Craig Lehmann, Interim Executive Dean of the Health Sciences Center and Dean, School of Health Technology and Management
Lawrence Martin, Dean, Graduate School
Lenora J. McLean, Dean, School of Nursing
Joseph McDonnell, Dean, College of Business
Barry Ritkin, Dean, School of Dental Medicine
Howard Schneider, Dean, School of Journalism
Martin Schoonen, Interim Dean, Stony Brook Southampton
James V. Staros, Dean, College of Arts and Sciences
Jerrold Stein, Dean of Students

The Graduate School
Lawrence B. Martin, Dean
Shaneen Washington, Executive Assistant to the Dean
Debra Caffrey, Assistant to the Dean
John Peter Gergen, Associate Dean
Nina Maung, Associate Dean for Diversity
Toni Vicari, Turner Program Coordinator
Kent Marks, Assistant Dean for Admissions and Records
Barbara Byrne, Assistant Dean for Finance and Budget
Monica Gentile, Senior Assistant for Admissions and Records
Lauren Scavuzzo, Senior Assistant for Admissions and Records
Carri Matteo, Assistant for Admissions and Records
Rachael Patuano, Assistant for Admissions and Records
Cara Zavlick, File Clerk
Patricia Catalano, Receptionist
Lynne Foerster, Receptionist

International Services
Elizabeth Barnum, Assistant Dean for International Services
Elys Arieta-Padro, Advisor to International Faculty and Scholars
Nancy Lannak, Advisor to International Faculty and Scholars
Antoinette D’Assomption, Advisor to International Students and Scholars
Erin Keefefer, Advisor to International Students and Scholars
Chris Kalesis, Advisor to International Students and Scholars
Emily Ntia, Advisor to International Students and Scholars
Gretchen Gosnell, Advisor to International Students and Scholars
Joan Gurnits, Staff Assistant

Directories
DIRECTIONS TO STONY BROOK

By Car
Take the Long Island Expressway (Route 495) to exit 62; follow Nicolls Road (Route 97) north for nine miles.

Ferry Connection
Connecticut car ferries run from Bridgeport to Port Jefferson (631-473-0286) and from New London to Orient Point (631-323-2525); call for schedules and information.

By Train
From Penn Station in Manhattan, take the Long Island Rail Road’s Port Jefferson line to Stony Brook (631-231-LIRR). Cross tracks for campus bus.

By Bus
Call Suffolk County Transit (631-852-5200) for schedules, rates, and routes for buses to campus from many local towns.

By Air
Land at Kennedy or LaGuardia airports, 50 miles west of campus, or at Long Island MacArthur Airport (631-467-3210), ten miles south of campus. All airports offer limousine and taxi service to campus. In addition, AirTrain JFK transports passengers between Kennedy Airport and Long Island Railroad trains (which go directly to campus), New York City Transit subways, and local buses. For more information, visit www.panynj.gov/airtrain.
INDEX

Included in the Index, in boldface type, are the official degree programs that are registered with the New York State Department of Education. Enrollment on other than registered approved programs may jeopardize a student's eligibility for certain student aid awards.

A

Absence, Leave of ... 39
Absences, Religious ... 41
Academic Calendar .. 42
Academic Conduct, Standards of 40
Academic Honesty ... 41
Academic Level .. 36
Academic Probation ... 40
Academic Progress Standards, Federal 28
Academic Regulations and Procedures 37
Academic Units .. 8
Account Balances .. 24
Activity Fee ... 24
Add/Drop Fee ... 24
Administration, Officers of 373
Admission Process .. 34
Admission Requirements (see also Departmental listings) ... 34
Advanced Graduate Certificates 30, 317
Advanced Graduate Certificate Program Descriptions ... 53
Advancement to Candidacy 38
Affirmative Action .. 4
African Studies, M.A. .. 54
Anatomical Sciences, Ph.D. 58
Anthropology, M.A. .. 67
Apartments ... 30
Application Fee .. 24
Application Fee, Waiver of 35
Applied Ecology .. 142
Applied Mathematics and Statistics, M.S., Ph.D. 71
Archaeology ... 67
Art, Studio, M.F.A. .. 80
Art History and Criticism, M.A., Ph.D. 80
Arts and Sciences, College of 8
Assistantships ... 27
Astronomy ... 291
Athletics .. 13, 16
Atmospheric Sciences .. 219
Auditing .. 40
Award of Degree .. 48

B

Bachelor's/Master's Programs, Combined 36
Billing Statements .. 24
Biochemistry and Structural Biology, Ph.D. 89
Biological Sciences, M.A. 142
Biology 7-12, M.A.T. ... 156, 316
Biomedical Engineering, M.S., Ph.D. 93
Biophysics .. 302
Biopsychology, Ph.D. ... 319
Bookstores ... 16
Business, College of .. 9, 100

C

Campus Description ... 7
Campus-Community Ties .. 12
Campuses, SUNY .. 372
Campus Map ... 374
Campus Resources .. 15
Career Center .. 17
Changing Courses .. 38
Chemistry, M.S., Ph.D. .. 110
Chemistry 7-12, M.A.T. .. 114, 156, 316
Child Care ... 17
Clinical Psychology, Ph.D. 319
Coaching, Advanced Graduate Certificate 317
College of Arts and Sciences 8
College of Business ... 9, 100
College of Engineering and Applied Sciences 9
Combined Bachelor's/Master's Programs 36
Comparative Literary and Cultural Studies, M.A., Ph.D. .. 118
Composition Studies, Advanced Graduate Certificate 368
Computer Engineering .. 160
Computer Science, M.S., Ph.D. 125
Computing Services .. 17
Conditional Admission ... 35
Conduct, Standards of Academic 40
Conduct Code, Student ... 13
Counseling Center .. 18
Craft Center .. 21
Creative Writing and Literature, M.F.A. 138
Credit, Transfer of .. 35
Cultural Anthropology .. 67

D

Dean's Message .. 2
Deferments ... 25
Degree Opportunities .. 8
Degree Program Descriptions 53
Degree Programs, List of 50
Degree Requirements .. 43
Degree and Advanced Graduate Certificates Awarded 49

E

dentistry, D.D.S. .. 141
Directions to Stony Brook .. 376
Disability Support Services 18
Doctor of Arts in Foreign Languages 176
Doctor of Musical Arts ... 46, 266
Doctor of Philosophy .. 45
Dramaturgy, M.F.A. ... 360

F

Faculty .. 7
Federal Academic Progress Standards 28
Federal and State Aid ... 28
Fees ... 24
Fellowships and Awards .. 27
Financial Aid ... 26
Finance, Advanced Graduate Certificate 102
Financial and Residential Information 23
Food on Campus .. 32
Foreign Languages, D.A. 176
French ... 176
French 7-12, M.A.T. .. 153, 176, 316
Full-Time Students ... 36
G

Genetics, Ph.D. ... 186
Geosciences, M.S., Ph.D. 190
German ... 176
German 7-12, M.A.T. 154, 176, 316
Germanic Languages and Literature, M.A. 176
Global Operations Management, Advanced
Graduate Certificate 354
Grade Changes .. 40
Grading System... 39
Graduate Assistance in Areas of National
Need (GAANN) ... 29
Graduate Assistantships 27
Graduate Certificate Program Descriptions ... 53
Graduate Certificates, List of 50
Graduate Council 38
Graduate Education, Organization of 38
Graduate Record Examination (GRE) 34
Graduate School Administration 373
Graduate School Traineeships 27
Graduate Student Organization 18
Graduate Student Survival Guide 18
Graduate Studies, Areas of 50
Graduate Studies Codes 50, 380
Grievance Procedures 41

International Students 32, 34
International Services 19
Introduction to Stony Brook 5
Italian ... 176
Italian 7-12, M.A.T. 154, 176, 316

J

Jacob K. Javits Fellowships 29
Judiciary, Student 13

L

Late Payment Fee 24
Late Registration Fee 24
Leave of Absence 39
Liberal Studies, M.A. 315
Libraries ... 19
Linguistics, M.A., Ph.D. 214
Loans ... 28
Long Island, Map of 376
Long Island State Veterans Home 12

M

Maps ... 374, 376
Marine and Atmospheric Sciences,
M.S., Ph.D. .. 10, 214
Marine Sciences Research Center 219
Master of Arts .. 44
Master of Arts in Liberal Studies 45, 315
Master of Arts in Teaching 316
Master of Business Administration 44, 100
Master of Fine Arts 44
Master of Music .. 44
Master of Philosophy 47
Master of Professional Studies 315
Master of Public Health 327
Master of Science 44
Materials Science and Engineering,
M.S., Ph.D. .. 228
Mathematics, M.A., Ph.D. 235
Mathematics 7-12, M.A.T. 155, 235, 316
M.B.A. Program ... 100
Mechanical Engineering, M.S., Ph.D. 242
Medicine, M.D., M.D./Ph.D., Ph.D. 250
Microbiology ... 262
Ministries, Campus 20
Molecular and Cellular Pharmacology,
Ph.D. .. 257
Molecular and Cellular Biology, Ph.D. 251
Molecular Genetics and Microbiology,
Ph.D. .. 262
Music, M.A., D.M.A., Ph.D. 266

Music Composition 266
Music History and Theory 266
Music Performance, M.M. 266

N

Neuroscience, Ph.D. 277
New York State Tuition Assistance Program (TAP) ... 29
Non-Matriculated Status 35
Nursing, B.S./M.S., M.S. 280

O

Oceanography .. 220
Oceanic Science, Advanced Graduate
Certificate ... 220
Off-Campus Housing 20, 31
Ombuds Office .. 20
On-Campus Housing 30
Operations Research, Advanced Graduate
Certificate ... 71, 318
Oral Biology and Pathology,
M.S., Ph.D. ... 141, 281
Organization of Graduate Education 38
Overview of Stony Brook 6

P

Parking and Traffic 13
Part-Time Students 36
Payment of Tuition and Fees 24
Perkins Loan .. 28
Philosophy, M.A., Ph.D. 285
Physical Anthropology 67
Physics, M.A., M.S., Ph.D. 291
Physics 7-12, M.A.T. 156, 316
Physiology and Biophysics, Ph.D. 302
Policies and Procedures 13
Political Science, M.A., Ph.D. 308
Probation, Academic 40
Professional Studies 315
Provost's Message 2
Psychology, Clinical, Ph.D. 319
Psychology, Experimental, Ph.D. 319
Psychology, Social/Health, Ph.D. 319
Public Health, M.A. 327
Public Policy, M.A. 308
Publications, Student 21

R

Readmission ... 35
Records, Educational 41
Registration ... 38
INDEX

Regulations, Waiver of 48
Requirements, Degree 43
Religious Absences 41
Research ... 6, 11
Research Assistantships 27
Residency Requirement, New York State 29
Residential Information 30
Resources, Campus ... 15
Returned Check Fee 24
Romance Languages and Literature,
M.A. .. 176, 200
Russian ... 176
Russian 7-12, M.A.T. 154, 176, 316
School District Business Leader, Post-Master's
Advanced Graduate Certificate 317
School of Dental Medicine 141
School of Health Technology and Management 199
School of Medicine .. 250
School of Nursing .. 280
School of Professional Development 11, 315
School of Social Welfare 339
Slavic Languages and Literature, M.A. 176
Social/Health Psychology, Ph.D 319
Social Studies 7-12, M.A.T. 157, 209, 316
Social Welfare, Ph.D. 339
Social Work, M.S.W. 339
Sociology, M.A., Ph.D. 349
Spanish ... 154, 176, 202, 316
SPD .. 11, 315
Stafford Loan ... 28
Staller Center for the Arts 13
Standards of Academic Conduct 40
State University of New York 372
Statistics ... 71
Stony Brook Council 373
Stony Brook Union .. 20
Student Activities .. 21
Student Activities Center 20
Student Conduct Code 13
Student Educational Records 41
Student Expenses .. 26
Student Health Services 22, 31
Student Judiciary, Office of the 13
Student Services .. 15
Study Abroad .. 19
Subject Codes ... 380
SUNY Exchange Program 39
T
TAP .. 29
Teaching, Master of Arts in 151, 316
Biology ... 156, 316
Chemistry ... 114, 156, 316
Earth Science ... 156, 195, 316
English .. 152, 169, 316
French ... 153, 176, 316
German .. 154, 176, 316
Italian ... 154, 176, 316
Mathematics .. 155, 235, 316
Physics .. 156, 316
Spanish ... 154, 176, 202, 316
TESOL .. 158, 215
Teaching Assistantships 27
Teaching English to Speakers of Other
Languages (TESOL), M.A. 158, 215
Technological Systems Management,
M.S. .. 354
Technology and Society 354
TESOL .. 158, 215
Theatre, M.A. ... 360
Theoretical Physics, Institute for 293
Traineeships ... 27
Transcript Fee .. 24
Transcripts .. 41
Transfer of Credit ... 35
Tuition and Fees .. 24
Tuition Assistance Program (TAP) 29
Tuition Liability Schedule 25
Tuition Scholarships 27

U
Union, Stony Brook .. 20
University Hospital .. 9, 12

V
Veterans Affairs ... 22
Veterans Educational Benefits 28
Veterans Home, Long Island State 12

W
Waiver of Regulations 48
Waste Management, Advanced Graduate
Certificate .. 220
Wellness Center .. 21
Withdrawals ... 25, 39
Women's Studies, Advanced Graduate
Certificate ... 365
Subject Codes

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT CODE</th>
<th>SUBJECT CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFH</td>
<td>Africana Studies</td>
<td>HBH</td>
</tr>
<tr>
<td>AMS</td>
<td>Applied Mathematics and Statistics</td>
<td>HBM</td>
</tr>
<tr>
<td>ANT</td>
<td>Anthropology, Cultural and Archaeology</td>
<td>HBP</td>
</tr>
<tr>
<td>ARH</td>
<td>Art History</td>
<td>HBY</td>
</tr>
<tr>
<td>ARS</td>
<td>Studio Art</td>
<td>HD</td>
</tr>
<tr>
<td>BEE</td>
<td>Ecology and Evolution</td>
<td>HDO</td>
</tr>
<tr>
<td>BGE</td>
<td>Genetics</td>
<td>HIS</td>
</tr>
<tr>
<td>BHS</td>
<td>Basic Health Sciences</td>
<td>HWD</td>
</tr>
<tr>
<td>BIO</td>
<td>Biological Sciences</td>
<td>IDC</td>
</tr>
<tr>
<td>BIP</td>
<td>Biopsychology</td>
<td>IEP</td>
</tr>
<tr>
<td>BME</td>
<td>Biomedical Engineering</td>
<td>ISE</td>
</tr>
<tr>
<td>BSB</td>
<td>Biochemistry and Structural Biology</td>
<td>ITL</td>
</tr>
<tr>
<td>CHE</td>
<td>Chemistry</td>
<td>LIN</td>
</tr>
<tr>
<td>CLP</td>
<td>Clinical Psychology</td>
<td>MAS</td>
</tr>
<tr>
<td>CSE</td>
<td>Computer Science</td>
<td>MAT</td>
</tr>
<tr>
<td>CST</td>
<td>Comparative Literary and Cultural Studies*</td>
<td>MIA</td>
</tr>
<tr>
<td>CWL</td>
<td>Creative Writing and Literature</td>
<td>MCB</td>
</tr>
<tr>
<td>DLF</td>
<td>D.A. in Foreign Language–French</td>
<td>MEC</td>
</tr>
<tr>
<td>DPA</td>
<td>Anthropology (Inter-Doctoral Program in Anthropological Sciences)</td>
<td>MUS</td>
</tr>
<tr>
<td>DRM</td>
<td>Dramaturgy</td>
<td>NEU</td>
</tr>
<tr>
<td>ECO</td>
<td>Economics</td>
<td>OEM</td>
</tr>
<tr>
<td>EGL</td>
<td>English</td>
<td>PHI</td>
</tr>
<tr>
<td>EMP</td>
<td>Engineering Management</td>
<td>PHY</td>
</tr>
<tr>
<td>ESE</td>
<td>Electrical Engineering</td>
<td>POL</td>
</tr>
<tr>
<td>ESL</td>
<td>Teaching English to Speakers of Other Languages (TESOL)</td>
<td>PPL</td>
</tr>
<tr>
<td>ESM</td>
<td>Materials Science and Engineering</td>
<td>PSY</td>
</tr>
<tr>
<td>EST</td>
<td>Technological Systems Management (Technology and Society)</td>
<td>SCP</td>
</tr>
<tr>
<td>EXP</td>
<td>Cognitive/Experimental Psychology</td>
<td>SOC</td>
</tr>
<tr>
<td>FLA</td>
<td>Foreign Language Teacher Preparation</td>
<td>SPN</td>
</tr>
<tr>
<td>FRN</td>
<td>Romance Languages and Literature – French</td>
<td>THR</td>
</tr>
<tr>
<td>FSY</td>
<td>Study Abroad</td>
<td>TMP</td>
</tr>
<tr>
<td>GEO</td>
<td>Geosciences</td>
<td>WRT</td>
</tr>
<tr>
<td>GRD</td>
<td>The Graduate School</td>
<td>WST</td>
</tr>
<tr>
<td>HBA</td>
<td>Anatomical Sciences</td>
<td></td>
</tr>
</tbody>
</table>

*CST was formerly CLT

**MAS was formerly MAR and OCN

***NEU was formerly BNB

For a list of School of Professional Development codes, consult the SPD Graduate Bulletin.
CLT 501
COMPARATIVE LITERATURE METHODOLOGY