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Abstract of the Dissertation

Measurement-based Modeling of Interference in Wi-Fi Networks: Techniques and

Applications

by

Anand Kashyap

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

Characterizing interference is critical to understandingthe performance of a wireless

network. Many protocol and algorithmic work fundamentallydepend on such charac-

terization. However, current research considers interference models that are either over-

simplified or too abstract with unknown parameters limitingtheir use in practice. We

address this issue in connection with WiFi networks (i.e., IEEE 802.11-based) due to their

widespread use.

We first develop a practical, measurement-based model to estimate the capacity of any

given link in the presence of any given number of interferinglinks in an actual deployed

802.11 network, carrying any specified amount of offered load. For a network with N nodes,

only O(N) measurement steps are needed to gather metrics forindividual links that seed

the model. We provide two solution approaches: one based on direct simulation (slow, but

accurate) and the other based on analytical methods (faster, but approximate). We also

show that as a by-product of our research we can create a highly accurate simulation model
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(e.g., using a packet level simulator such as ns2) of a real deployed network by seeding the

simulator with measurement data.

In an application of the above-mentioned capacity model, weaddress the issue of sup-

porting voice-over-IP (VoIP) calls in a wireless mesh network. Specifically, we propose

solutions for call admission control (CAC) and route selection for VoIP calls. Call admis-

sion decisions are made by using the capacity model to predict whether the capacity con-

straints at various nodes will be satisfied if a new call is admitted with a given route. We also

develop a polynomial-time algorithm to search for feasibleroutes. In addition to studying

feasibility, we study several routing metrics such as shortest feasible path and maximum

residual feasible path.

The above modeling approach requires active measurements.Also, it requires instru-

mentation access to network nodes. These could be impractical in many deployment sce-

narios. To address this issue, we develop an approach to estimate the interference between

nodes and links in a live 802.11 network by passive monitoring of wireless traffic using

a distributed set of sniffers. We model the 802.11 protocol as a Hidden Markov Model

(HMM), and use a machine learning approach to learn the statetransition probabilities in

this model using the observed wireless traffic traces. This in turn helps us to deduce the

interference relationships. We show the effectiveness of this approach via simulations and

real experiments.
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CHAPTER 1

INTRODUCTION

Wi-Fi is the common name for the popular wireless technologyconsisting of a suite of

IEEE 802.11 protocols (802.11n, 802.11b, 802.11g, 802.11a, etc.). These protocols are

defined for both the physical and MAC layer for wireless networking. Wi-Fi operates in

the frequency bands of either 2.4GHz or 5GHz. Using stock antennas, the range of Wi-Fi

connectivity is limited to a range of 100–1000 meters, whichis much less than cellular

wireless technologies, but higher than short-range wireless technologies like Bluetooth,

Zigbee motes, etc. The feature which gives Wi-Fi significantadvantage over medium-to-

long range wireless technologies is the achievable bandwidth, which can be upto a raw data

rate of 54Mbps using 802.11g or 802.11a, and even as high as 108Mbps using 802.11n.

The above features, along with the ability to operate in unlicensed spectrum, have made

Wi-Fi the wireless technology of choice for several home andbusiness applications, such

as internet access, gaming, video streaming, etc. The popularity of Wi-Fi has driven down

the price of such radio interfaces, due to which Wi-Fi can be found in several consumer

devices, such as laptop computers, PDAs, mobile phones, etc.

Owing to the ubiquitous presence of cheap Wi-Fi devices, several Wi-Fi networks have

been deployed in recent years. Such networks can generally be classified as infrastructure-

mode network, such as wireless LANs or wireless mesh networks, or infrastructure-less

network, such as ad hoc networks. A wireless LAN (WLAN) consists of Wi-Fi access

points (APs) deployed on a wired backbone, and provide access to Wi-Fi clients on the last

hop. WLANs are deployed on small scales in places such as coffee shops, conference halls,

and homes, as well as on large scales, such as in campuses, airports, hotels, and offices. A
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wireless mesh network (WMN) is similar to a WLAN except that the WiFi APs commu-

nicate wirelessly as well. There has been a recent initiative for deploying community-wide

and city-wide wireless mesh networks. Unlike WLANs and WMNs, a wireless ad hoc net-

work is a decentralized network, where instead of a client-AP interaction, each participating

node becomes a part of the network. Such networks are especially useful in emergency sce-

narios, like miliary operations or natural disasters, and in cases where a quick deployment

is needed.

The major technical challenge faced by all these Wi-Fi networks is the phenomenon of

wireless interference. In this dissertation, we look at ways to characterize interference and

develop applications using such characterization. Interference limits the aggregate capacity

of Wi-Fi networks, causes starvation and collisions, and reduces the quality of user expe-

rience. A lot of research has been done to develop techniquesto mitigate interference.

Several methods have been proposed in the area of topology control, radio resource assign-

ment, MAC layer enhancements, routing and even applicationdesign to reduce interfer-

ence. However, while interference can be reduced, it cannotbe eliminated, and this moti-

vates our work in this dissertation. We argue that protocolsand algorithms for wireless

networks should be developed by incorporating an accurate model of interference. With

this regard, we develop a measurement-based model to estimate the impact of interference

in a wireless network. We also show the benefit and accuracy ofsuch modeling by devel-

oping interference-aware applications which take advantage of such models.

1.1 KEY COMPONENTS

In this dissertation, we focus on suggesting ways to improveuser performance in real and

deployed networks. This leads to several practical considerations, which are discussed in

this section. Following are some of the key components of ourwork.

Interference from multiple interferers – Prior research has often characterized inter-

ference as a parameter between a pair of nodes or links. This gives the representation of the
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interference model as a conflict graph [37]. Due to its simplicity, the conflict graph model

has been used extensively in developing algorithms for channel assignment [11, 69], power

control [11], and routing. It has also been used for developing models to estimate capacity

of a network. Such algorithms have often been shown to perform poorly in real deployed

networks. This is because, in practice, interference is notjust a pairwise entity. A link may

suffer from interference from multiple interferers at once. This has been modeled as the

physical interference model proposed in the seminal work ofGupta and Kumar [34]. In

our work, we consider the more realistic physical interference model, thus considering the

effect of multiple interferers. We build the model for capacity and the interference-aware

applications by considering the physical interference model rather than a pairwise interfer-

ence relationship.

Non-binary interference – In addition to using a conflict graph model, interference has

often been considered as a binary value, which means that either two nodes, or links, inter-

fere or they do not. This is based on the simplified assumptionof the physical layer of a

wireless network. This further simplifies protocol and algorithm development because the

conflict graph considered is just an unweighted graph. In reality, due to the irregularities of

the wireless medium, the interference relation between links may vary with time. Padhye,

et. al. [65] ask the question that if two links interfere, then “how much” do they interfere?

In our work too, we use a non-binary notion of interference, and estimate the probability

that a set of nodes/links interfere with each other.

Measurement based modeling of physical layer – Many theoretical and analytical

models have been proposed to predict the capacity of a wireless network. In addition

to using a simplified interference model explained above, they use a simplified physical

layer model. They make assumptions on the propagation environment and the inter-

face characteristics and use various model parameters (e.g., path loss exponent) that are

hard to instantiate. Since our emphasis is on reaslism of modeling, we do not make any

3



such assumptions. We rely on measurements done over a real network to characterize

interference at the physical layer. Recent years have shownan increasing emphasis on

measurements to evaluate wireless networks [71, 65, 43]. Weuse measurement based

modeling to develop accurate wireless simulators, and we use measurements to instantiate

our capacity model.

Real and deployed Wi-Fi networks – We target our work for real deployed Wi-Fi net-

works, such as wireless mesh networks, or enterprise wireless LANs. Thus, the models we

develop need to be accurate, and the applications should have low overhead and should

have good performance in practice. This motivates the choice of measurement-based mod-

eling of interference. The applications we have proposed inthis work are developed for

such networks. We develop algorithms to support VoIP calls in wireless mesh networks,

and we develop a radio resource management for enterprise WLANs.

1.2 CONTRIBUTIONS

We make the following contributions in this dissertation

• We develop a measurement-based model to predict the capacity of any given link in

a 802.11-based wireless network in the presence of any givennumber of interferers

carrying any specified amount of offered load [45]. OnlyO(N) measurement steps

are needed to gather metrics for individual links that seed the model. We provide two

solution approaches – one based on direct simulation (slow,but accurate) and the

other based on analytical methods (faster, but approximate).

• We address the issue of unrealistic simulations of wirelessnetworks using a

measurement-based approach. The idea is to use empirical modeling using mea-

surement data as a mechanism to model physical layer behavior. We demonstrate

the power of this approach for 802.11-based networks using ns2, a packet-level

simultator by replacing the physical layer with measurements from a real testbed.
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• We develop an approach to estimate the interference betweennodes and links in

a live 802.11 network by passive monitoring of wireless traffic using a distributed

set of sniffers. We model the 802.11 protocol as a Hidden Markov Model (HMM),

and use a machine learning approach to learn the state transition probabilities in this

model using the observed wireless traffic traces. This in turn helps us to deduce the

interference relationships. We show the effectiveness of this approach via simulations

and real experiments.

• We study the problem of supporting VoIP calls in a wireless mesh network [47].

Specifically, we design solutions for call admission control (CAC) and route selection

for VoIP calls. We address this issue via a measurement-based modeling effort to

model mutual interference between wireless links. The modeling approach evaluates

whether capacity constraints (or, required QoS metrics) will be satisfied if a new call

is admitted with a given route.

1.3 OUTLINE

The rest of this dissertation is organized as follows. We first develop a measurement-based

capacity model for 802.11-based networks in chapter 2. We then present a method to make

ns-2 more accurate for wireless simulators using the ideas from the modeling work in

chapter 3. In chapter 4, we present the machine learning approach for estimating pair-

wise interference in Wi-Fi networks. In chapter 5, we present the first application for the

measurement-based modeling - supporting VoIP calls over wireless mesh networks. We

present our conclusions in chapter 6.
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CHAPTER 2

MEASUREMENT-BASED L INK CAPACITY MODEL

In this chapter, we present a practical, measurement-basedmodel that captures the effect of

interference in 802.11-based mesh networks. We model the capacity of a given link in the

presence of any given number of interferers in a deployed network, carrying any specified

amount of load. A link capacity model has several applications in deployed networks, such

as for radio frequency resource assignment, and for wireless network management.

2.1 INTRODUCTION

Practical models for predicting the wireless link capacityare crucial to an efficient opera-

tion and deployment of wireless network. The performance ofnetwork protocols and algo-

rithms such as QoS routing, load balancing, admission control and channel assignment can

be significantly improved with an accurate model of link capacity. Capacity models are

Figure 2.1: Example of problem.
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also required as analysis tools to efficiently explore a gamut of network configurations and

traffic load scenarios for performance evaluation.

Recently, the proliferation of 802.11 based wireless LAN and mesh networks has lead to

several research efforts focussing on predicting the capacity of an 802.11-specificwireless

link [65, 71]. What makes the accurate estimation of 802.11 link capacity an inherently

challenging task is that the link capacity is an ensemble effect of physical layer behavior,

complex CSMA-based MAC layer interaction, and interference effect from multiple active

sources.

The objective of our work is to characterize and model the impact of interference caused

by active traffic frommultiplesurrounding nodes on the link capacity. For example, refer-

ring to Figure 2.1, consider a set of active links (CA, BD and EF) with specified amounts of

offered traffic loads (in Mbps, for example). Our goal is to create a model that can predict

the throughput capacity of any given link (e.g., BC or AB), i.e., the maximum amount of

traffic (in Mbps) that the link can carry. Unlike the plethoraof modeling work in existing

literature [16, 32, 55] that uses purely analytical approaches, our end goal is toestimate

link capacities in a real deployed network.

Characterizing the impact of interference: Interference impacts the sender by reducing

its maximum sending rate as determined by the CSMA based 802.11 MAC layer interac-

tion. Interference also impacts the receiver by reducing the probability of successful packet

reception by causing collisions at the receiver. The specifics of the MAC protocol (e.g.,

random backoff) as well as implementation-specific physical layer components such ascar-

rier sense threshold(i.e., what received power must be sensed to decide that the medium is

busy) andpacket capture threshold(i.e., threshold of signal-to-noise-plus-interference ratio

to be able to receive a packet successfully) are other factors which affect the interference-

limited capacity of a wireless link.

Existing models for single-hop [16, 55] and multi-hop [32] 802.11 networks suffer

from the limitation that they are based on the assumption of idealized channel condition
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where each link is lossless. They also assume that interference is ‘pairwise’ (i.e., happens

between node or link pairs only) and ‘binary’ (i.e., interference is either present or absent).

The popularly used protocol model of interference [34] is anexample of such interference

modeling. However, recent measurement studies [65, 24, 76]have shown that interference

is neither pairwise or binary. The effect of multiple interferers and effect of realistic channel

and interface behavior must be accounted for accurate modeling.

Measurement-based capacity model:Evidently, a model built on actual measurement

of appropriate metrics can avoid the unrealistic assumptions. However, such models must

be of a reasonable measurement complexity to be practical and must also be robust to

potentially changing operating conditions. To that end, a recent model based on measuring

just signal strengths between node pairs has been proposed by Reiset al. [71] to predict

capacity of a link. Their model however is described for the case of single interferer and

does not address the general and realistic case where the effect of simultaneous multiple

interferers on link capacity must be considered. The case for multiple interferers is chal-

lenging because of the following reasons. The model has to considerevery possiblecom-

bination of interfering transmitters, because any number of them could be transmitting at a

time. The model also has to capture the effect of any possibletraffic load scenarios at the

interferers.

Main contributions: The contributions in our work are as follows.

i. We develop a general framework for modeling 802.11 networks (Sections 2.3

and 2.4). This presents a novel “coupled” approach, where a MAC-layer model uses

a measurement-based PHY-layer model and seeds it using measurements from the

target network. These measurements consist of easily measurable link metrics and

can be done inO(N) steps for anN node network.

ii. We develop a tractable analytical solution approach forthe model (Sections 2.5

and 2.6), that – while approximate relative to direct simulations – presents an excel-

lent tradeoff for speed and accuracy. We show how this approach is able to estimate
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the throughput capacity of a given link with any number of interferers with given

traffic loads.

iii. We provide extensive validations using direct measurements from the testbed (Sec-

tion 3.5). Our validation results show, for example, that the model is able to predict

the link capacity for over 90% of cases within an error less than 10% of the channel

bitrate. We present validation results up to 5 interferers providing a very complete

study.

iv. We also demonstrate why modeling approaches like ours isimportant. Existing algo-

rithmic and analytical work uses very simple and unrealistic capacity models for

evaluation. We pick three such models and show that such models often fare very

poorly in estimating link capacities in real networks relative to our approach (Sec-

tion 2.8.2).

2.2 RELATED WORK

The capacity of a wireless link depends upon the quality of the link and the amount of inter-

ference. Several measurement studies [23, 9, 51, 17] have been done in literature to study

the link quality in 802.11-based wireless networks. Similarly, several works have looked at

the issue of interference in such networks in addition to link quality [38, 24, 65, 71, 18].

In [38], authors investigated the impact of carrier sensing. In [18], the authors developed a

model for the physical layer capture. In [65], Padhyeet al.developed a measurement-based

methodology to characterize link interference in 802.11 networks. They pointed out that

interference between links is not “binary” in practice unlike assumed in many analytical

work that use simple graph-based conflict models. In [24], the authors showed that pairwise

interference modeling is often not accurate and multiple interferers must be accounted for.

The work by Reiset al. [71] is the most related to our current work. They proposed

a model to use the measured signal strength between pair of nodes, thus requiring only

O(N) experiments, to characterize link quality as well as to create a physical layer model
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for deferral and collision. The model, though useful for a single interferer case, is not

trivially extensible to multiple interferer scenarios. Our approach is similar to that of [71]

in terms of measurement complexity. However, the main focusof our work is to develop a

very general model that captures the effect of multiple interferers and any loading scenario

for the interferers.

There have been several studies in characterizing and evaluating the capacity of wireless

networks using analytical modeling. The capacity in this context is the network capacity

for multihop flows. Prominent examples include asymptotic capacity modeling in [34] and

capacity modeling using concepts from network flow maximization in [37, 56]. They all use

various abstract link interference models – from pairwise models, such as protocol model,

to more general models, such as physical interference model, based on SINR (signal to

interference plus noise ratio). Typically, simple path loss models are assumed for RF prop-

agation. Even with the most realistic models, instantiating such models in a real network is

hard without actual measurements, as models come with several unknown parameters. The

papers in this category are interested in performance bounds and typically do not use any

MAC protocol model except slotted TDMA scheduling.

Finally, several papers have considered analytical modeling of 802.11 MAC protocol in

multihop context to determine throughput and fairness characteristics. For example, Garetto

et al. [32] extended Bianchi’s single hop analytical model [16] toa multi-hop 802.11 net-

work to derive the per-flow throughput in a multi-hop network. Gaoet al. [31] have pro-

posed another analytical model to determine the end-to-endthroughput capacity of a path

carrying a flow in a multi-hop 802.11 network. However, all these works still use simple

pairwise (or protocol) model of interference. The advantage of using such pairwise model

is that a node that is not an interferer in isolation cannot become an interferer in conjunction

with other nodes. However, in SINR-based physical interference model, this is a possibility.

Our work is complementary to many of these analytical approaches as it provides a

vehicle to characterize interference modeling via real measurements. A fresh modeling
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approach is needed to enable use of real measurements due to the requirement that we

handle SINR-based physical interference unlike the above analytical approaches.

2.3 MODELING APPROACH

In this section, we formally present the problem we are addressing, and present our

approach towards solving it.

2.3.1 PROBLEM FORMULATION

We are interested in determining the capacity of a specific link in a 802.11 network given

the offered load on a set of other links. More formally, assume anN node network with all

nodes in the same channel and using the same PHY-layer bit rate. Assume a subnetwork

with n+1 nodes consisting of a set ofn transmitters,Z = {z1 . . . zn}, and a receiver,x. We

are interested in evaluating the throughput capacity of thelink from one of the transmitters

(say,zi) to the receiverx. In this case,zi acts as sender and all nodes inZ − {zi} act as

interferers. All other nodes in the network outside the subnetwork above are assumed silent.

We will use the notationCsender
receiver(set of interferers) to designate throughput capacity of the

link. Thus, we are interested in determining the throughputcapacity,Czi
x (Z − {zi}), of the

link zi to x, given the offered loadli on each transmitter inZ.

The capacity of an 802.11 wireless link depends on the following factors – (i) channel

quality that determines the bit error rate for a given PHY-layer bit rate (governed by mod-

ulation used); this translates to packet loss rate from the point of view of an upper layer

protocol; (ii) interference from other transmissions in the network that influences how the

802.11 MAC protocol behaves at the sender side and whether packet collisions occur at the

receiver side. Our goal is to develop a measurement based model that captures the “time

averaged” behavior of the physical and MAC layers in 802.11,and thereby predicts the

throughput capacity of a wireless link in presence of any number of interferers and with
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Figure 2.2: Overview of the modeling approach.

any given traffic load matrix. Note that given the time varying nature of wireless channels,

“instantaneous” behaviors are very hard to model using measurement based approaches.

2.3.2 OVERVIEW OF APPROACH

A high level block diagram of our approach is shown in Figure 2.2 with pointers to sections

where different parts are described in this chapter. The centerpiece is a MAC-layer model

of 802.11 that is fed by a PHY-layer model. The PHY layer modelmodels two behaviors

that MAC depends on: (i)deferral, whether enough interference power is received to indi-

cate carrier busy, (ii)packet capture, whether the SINR is high enough such that packet is

received correctly. These dependencies are modeled via measurements in a one-time pro-

filing experiment. The profiling is done for each interface card model or type, and can be

reused.

These models are seeded by link-wise measurement of RSS (received signal strength)

values in the target wireless LAN or mesh network. The RSS values can be measured by

having each node taking turn and sending a set of broadcast packets. For a given broad-
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casting sender, rest of the nodes record RSS. For anN node network, the measurement

requiresO(N) measurement steps and provides the metrics for all theN(N − 1) links.

This seeding now makes the MAC-layer model amenable to numeric solution.The solution

evaluates how long the model stays in appropriate states that contribute to capacity.We

propose two solution approaches - (a) analytical method and(b) simulation. The analyt-

ical method (Section 2.5) translates the model to a set of coupled equations that are solved

using numerical methods. The method uses certain (reasonable) assumptions to make it

analytically tractable, which also makes the solutions approximate. Simulation, on the other

hand, accurately follows the MAC-layer model (described inSection 2.4), but results in

much slower computation. We will demonstrate this further in the evaluation section in

Section 3.5.

We validate the entire approach by comparing the link capacities estimated via this

modeling approach with direct measurements on the target mesh network testbed. Note

that the dotted blocks in Figure 2.2 are not needed for capacity evaluation in a deployed

network. The profiling is to be done one time only and should beavailable as a library for

different interface card models. The validation step is also not necessary. It is used only to

demonstrate the power of our approach in this chapter and also for comparison with other

approaches of estimating link capacities.

2.4 MODELING 802.11 BEHAVIOR

We begin by stating an assumption that we have made in most of the chapter for modeling

convenience. We assume that 802.11 is using only broadcasts, i.e., implementing unicast

using broadcasts. Broadcast does not have link-layer ACKs,and exponential backoffs. This

simplifies the model to some extent. It has also been shown that interference between links

carrying unicast traffic can be well predicted by the amount of interference computed when

they carry broadcast traffic [65, 71]. Note that we are merelyusing this simplification for
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Figure 2.3: State transition diagram for 802.11 on the sender-side.

brevity. The modeling approach is general and can be extended to unicasts, as will be shown

in Section 2.7.2.

We present the behavior of 802.11 MAC protocol from the pointof view of a single

node as a discrete time Markov chain (see Figure 2.3). For this we discretize time, albeit

somewhat artificially, into slots. These slots are different from 802.11 slots. The size of

the slots is chosen such that they are small enough that the protocol state does not change

within a slot, and the duration of any protocol state has onlyinteger number of slots.

There are five possible states – IDLE, DIFS, BACKOFF, DEFER orXMIT. Each of

these states consists of many sub-states denoting the number of slots they span. We need

multiple sub-states because the sub-states are not independent of each other. When the node

is not attempting any transmission, it is in the IDLE state. When in IDLE state, in every
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slot the node checks if it has any packet to transmit. This depends on the offered loadli

for the nodezi, and represents the probability to begin packet transmission. When traffic is

backlogged, a node never enters the IDLE state. When, the node has a packet to transmit,

it moves to the DIFS state (this is an inter-frame spacing defined in the protocol standard),

which hass sub-states, wheres is the number of slots a node has to be in DIFS state. If

the node senses the channel busy during this period, it goes back to the beginning of DIFS,

i.e., DIFS(s − 1). The probability of channel being busy is given asp, also called the

probability of deferral. This probability is a PHY-layer aspect and depends on the aggregate

power from other nodes reaching this node. This in turn depends on the current state of the

other nodes.

After successful completion of the DIFS period, i.e., upon reachingDIFS(0), the node

chooses a random BACKOFF period, spanningk slots, where0 < k < CWmin, and moves

to the sub-stateBACKOFF (k − 1). It then counts down the BACKOFF timer, and thus

progressing from one BACKOFF sub-state to the other, but only if the channel is sensed

idle. If the channel is sensed busy (again with probabilityp), the node goes into the DEFER

state, where it freezes the BACKOFF timer. It remains in the DEFER state as long as the

channel is busy. The node goes back to the BACKOFF state with the probability of the

channel being idle (probability1 − p). Having counted down the BACKOFF timer to 0,

the node starts transmitting the packet. This brings it to the XMIT state. Assume that the

XMIT state stays form slots depending on the PHY-layer bit rate and packet size. After

completing the packet transmission, the node goes back to IDLE state if there is no other

packet to transmit, or prepares for the next transmission with another DIFS.

One key approximation made in this model is that the deferralprobabilityp is assumed

to be constant during the evolution of the Markov process.1 This probability depends on the

activity of the other nodes. Thus, the state transitions of other nodes are closely coupled.

When we solve this model using a direct simulation (i.e., simulating the Markov chain)

1Note similar approximations are used in popular models of 802.11albeit in a different context,
e.g., in [16].
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we do not make such constantp assumption and use the valuep as computed at that slot.

When we solve the chain using the analytical approach in the following section,p is the

“average” deferral probability. This averaging works due to an inherent approximation used

in the analytical solution approach to be described momentarily.

So far we have described only the transmitter side. On the receive side, the model is

simpler. A node not in XMIT state can receive a complete packet slot by slot, assuming

it receives it error-free in each slot. The probability of error-free reception of a complete

packet (packet capture probablity) depends on the bit-error rate (BER) in the PHY-layer

which in turn depends on the SINR (signal to interference plus noise ratio). Ignoring error

correction coding, the probability of packet capture is(1 − BER)b, whereb is the packet

size in bits. Thus, packet capture probability depends on SINR.

Both probabilities for deferral and packet capture are functions of one or more powers

(signal, interference and noise). They are input to the model. We will determine these func-

tions via profiling experiments and seed them by power measurements in the target net-

work.

2.5 ANALYTICAL APPROACH

Due to the coupling of the Markov chains of individual nodes as mentioned before, solving

an equivalent Markov chain for the network as a whole is computationally hard. This is

because of a state-space explosion, as all possible combinations of states for all nodes can

be a potential state in the combined Markov chain. Direct simulation of the Markov chain is

of course viable, and we will indeed use simulation as our onesolution approach. However,

as we will see later in our evaluation, simulations are slow.In this section, we develop an

alternative solution approach using analytical modeling.

The analytical approach makes an approximation that the current state of the process

does not depend on the previous state. This is similar to the approximation made in [32] for

modeling tractability. With this approximation, the process can move to any of the above
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five states (ignoring sub-states for now) based on a constantprobability at the end of a

slot. These probabilities depend only on the average behavior of network nodes. Much of

the work in the modeling here is formulating these probabilities. Once formulated, one

can write up the steady state equations, one for each of then transmitters, and then solve

these equations to derive the fraction of time a node is in theXMIT state, thus giving the

transmission capacity of this node.

On the receiver side, the approach is similar. Instead of bit-error rate,packet cap-

ture probabilityis used directly. This again depends on the activities of other nodes. Any

receiverx in a slot receives correctly a packet on the air (only one slotworth) from a desig-

nated senderzi with this probability. This contributes to the throughput capacity of the link

from zi to x.

Going forward, we start by assuming asaturated trafficregime. This means that all

transmitters are always backlogged. This saturated trafficassumption is useful as it elimi-

nates traffic load from the model and eliminates the IDLE state. We will later show in Sec-

tion 2.7.1 that the analytical approach is easily amenable to consideration of non-saturated

traffic.

2.5.1 BASELINE NOTATIONS

Consider an observation interval ofΓ slots, whereΓ → ∞. In each slot, a subset of the

n transmitters inZ = {z1, . . . , zn} may attempt transmission. The setZ does not change

during the duration ofΓ slots. Let us first define the following notations:

• Ii is the set of time slots in which nodezi is idle. This is when nodezi is in the IDLE,

DIFS or BACKOFF states.

• Di is the set of time slots in which nodezi defers because it can sense the transmission

of other nodes. This is the period wherezi freezes its backoff timer and goes into the

DEFER state.

• Ti is the set of time slots in which nodezi transmits, denoted by the XMIT state.
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• ii = |Ii|/|Γ|, is the fraction of time nodezi is idle.

• di = |Di|/|Γ|, is the fraction of time nodezi defers.

• ci = |Ti|/|Γ|, is the fraction of time nodezi transmits. So,ci is the normalized

transmission capacity of nodezi.

• cY , whereY ⊆ Z, is the fraction of time all nodes in setY transmit. Thus,

cY =

∣∣∣∣∣
⋂

zi∈Y

Ti

∣∣∣∣∣
/|Γ|. (2.1)

• tY , whereY ⊆ Z, is the fraction of time when all nodes inY transmit, while none of

the other nodes (inZ − Y ) transmit. Thus,

tY =

∣∣∣∣∣∣

⋂

zi∈Y

Ti −
⋃

zj∈Z−Y

Tj

∣∣∣∣∣∣
/|Γ|. (2.2)

If Y consists of a single node, sayzi, we abuse the notation slightly to represent it

asti to representt{zi}. ti is thus the fraction of time nodezi transmits, and no other

node inZ transmits.

• pY
i , whereY ⊆ Z − {zi}, is the conditional probability that when all nodes inY

transmit in a slot,zi defers its transmission because it senses the channel to be busy.

WhenY has just one node, sayzj , then we again abuse the notation to represent it as

pj
i .

Interference affects link capacity by limiting the transmission rate at the sender side

and causing packet collisions at the receiver side. We denote these aspects as “sender-side

interference” and “receiver-side interference” respectively and model them separately.

2.5.2 SENDER-SIDE INTERFERENCE

To compute the impact of sender-side interference, we determine the transmission capacity

(ci) of each node inZ. Using the notations defined above,Ii, Di andTi are disjoint sets.
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Also, every slot is at least in one of these three sets for every node. Thus,Ii ∪ Di ∪ Ti = Γ.

This implies that

ii + di + ci = 1. (2.3)

In the saturated traffic scenario, a node is idle only during DIFS or backoff period.

This happens for every packet transmission. DIFS is constant; however the backoff period

is random, uniformly chosen between 0 andCWmin slots of, say, sizeσ for broadcast

packets.2 Knowledge of packet size and channel bit rate can now providean expression for

the ratio (α) of the idle and transmit times, on average:

α =
ii

ci
=

DIFS + 1
2CWminσ

(P + H)/W
. (2.4)

Here,P is the packet payload size,H is the size of the headers,W is the channel bit rate.

Using the standard values of DIFS, slot sizes,CWmin and various headers, we determine

α at the lowest bit rate for 802.11b (1 Mbps) for 1400 byte packet payloads. This comes to

0.03 for 802.11b.

Equation 2.3 can now be re-written as

(1 + α)ci + di = 1. (2.5)

In the above expression,di is the fraction of time slots nodezi defers due to the transmission

of other nodes. In each slot, there can be a set of nodes (say,Y ) that transmit. For each slot

the conditional probability thatzi defers toY , given that all nodes inY are transmitting is

pY
i . We can now add up the deferral probabilities in each slot forall possible combinations

of Y to obtaindi. Note thattY is the fraction of time slots in which all nodes inY transmit.

Thus,

di =
∑

Y ∈P(Z−{zi})

pY
i tY , (2.6)

whereP(S) is the power set of setS. This leaves us withpY
i andtY to be determined for

each possibleY , such thatY ⊆ Z − {zi}.

2Note that here there is no exponential backoff as there is no retransmission.
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DETERMINING pY
i

Recall thatpY
i is the conditional probability thatzi defers when all nodes inY are trans-

mitting. Here, we need to model the MAC protocol’s interaction with the physical layer,

as this probability should depend on the aggregate signal powers received atzi from all

nodes inY . To make further progress, the relationship between the deferral probability and

received signal strengths must be modeled. Since this is intimately related to the actual

radio interface used, we use a measurement driven strategy here.

The first step is to create an empirical relationship for the probability of deferral

between two nodes based on received signal strengths. We express this relationship as a

functionf(·), such thatpj
i = f(rssj

i ), whererssj
i denotes the average of measured signal

strength value of packets transmitted fromzj and received atzi. We determine functionf(·)

from a prior profiling study. Note that this function models interface properties rather than

wireless propagation in an actual deployment. Thus, such prior profiling study is possible.

However,in our experience, individual cards do not need to be profiledin this fashion, only

card types or card models need to be profiled. These profiles can be reused from a library

for different modeling applications. This is in contrast toa similar profiling approach used

in [71], where individual cards are profiled. Note that our approach is general and is not

restricted to a homogenous system using identical cards. However, for brevity, our experi-

mental results show results from a homogeneous deployment.The profiling methodology

to determinef(·) will be discussed in Section 3.5.

Once the functionf(·) describing the relationship between the deferral probability and

signal strengths is determined,pY
i can be expressed as in the following.

pY
i = f




∑

zj∈Y

rssj
i



 . (2.7)

This is true since the deferral only depends on the aggregatesignal strengths. Now, if the

measurements of the pairwiserssj
i values in the deployed network are available,pY

i can
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be determined for anyY . Note that measuring allrssj
i values requiresO(N) measurement

steps.

DETERMINING tY

Recall from equation 2.2 thattY is the fraction of time all nodes in setY transmit, and all

nodes in the complement setZ − Y remain silent.cY on the other hand is the fraction of

time nodes inY transmit, but nodes in setZ − Y may or may not transmit. We determine

tY in terms ofcY using equations 2.1 and 2.2. From these equations,

tY = cY −

∣∣∣∣∣∣

(
⋂

zi∈Y

Ti

)
⋂




⋃

zj∈Z−Y

Tj





∣∣∣∣∣∣
/|Γ|.

The second term on the right hand side can be expanded using the principle of inclusion

and exclusion of set theory, which after evaluation reducesto the following –

tY =
∑

X∈P(Z−Y )

(−1)|X|cY ∪X , (2.8)

whereP(S) denotes the power set ofS.

We still need to determinecY , which is the fraction of time nodes inY transmit together.

Nodes inY transmit together when every node inY does not defer for every other node in

Y . Thus,cY can be expressed as,

cY =
∏

zi∈Y

(1 − pY −zi
i )ci. (2.9)

Equations 2.6, 3.2, 2.8 and 2.9 can be used to obtaindi and then used in equation 2.5 to

write an equation consisting ofci’s andrssj
i as the only unknowns.rss values come from

the measurements, leaving onlyci’s as unknowns. Now, for each value of the subscripti

(i.e., a transmitter) one such equation is obtained, givingn equations forn transmitters. We

solve these equations to derive the normalized transmit capacity ci for each transmitter.

2.5.3 RECEIVER-SIDE INTERFERENCE

So far, we have modeled transmission capacity of the transmitter. We now need to model

receiver-side interference to determine how much of the transmission capacity actually
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translates into throughput. Receiver-side interference causes collisions. Thus, if the sender

and multiple interferers transmit concurrently, we need tomodel the probability of packet

capture at the receiver. As discussed before, this is done byderiving a relationship between

the capture probability and the SINR. This is done in the samefashion as in the case of

deferral probabilities in the previous section. Exactly asbefore, we relate packet capture

probabilities to SINR via a functiong(·) that is profiled via independent measurements.

The profiling methodology to determineg(·) will be discussed in Section 3.5.

Define delivery ratiodrj
i from zj to zi as the fraction of packets received byzi that are

transmitted byzj in the absence of any other interfering transmitter. Let us definedrj
i (Y )

as the delivery ratio fromzj to zi in presence of the set of interferersY . Our first task is to

modeldrj
i asdrj

i = g(rssj
i/noise). This simply relates packet capture probability to SNR,

the ratio of the received signal strength and noise. Hererssj
i denotes the average signal

strength of packets received fromzj to zi in absence of interference. We have observed that

the functiong(·) does not change even if we consider multiple interferers fora link, and the

signal strengths of all interferers can be summed up to calculate SINR. This is in constrast

to the results of [76] for the Mica2 motes with CC1000 radios.

Once the functiong(·) has been modeled,drj
i (Y ) can be expressed as follows:

drj
i (Y ) = g

(
SINRj

i (Y )
)
, (2.10)

where,

SINRj
i (Y ) =

rssj
i∑

k∈Y rssk
i + noise

. (2.11)

As in the case of equation 3.2, the above equation also requires only pairwise measuredrss

values in the deployed network.

2.5.4 CAPACITY OF L INK

Now, we combine the sender and receiver-side interferencesto determine the capacity of the

link. Let us choosezi as the designated sender from the setZ, and letx be the receiver. All
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the other transmitters are interferers for this link. Assume that only a subsetY of the set of

interferersZ − {zi} is active in a slot and the others are silent (due to deferral or idleness).

By definition, tY is the fraction of slots with this property.t{zi}∪Y is thus the fraction of

time the senderzi transmits along with some subset of the interferers. This models the

packets that are transmitted from the sender notwithstanding sender-side interference. This

quantity multiplied bydri
x(Y ) models how many of them are captured at the receiverx

notwithstanding receiver-side interference.

Thus, the overall link capacity (in bits per sec) from the senderzi to receiverx in the

presence of a set of interferersZ − {zi} is given by,

Czi
x (Z − {zi}) =

P

P + H
× W ×

∑

Y ∈P(Z−{zi})

drY
x × t{zi}∪Y . (2.12)

The first term models the header overhead and the second term specifies the channel bit rate.

The third term models the above argument. Consideration of the power set is necessary as

any set of interferers can be active in a slot. The summation over all these possibilities

works as they are all mutually exclusive.

In Section 2.5.2 we indicated how to computeci’s. tY ’s can be determined using equa-

tions 2.8 and 2.9.dr’s come from the measurement-based modeling directly. Thus, the link

capacityC can be determined using equation 2.12. The approach of solving equations is

described in the following section.

2.6 SOLVING EQUATIONS

The first and hardest step in the solution is solving for the sender-side model as described

at the end of Section 2.5.2. This generates a set of non-linear equations involvingci’s as

the only unknowns, which need to be solved to determine numeric values forci’s. This is

the computationally intensive part of the model solution. Onceci’s are determined, the rest

of the steps needed to determine the capacityCzi
x (Z − {zi}) is relatively straightforward,

as they need only value substitutions. Thus, for brevity, weonly discuss the sender-side

solution (determiningci’s).
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There aren equations, one for each transmitterzi. The number of terms in each equa-

tion can be exponential inn involving all possible combinations ofci’s in a product form,

i.e., terms likeci, cicj , cicjck, etc., going uptoc1c2 . . . cn. The equations are solved using

numerical methods. More on this is in Section 2.8.3. In our validation work, we have often

had opportunities to simplify the equations that reduces the number of terms involved and

thus the computation time. Two types of simplifications are possible (see below). This is

easily understood by looking at equation 2.6.

• pY
i = 0 : This means that the nodezi does not defer for the nodes inY . In such cases,

the termpY
i tY becomes 0.

• pk
j = 1 andpj

k = 1 : This means that nodezk andzj can hear each other perfectly,

and their transmissions never overlap each other (t{zj ,zk} = 0). In such a case, the

termp
{zj ,zk}
i t{zj ,zk} becomes 0.

Also, these terms do not need to be perfectly 0 or 1 to be eliminated. Terms close enough

to 0 or 1 can be approximated as 0 or 1. In our testbed, we found many such opportunities

to reduce the number of terms in each equation.

2.6.1 EXAMPLES: TWO AND THREE TRANSMITTERS

To get a better understanding about these equations, we willconsider two sets of examples

below – one with 2 transmitters (z1 andz2), and other with 3 transmitters (z1, z2 andz3).

For notational convenience, we will writet{zi,zj} asti,j. Similarly, we writep
{zj ,zk}
i aspj,k

i .

The equations for two transmitters case are:

(1 + α)c1 + p2
1c2 = 1

(1 + α)c2 + p1
2c1 = 1 (2.13)

The solutions are

c1 =
(1 + α) − p2

1

(1 + α)2 − p2
1p

1
2
, c2 =

(1 + α) − p1
2

(1 + α)2 − p1
2p

2
1
.
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Nodes Equations Predicted Delivery-based Distance-based Measured
in testbed c0, c1, c2 c0, c1, c2 c0, c1, c2 c0, c1, c2

1.03c0 + c1 + c2 − c1c2 = 1 0.01 0.33 0.33 0.09
1.03c1 + c0 = 1 0.97 0.5 0.5 0.9
1.03c2 + c0 = 1 0.97 0.5 0.5 0.9

Table 2.1: Example contention scenarios for a three node setup:z0 in black,z1 in red,z2 in
green. The corresponding nodes in the testbed are 6, 4 and 8. Aline between nodes shows
that they do not interfere with each other.

Let us consider two special cases, one in which both nodes canhear each other perfectly

(p2
1 = p1

2 = 1), and another, where neither can hear the other other (p2
1 = p1

2 = 0). The

solution for 802.11b (α = 0.03) is (c1 = 0.49, c2 = 0.49) and (c1 = 0.97, c2 = 0.97)

respectively.

The three transmitter case is a little more involved. As an example, the equation for a

single node (z1) is

(1 + α)c1 + p2
1t2 + p3

1t3 + p2,3
1 t2,3 = 1, (2.14)

where

t2 = c2 − c2,3, t3 = c3 − c2,3, t2,3 = c2,3,

c2,3 = (1 − p3
2)(1 − p2

3)c2c3, p2,3
1 = f(rss2

1 + rss3
1).

To show how our model can detect the starvation caused due to the classical ‘flow-in-

the-middle’ problem [32], we present the set of equations for a similar scenario from our

testbed shown in Figure 3.2. Nodes 4, 6 and 8 form a scenario where node 6 can hear both

nodes 4 and 8 perfectly, which are hidden from each other. This leads to the starvation

of node 6, which loses out of transmission opportunities because it has to defer for both

nodes 4 and 8. Simple capacity models based on distance or delivery, as described later in

Section 2.8.2 are unable to predict this, while our model predicts the starvation of node 6.
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The equations, their solutions and the measured capacity values for this case are shown in

Table 2.1.

2.7 EXTENSIONS

Now, we will pay our attention to the two simplifying assumptions we have used so far.

The first is related to the assumption of saturated traffic in the analytical solution approach.

The second is the consideration of broadcast transmission only. We will now discuss how

to handle these issues.

2.7.1 NON-BACKLOGGED INTERFERERS

To model non-saturated conditions, we will need to account for the IDLE state in Figure 2.2.

Assume first that there are only two transmittersz0 andz1. Assume thatz1, the interferer,

is not backlogged and has packets to transmit onlyl fraction of times. In other words, the

normalized offered load atz1 is l. Let us now represent the capacity of linkz0 to x in

presence of such an unsaturated interferer asCz0
x (z1, l), with a little abuse of notation.3 We

show howCz0
x (z1, l) depends onCz0

x (z1), the capacity in presence of a saturated interferer.

If l is greater thanc1, z1’s transmission capacity, the case is similar to the saturated

interferer because nodez must be always backlogged to satisfy its offered load. Ifl is less

thanc1, nodez1’s demand is satisfied, andz0 can use the silent period ofz1 for transmitting

packets. The fractionl/c1, thus, can be seen as the fraction of time the two transmitters

behave as if they are in backlogged conditions. The remaining fraction of time,1 − l/c1 is

monopolized byz0’s transmissions. Thus,

Cz0
x (z1, l) =






[
(1 − l

c1
)Cz0

x (Φ)
]

+
[

l
c1

Cz0
x (z1)

]
, l < c1

Cz0
x (z1), otherwise.

(2.15)

We can extend this approach for solving for the non-backlogged interferer to multiple

such interferers. Assume, nodex is the receiver, nodez0 is the sender, and a set of nodes

3Cz0
x ({z1}, 1.0) is written asCz0

x (z1).
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Z = {z1, . . . , zn} are the interfering nodes. Assume, the nodes in setZ have normalized

offered loadsL = {l1, . . . , ln}, respectively. Let us consider the interferer,zi, with the

smallest load, such that its demand can be satisfied. The fraction li/ci can be seen as the

fraction of time when all the nodes have backlogged traffic. Thus,

Cz0
x (Z, L) =

[(
1 −

li
ci

)
× Cz0

x (Z − {zi}, L′)

]

+

[
li
ci

× Cz0
x (Z)

]
. (2.16)

whereL′ is the residual offered load vector after the load in the fraction of time with

saturated conditions withzi has been satisfied. Forzj, current residual load isl′j .

l′j = lj −
li
ci

× cj. (2.17)

The above equation can be further reduced by considering thenext node with the smallest

demand and so on, until we are left with backlogged nodes only.

2.7.2 MODELING UNICAST

Unicast transmission in 802.11 provides reliability usingretransmissions when the packet

is not delivered successfully, and an ACK is not received from the receiver. When retrans-

mitting a packet, the backoff window is doubled. This is donerepeatedly until the ACK

is received, or the retry limit has been exceeded. The broadcast model presented in Sec-

tion 2.4 and Figure 2.3 can be easily extended to handle ACKs and increased backoffs for

each retransmission. This would require an extra transition from the XMIT(0) state to the

BACKOFF(k′) state with a probability equal to collision probability (modeled by1 − dr)

wherek′ is the new backoff window,0 < k′ < 2CWmin.

Let us consider a scenario with senderz0, receiverx, and interferersZ as before. The

analytical approach presented in Section 2.5 needs following modifications to solve the

unicast model.

• Idle time computation :Due to retransmissions, and multiple backoffs for the trans-

mission of a single packet, the ratio between normalized idle times (ii) and transmit
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times (ci) does not remain a constant. We can compute idle time by considering all

possible subsetsY of the interferer setZ and the collision probability with each

of these subsets, when they are active. For eachY , the backoff time evolution is a

geometric process with the collision probability as parameter. Thus,

ii =
∑

Y ∈P(Z)

DIFS + SIFS + bo(Y )

(P + H)/W
t{z0}∪Y , (2.18)

where,bo(Y ) is the average backoff time spent for transmitting a packet (including

retransmissions) fromz0 to x when a subset of interferersY is active:

bo(Y ) =
m∑

k=0

(1 − drY
x )k2k−1CWminσ. (2.19)

Here,m denotes the retransmission limit for a packet.

• Consideration of ACK :We keep equation 2.3 unchanged by considering ACK trans-

missions as part of a sender’s transmission. Thus, in any XMIT slot, a node may

be transmitting data, or receiving ACK. ACK packets are small and their impact in

causing interference is also small relative to data packets. Also, ACK is transmitted

only once per successful packet transmission, while the packet may be retransmitted.

Thus, for a single packet, the proportion of time slots occupied by ACK is very small

compared to the time slots occupied by data. In the XMIT slots, ACK may impact

the deferral probability, and the probability of collisionby causing DATA-ACK, or

ACK-ACK collisions. Both these probabilities may still be modeled by attributing

a small (appropriately computed based on sizes) probability to a XMIT slot being

occupied by an ACK transmission. Another simplified model could simply ignore

the effect of ACK transmissions in causing interference.

With the above modifications, the link capacity can be computed as in the case of broad-

cast following the same steps. Note that once the slots of thesender’s transmission has been

identified, the unicast capacity for those slots is identical to the broadcast capacity. This is

because if the probability of packet capture is fixed, it doesnot matter whether a packet
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is being transmitted or retransmitted. The throughput of the link will be the same in both

cases, as throughput only depends on the number of unique packets successfully received.

Summarizing, modeling unicast requires modifying the model for idle time compu-

tation, and considering the probability of collision and deferral for ACK packets. Even

though the inclusion of these in the model makes the model more accurate, it adds an extra

complexity for the analytical and simulation-based approaches. The impact of these fac-

tors are small because ACK packets are small in general, and the extra idle time is much

less than the packet transmission time for large packets. Also, as we argued above, retrans-

missions do not impact the capacity computation for a link except for the extra idle time.

Given this, it is worth debating whether there is much benefitat all from modeling the more

complex unicast. It has been shown before in [65, 71] that theinterference between uni-

cast transmissions can be well estimated by estimating the interference between broadcast

transmissions. We also observed similar behavior in our testbed (not reported here).

2.8 EXPERIMENTAL PROCEDURE

Our experimental testbed consists of 12 Dell Latitude D520 laptops running Linux 2.6.15

kernel. The testbed is located in one floor of a modern office-cum-lab environment. See

Figure 3.2 for a network diagram. Each laptop uses a DLink AirPremier DWL-AG660

802.11a/b/g PC card with Atheros AR5212 chipset. The Madwifidriver, Version 0.9.6 [4]

is used. The cards are configured in ad hoc mode when used as transmitter, and in monitor

mode, when used as receiver. Thus, measurements ofdr and rss values are done in the

monitor mode.rssis in the prism monitoring header which is obtained whenevera packet is

captured when the card is in monitor mode. The value reportedby Atheros cards is the gain

dB relative to the noise floor. In particular, the card reports the value10 log10(
S+I

N ), where

S is the received signal power andI is the aggregate interference power,N is a fixed noise

floor (fixed at -95dBm). According to the above representation, any external interference
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Figure 2.4: Locations of the nodes on the floor map and links with more than 90% delivery
ratio. Width of the map is 60m.

will influence the measuredrssvalue between two links.4 To alleviate this problem, we have

done all our experiments in the night in a relatively ‘quiet’environment so that interference

I from other 802.11 networks could be considered zero. Thus the measuredrss is simply a

dB gain over a fixed noise floor and can be easily converted to power (mW or dBm) to use

in the formulation in Section 2.5. Instead of inventing new notations, we will be using the

termrsseverywhere. In the experiments it is in dB, in the analysis itis in dBm or mW.

All experiments reported here are done for 802.11b. We also did a similar set of vali-

dations for 802.11a and had very similar experience. We choose to present 802.11b results

here as it gives longer range links and has a rich set of interferences in our testbed. All

experiments are done at the lowest phy-layer rate (1 Mbps) and with large (1400 bytes)

packet sizes. We have verified that profile for one packet sizecan be used for other packet

sizes. Profiles also seem quite independent of the choice of channels. However, profiling

4In other cards, for example, Prism2-based [8], it may be possible to measure the external inter-
ference as noise.
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Figure 2.5: Profile for functionsf(·), probability of deferral, andg(·), probability of cap-
ture.
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Figure 2.6: CDF of error between the estimated and measured transmission capacity of
senders,ci for nodezi.

needs to be done for each possible data rate. Needless to say,different card models must be

profiled separately.

2.8.1 PROFILING EXPERIMENTS

We do a set of measurements to create the profilesf(·) andg(·), which form the inputs to

the 802.11 MAC model. Recall that functionf(·) models the probability of deferral in terms

of the received signal strength (equation 3.2), while function g(·) models the probability

of packet capture in terms of SINR on the link (equation 3.3).To create the profiles, we

use two laptops (as described above), sayzi andzj , and place them at different random
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Figure 2.7: CDF of error between the estimated and measured throughput capacity on links,
Czi

x (Z − zi) for link from zi to x.

locations to create a large number of samples of averagerssj
i andrssi

j values5 and then

relate these samples to measured values ofpj
i andpi

j . To do this,ci andcj are measured

when both of the nodes have saturation UDP broadcast traffic,and then equation 2.13 is

used to computepj
i = 1−(1+α)ci

cj
, pi

j =
1−(1+α)cj

ci
. Each〈p, rss〉 pair thus obtained is plotted

in Figure 2.5(a). A large number of such points are obtained by repeating the process for

different random locations ofzi andzj , which gives different samples of link quality and

sender-side interference.

To create the profile forg(·), we use similar random experiments using two nodes. (In

fact both these experiments are done together to save effort). In this case, theSINRj
i is

determined from equation 3.4 as(rssj
i/noise), as there is no interference. The delivery

ratio drj
i is directly measured. As before, a plot is created (Figure 2.5(b)) relating capture

probability and SINR.

The figures show the measured values as scatterplot and also the fitted curves. The

curves for the desired functions are fitted using a linear interpolation of average values

in buckets of 2dB each. An interesting observation in the graphs is that the profile for

packet capture probability is shifted to the right when compared to the profile for deferral

5All averages are long term averages. Some methods of collecting stable average statistics for
802.11 are described in [65, 71]. We follow very similar techniques.
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probability. This is expected, as the threshold for deferral is lower than the threshold for

successful packet delivery.

2.8.2 MODEL EVALUATION AND VALIDATION EXPERIMENTS

This part of the work concentrates on the target network – the12-node testbed described

before. Averagerss values for all link pairs in the network are collected. Here,each node

takes turn to transmit UDP broadcast packets and every othernode measures the average

rss values. Again, this process is similar to measurements reported in [65, 71]. This takes

O(N) steps for anN node network. The profiles generated in the previous sectionand the

values collected are used to seed the 802.11 model describedin Section 2.4. Both analyt-

ical approach and direct simulation can now be used to solve the model to determine the

throughput capacity of any given link. We have written a simulator in C which implements

the Markov Chain based 802.11 model. We use a slot size of 10µs in 802.11b, which is

small enough such that all protocol states span integer number of slots. We will later see

in Section 2.8.3 that there is an accuracy vs. computation time tradeoff between these two

methods.

For validation, we perform direct measurements on the testbed to evaluate link capaci-

ties and then compare them with those estimated by the model.In each validation experi-

ment,n nodes are chosen from the testbed as transmitters while the remaining12−n nodes

act as receivers. Each transmitter then broadcasts packetsas fast as possible (to model sat-

urated traffic) for 60 seconds. At the end of this time period,the throughput on each one

of then(12 − n) links is measured by counting the number of packets receivedfrom each

sender. For each such link, there aren − 1 interferers. We also measure the transmission

capacity (number of packetsactually transmittedin the air per second) for each transmitter.

This quantity is reported by the card to the Madwifi driver.

We have performed validation experiments with up to 5 interferers. Whenn = 2, it

is a single interferer scenario. Here, we have measured all possible combinations of such
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scenarios, which require 66 experiments, and provide data for 132 transmitters, and 1320

links. When3 ≤ n ≤ 6, we randomly pick 50 configurations ofn transmitters each, which

results in data for50n transmitters, and50n(12−n) links. Thus, overall we have performed

266 sets of experiments resulting in 7820 data points in the plots to be presented next.

Figure 3.6 shows the CDF of the absolute error (modeled− measured) in transmis-

sion capacity for both solution approaches – analytical anddirect simulation. We specify

capacity as a fraction of the channel bit rate. Note that the model performs quite well for

fewer interferers, increasingly losing accuracy with moreinterferers, where the approxi-

mations used in the modeling and measurement errors start mattering more. Also, note that

simulation provides better accuracy relative to the analytical method. This is expected due

to the approximations used in the analytical method.

Exactly similarly, we present the absolute error between estimated and measured link

throughput capacities in Figure 3.7. Once again note the excellent accuracy. It may appear

here that the accuracy is more than for transmission capacities in Figure 3.6. This appear-

ance is due to the fact that throughput capacities are smaller than transmission capacities;

thus absolute errors are also smaller. The horizontal scaleof both the plots are the same.

The summary statistics for the errors will be presented momentarily in the following sub-

section.

COMPARISON WITH SIMPLER MODELS

It is instructive to compare our model with simpler models that one would use in absence

of approaches such as ours. We use three simple models for comparison -(i)naive model

(also used in [71]), where the link delivery ratio on a link isused as an estimate of link

capacity; (ii)delivery-based model, where sender-side interference is modeled by assuming

that the normalized transmission capacity of the sender is1/(1+no. of neighbors)6 and then

multiplying this number with the link delivery ratio; (iii)distance-based model, fashioned

after the protocol interference model [34]). Here, transmit range, interference and carrier

6Here, a node is a neighbor if it has a link with at least 90% delivery ratio.
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Figure 2.8: Summary error statistics for different models for different numbers of inter-
ferers.

sensing ranges7 are first determined based on a set of independent measurements in the

same environment. If two links have a receiver in interference range of the other sender,

or have the senders in each others sensing range, then they are said to be in conflict. The

normalized capacity of a link in this model is1/(1 + number of conflicting links). The

capacity is 0 for non-existent links (i.e., sender and receiver are outside transmit range).

We compare these models with our analytical and simulation approaches. The CDFs

for errors for these models are also plotted in Figure 3.7. Note that the naive model over-

estimates capacity a lot, as it ignores interference. The delivery-based model also overes-

timates significantly as it does not have any way to model the receiver-side interference.

This is very apparent from the plots with small number of interferers. On the other hand,

the distance-based model underestimates significantly. This is likely because of conserva-

tive range estimates and the mistaken assumption that the ranges are isotropic. For larger

number of interferers, it appears that errors are going downfor the delivery-based and

distance-based models. This is an illusion as the capacities are also smaller with larger

number of interferers and thus absolute values of errors arealso smaller.
790% probability for respective events are considered for estimating ranges.
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Figure 2.8 summarizes the errors in estimating link capacities for all the models in terms

of percentage of predictions with absolute error within 10%. This data directly comes from

the CDF presented in Figure 3.7. Note again that the simulation-based solution is the most

accurate, estimating capacities of links more than 90% of the times with an error that is

within 10% of the channel bit rate. This goes down to about 80%of the times in the analyt-

ical approach. The simpler models typically perform much worse, though distance based

model becomes competitive for larger number of interferers. Going back to the example

in Section 6.1 note that both delivery and distance-based models do a very poor job in

modeling the ‘flow-in-the-middle’ scenario (see Table 1).

2.8.3 COMPUTATION TIME

Recall the discussion on the complexity of solving the equations for the analytical solution

from Section 2.6. Long computation time will limit the applicability of our approach. We

thus need to analyze the computation time issues.

For the plots presented above, we have used Mathematica [3] to solve the equations. It

uses the Newton’s method [50] for solution, which in turn uses a method of linear approx-
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imation. Newton’s method requires a set of good starting values for rapid convergence. We

have seeded the variables with the values from the delivery-based model. Note that this

model is computationally very cheap. We have set the maximumnumber of iterations to

1000. We have also specified the stopping criteria, such thatthe iterations stop when an

accuracy of 10% has been achieved.

For simulations, we have used thebatch means methodto ensure that simulations con-

verge to a target level of confidence. Our target for the abovevalidation plots has been 95%

confidence interval of batch means being less than 5% of the overall mean statistics. Figure

2.9 shows the computation time for the analytical approach and the simulation approach.

For simulations, we now also add the times for a less accuratesimulation (90% confidence

interval less than 5% of mean). This demonstrates a tradeoffbetween accuracy and com-

putation time. Simulations are almost an order of magnitudeslower than the analytical

approach. The computation times are reported for a Dell PC with a 3 GHz Pentium pro-

cessor with 4GB of RAM, running Linux. For the purpose of thisplot, we have evaluated

computation times up to 12 transmitters (i.e., 11 interferers) in our 12 node testbed. Note

that the time to solve the analytical approach increases very slowly, and is approximately

0.35 sec even with 11 interferers. The trend indicates that with a powerful computer, the

analytical solution approach should be useful even for on-line decision making for resource

scheduling, at least at a coarse time scale (second or sub-second). For example, for appli-

cations such as coarse-grain channel assignment, admission control, centralized routing,

etc. 0.1-1 second computation time is easily affordable. Studying the computational issues

further is on our future research agenda.

2.8.4 VALIDATION FOR NON-BACKLOGGED INTERFERERS

In this section we present some validation results to demonstrate that our model extends to

the case when the interferer is not backlogged. We show the capacity of a link in presence

of an interferer for three cases – when the interferer causessender-side interference, when
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the interferer causes receiver-side interference, and when the interferer does not affect the

link at all. To do this, we pick one link in the testbed and choose three suitable nodes as

interferers to validate these three cases. In each case we determine the capacity of the link

in question from our model and compare it with the measured capacity. Figure 2.10 shows

the accuracy of our prediction using analytical modeling ineach case.

2.9 CONCLUSIONS

In this chapter, we have addressed the challenging problem of modeling link capacities in a

real, deployed 802.11 network. This is a departure from the existing methods of analytical

or simulation-based modeling that often make unrealistic assumptions. Our model is based

on the realistic physical interference model that drives a discrete time Markov chain-based

model of 802.11 behavior. The physical interference model is profiled using measurements

and is seeded again by measurements on the target network to be evaluated. The methods

we proposed are practical – (i) The profiled measurements canbe kept in a library and

reused. (ii) The measurements on the target network are simple and takeO(N) steps. (iii)

The analytical solution time is of “sub-second” scale opening up a lot of applications that
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use course-grain decision making, such as overlay MAC scheduling, routing, admission

control and channel assignment. Our future work will explore some of these applications

using the proposed model.

While we have used a single channel, single packet size, single data rate and single

interface card model in our work here, this is not a limitation. Profiling can be done for all

these parameters separately. Some additional modeling canindeed help in profiling effort.

For example, profiling for one size can possibly be extrapolated for other sizes. In principle,

the modeling approach is able to handle heterogenous systems, where different nodes use

different parameters, so long as cards with all such parameter settings have been profiled

for. The harder problem is handling dynamically changing parameters, for example, auto

rate control in 802.11. In this case, the rate control algorithm must be modeled as a part of

our approach. Also, our approach is general enough such thatextensions of 802.11 (e.g.,

802.11e) can be modeled using a similar Markov model, thoughmore states probably will

make the solutions more compute intensive.
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CHAPTER 3

MEASUREMENT-BASED APPROACHES FORACCURATE SIMULATIONS

In this chapter, we address the issue of unrealistic simulations of wireless networks using

a measurement-based approach. The idea is to use empirical modeling using measurement

data as a mechanism to model physical layer behavior, as in Chapter 2. We demonstrate

the power of this approach for 802.11-based networks using ns2, a packet-level network

simulator. We build the models for deferral, reception, andsignal propagation using mea-

surements from a real network.

3.1 INTRODUCTION

Simulation-based modeling is a useful tool for evaluating performance of network pro-

tocols. Simulations served the networking community well for wired networking regime.

However, simulations for wireless networks have often beenquestioned [54, 12], primarily

due to the lack of realistic lower layer models. However, theresearch community has not yet

practiced serious validation exercises for wireless network simulators barring minor excep-

tions [60]. Our goal in this work is to revisit the issue of unrealistic simulation models of

wireless networks for the lower layers, and address the problem using a new approach that

uses measurement-based modeling.

Network simulators widely used in wireless networking literature such as ns-2 [7],

qualnet [6], opnet [5] etc. implement the network protocol layers in the same fashion as

in a real system. The upper layer implementations (such as transport and network) are

fairly accurate. This is because they are implemented in software in a real system. This

makes it easier to model them in the simulation software. This is also true for MAC-layer
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models as detailed specs and firmware implementations are available to a serious simulation

modeler. However, the wireless physical layer has been hardto model. While theoretical

models do exist, they make assumptions on the propagation environment and the interface

characteristics and use various model parameters (e.g., path loss exponent) that are hard to

instantiate. Also, often such models work at a much finer timescale (at the bit or symbol

level, e.g.) while popular network simulators operate at a packet-level time scale. Making

the timescale finer may cause a serious slowdown of the simulator eliminating the scal-

ability benefit – one possible reason why such attempts have not been seriously pursued

yet. On the other hand, research has shown that physical layer modeling can make serious

impact on the upper layer protocol performance [79] therebymaking realistic modeling all

the more important.

Our goal here is to propose measurement-based approaches tomodel the physical layer

of protocol stack so that not only popular packet level simulators can still be used, but

also the simulation accuracy is vastly improved. The approach is not simulator specific,

but we have used ns-2 because of its popularity. Similarly, our work is not MAC/radio

specific, but we focus on 802.11 because of its ubiquity. We identify three components that

comprehensively capture the physical layer behavior in an 802.11-based network. They are

(i) signal propagation model, (ii) carrier sensing model onthe sender side, and (iii) packet

reception model on the receiver side. We propose measurement-based approaches to model

the above three components. The idea is to use measurements to preserve realism where

analytical models are inadequate.

We validate the accuracy of the measurement-based approaches vis-a-vis direct exper-

imentation on a 12-node 802.11-based indoor mesh network testbed. Our general conclu-

sion is that the technique is very accurate when measurementdata from an actual testbed

is available. When complete testbed is not available for measurements, measured data

from a limited set of nodes can also be used for modeling usingthe proposed approach

while providing high level accuracy compared to existing simulations approaches. Our
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hope is that this study will encourage the wireless networking research community to use

measurement-based techniques for simulation studies. Wide adoption will also lead to reuse

of measurement-based models making the approach very cost-effective in terms of effort.

3.2 RELATED WORK

In [54], the authors describe unrealistic assumptions often made in wireless network

simulators. They also develop a simulator that they validate against real experiments;

however they report experiments related to propagation modeling only. Several emulation

approaches are described to validate wireless ad hoc network simulations in [41]. How-

ever, here comparisons against real networks are not reported. In a recent comprehensive

article [12] the authors survey many questionable practices for simulating mobile ad hoc

networks. They note inadequate modeling of protocols and lack of validations as two major

issues. They also note other issues such as improper documentation, or lack of statistical

validity that are not explored in our work. In [60], a validation approach has been developed

using direct execution simulators for ad hoc networks.

In [35], the effect of detail in wireless network simulations and how they influence

the conclusions are studied. In [79], a careful study is doneusing different simulators that

shows how the details in physical layer modeling can impact upper layer protocol perfor-

mance in a simulator. Physical layer emulations [42] and various hybrid approaches [86]

have recently been promoted to impart realism to modeling studies. However, they are quite

complex, require significant amount of hardware and are yet to be widely adopted.

The measurement approaches discussed in this chapter have similarities with several

recent works, such as [71, 17, 65, 24, 49] for 802.11 networksand [75] for Berkeley mote-

based networks. These papers emphasize the significance of using measurements over ana-

lytical modeling. Some of these papers also promote using just pairwise signal strength

measurements between nodes to model interference and its impact. We utilize these ideas

in our work in the context of creating an accurate and realistic wireless network simulator.
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3.3 APPROACH

The physical layer components in an 802.11 network simulator can be classified into three

broad categories – (i)radio propagation model, (ii) deferral or carrier sense modelon the

sender side, and (iii)packet reception modelon the receiver side. We describe our approach

to handle them below.

3.3.1 PROPAGATION

Typically, wireless network simulators assume a generic propagation model, such as free

space model or two-ray ground reflection model coupled with ashadowing model [70]

as in ns-2. Naturally, such a generic model may not be appropriate for the propagation

environment to be evaluated. Further, parameters of such models (e.g., path loss exponents)

still need to be instantiated. Our approach here is as follows.

a. If a testbed is available, we perform direct measurement on the testbed to determine

propagation behavior. Here, the receiver simply measures the received signal strength

(RSS) and no real modeling is performed. This requires onlyO(N) measurements

for anN node network. Each node can transmit a beacon and every othernode simply

measures the RSS. Commodity 802.11 interfaces allow such measurements.1

b. If a testbed is not available (but a pair of network nodes are available), we model

the propagation behavior using an empirical, measurement-based approach in the

environment being considered. This is not unlike early workin cellular commu-

nications that gave rise to popular empirically derived models such as Okumura-

Hata models [70]. A similar modeling approach has also been considered in outdoor

802.11-based networks with reasonable accuracy [17].

1Note that there are subtleties here that commodity cards allow RSS measurements only when
the packet is received correctly. Prior measurement studies indicated that impact of this is relatively
minor [71].
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3.3.2 DEFERRAL AND RECEPTION

Carrier sensing in 802.11 cards is implemented using a channel acquisition module, which

determines whether the channel is idle for transmission. This is modeled in simulators by

using a carrier sense threshold, and a received signal with higher power than this threshold

makes the channel busy. It has been observed [65] that carrier sensing between a pair of

nodes is not deterministic, and in practice, if a pair of nodes attempt to transmit simultane-

ously, the probability that one node defers due to other may be a value somewhere between

0 and 1.

Modeling the packet reception is harder. This depends on signal to interference plus

noise ratio or SINR, where signal is the received signal power and interference is the

aggregate of the interference powers received at the receiver. Interference is simply signal

transmitted by any node other than the designated transmitter. Fundamentally, SINR affects

the bit-error rate (BER) in a received packet [70]. The SINR vs. BER relationship typically

depends on receiver design and modulation used. BER ultimately affects PER (packet-error

rate) depending on the coding used. Note again the probabilistic nature of packet recep-

tion. Usually, there is a sharp fall in BER (and hence PER) with increasing SINR. Thus,

often simulators simplify this by assuming a simple two-step function to model SINR vs.

PER relationship. This essentially translates to the so-called capture threshold, signifying

an SINR threshold needed for successful packet reception. Even when modulation/coding

specific SINR vs. PER relationship can be used (the best case), it is unclear whether a

universal theoretically based model would suffice for any interface.

3.3.3 MODELING STRATEGY

Direct measurements are possible for modeling the propagation behavior in Section 2.1

(usingO(N) measurements). However, similar direct measurements are not possible for

modeling deferral or packet reception behavior,even when a testbed is available. The

reason is that all possible subsets of transmitting nodes must be considered, requiring an
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Figure 3.1: Versions of the simulators considered and the models used by them.

exponential number of measurement steps. This requires us to take an empirical modeling

approach that still only usesO(N) measurement steps and the rest is done via modeling.

The modeling part assumes that only aggregate interferencepower is important to deter-

mine deferral or reception, and not individual interference powers or number of interferers.

Note that this assumption should be true in theory. We have indeed performed limited

amount validations to test this out (reported in the next section).

We develop several versions of the ns2 simulator,only differing in the physical layer

implementation. To describe the simulators better, let us categorize the propagation,

deferral and packet reception modeling in the simulators in4 categories. See Figure 3.1.

We name the simulator versions V1 to V4, with increasing complexity. V3 and V4 replace

the entire physical layer by our measurement-based model. The difference in V3 and V4

is that in V4, direct RSS measurements are used to model propagation (note (a) in Section

2.1); while in V3, a model is used for propagation that is derived from measurements (note

(b) in Section 2.1).

V1 and V2 use simpler models. V1 is very similar to the defaultns-2 simulator. Here,

the propagation model is a free space propagation model, reception is based on a SINR

threshold,2 and deferral is based on a carrier sense threshold. These thresholds are tuned

2The default ns2 has an even simpler reception model, where itsimply compares signal with one
interferer only at a time. V1 makes it somewhat more realistic by using a true SINR computation.
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using measurement data as a guide. V2 differs from V1 in that it uses a somewhat more

sophisticated model for packet reception based on the theoretically derived PER vs. SINR

curves [8].

3.4 MEASUREMENT-BASED MODELS

In this section, we present the measurement-based models weuse for the simulators. All

measurements were done on our experimental testbed consisting of 12 Dell Latitude D520

laptops running Linux 2.6.15 kernel. The testbed is locatedin one floor of an office-cum-lab

environment. See Figure 3.2 for a network diagram. Each laptop uses a DLink AirPremier

DWL-AG660 802.11/a/b/g PC card with Atheros AR5212 chipset. The Madwifi driver,

Version 0.9.6 [4] is used. The cards are configured in ad hoc mode when used as trans-

mitter, and in monitor mode, when used as receiver. RSS measurements use the appropriate

field in the prism monitoring header which is obtained whenever a packet is captured when

the card is in monitor mode. The value reported by Atheros cards is10 log10(S + I/N),

whereS is the signal strength andI is the interference,N is fixed at -95dBm (noise floor).

All experiments reported here are done for 802.11b. We also did similar set of validations

for 802.11a and have very similar experience. But we choose to present 802.11b results here

as it gives longer range links and has a rich set of interferences in our testbed. The exper-

iments are done in nights when interference from external 802.11 networks is expected to

be minimal. All experiments are done at the lowest PHY-layerrate (1 Mbps) and with large

(1400 bytes) packet sizes.

3.4.1 MODELING PROPAGATION

Radio propagation in indoor environment is a complex phenomena. There are three main

factors that play a role in determining the received signal power – path loss, shadowing

and multipath fading [70]. At a high level, path loss describes the exponential decay of

signal power with distance, with the exponent depending on the propagation environment.
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Shadowing describes random variation of path loss in similar propagation environment,

commonly modeled by a Normal distribution in dB (log-normalshadowing). Following a

similar modeling work [17] we ignore multipath fading due toits modeling complexity and

impact only in small time and spatial scales.

Combining path loss and log-normal shadowing, we have

PdB(d) = PdB(d0) − 10αlog10

(
d

d0

)
+ Xǫ, (3.1)

wherePdB(d) is the received signal power at distanced, d0 is a reference distance where

power measurement is already available,α is the path loss exponent, andXǫ is a Normal

random variable in dB having a standard deviation ofǫ dB and zero mean. The path loss

exponentα is 2 in free space, but is higher in a cluttered environment.

We use an empirical method to estimateα and ǫ from measurement data following

similar work in [17]. We collect average RSS values for each pair of nodes in the testbed

from 132 separate measurements (12 transmitters× 11 receivers) and use least square

linear regression to find the path loss exponent for our testbed environment. Figure 3.3(a)

shows the scatterplot, and the fitted line, which gives the path loss exponentα as 4.66.

Similarly, ǫ is estimated by fitting a Normal distribution for the error values in the above

regression. See Figure 3.3(b). We getǫ = 5.48. We use this model in the simulators V3.

Note that if a complete testbed is not available, but only a couple of nodes are available, we

can still create this model by performing a large number of RSS measurements by placing

just two nodes in different random locations in the test environment.

3.4.2 MODELING DEFERRAL

The first step is to create an empirical relationship for the probability of deferral between

two nodes based on received signal strengths. We express this relationship as a function

f(·), such thatpj
i = f(rssj

i ), wherepj
i is the (deferral) probability that nodei defers to

the transmission of nodej andrssj
i denotes the measured values of average signal strength

of packets transmitted from nodej and received at nodei. We determine functionf(·)
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Figure 3.4: Determining (a) deferral and (b) packet reception probabilities.

simply by taking two nodes and positioning them in many random locations in the test

environment, and then directly measuring the RSS values between them as well as the

deferral probability.

The deferral probability is measured as follows. Both nodesattempt to broadcast UDP

packets as fast as possible. Thus, they always have backlogged traffic. We measure the

transmit rate (rate at which a node is transmitting packets on the air) of each node. We also

measure transmit rate when the node is transmitting alone. The ratio of these two rates gives

the deferral probabilityp. A large number of such measurements< p, rss > are taken and

are shown in the scatterplot of Figure 3.4(a).f(·) is estimated as the linear interpolation

of average values ofp for small buckets ofrss values. Further, it is assumed that deferral

probabilityp depends only on the sum ofrss values if multiple transmitters are present.

Thus,

pY
i = f

(
∑

j∈Y

rssj
i

)

, (3.2)

whereY denotes a set of active transmitters.
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3.4.3 MODELING PACKET RECEPTION

A similar approach is taken for modeling the packet reception behavior. Definedelivery

ratio drj
i from nodej to nodei as the fraction of packets received byi that are transmitted

by j in the absence of any other interfering transmitter. Let us definedrj
i (Y ) as the delivery

ratio from j to i in presence of the set of interferersY . Our first task is to modeldrj
i as

drj
i = g(rssj

i/noise). This simply relates packet reception (capture) probability to SNR,

the ratio of the received signal strength and noise. Hererssj
i denotes the average signal

strength of packets received fromj to i in absence of interference.

Once the functiong(·) has been modeled,drj
i (Y ) can be expressed as follows:

drj
i (Y ) = g

(
SINRj

i (Y )
)
, (3.3)

where,

SINRj
i (Y ) =

rssj
i∑

k∈Y rssk
i + noise

. (3.4)

As in the case of equation 3.2, the above equation also requires only pairwise measuredrss

values in the deployed network.

A set of experiments as before is devised to empirically model g(·). Two nodes are

placed in many random locations. One of them transmits broadcast UDP packets and the

other receives. The averagedr andrss values are recorded at the receiver. The scatterplot

in Figure 3.4(b) shows the experimentally obtained values.The functiong(·) is obtained

via interpolation as before. As stated before, these results are for the lowest PHY-layer rate

(1 Mbps), and thus theg(·) function is specific to this data rate. Similar experiments must

be done at all data rates to get the rate specificg(·) functions.

Note that the empirical technique above measures SINR without any interferer (thus,

actually SNR) with an assumed noise floor (-95dBm). We have also validated that indeed

when one or more interferer is added, the functiong(·) estimated above still holds.

Figure 3.5 shows the experimentally obtained delivery ratio vs. SINR scatterplot in the

presence of 1 interferer. Note the similarity of this plot with Figure 3.4(b). This provides
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Figure 3.6: CDF of error between the estimated and measured transmission capacity of
senders.

credence to our approach that functiong(·) can be modeled using measurements without

any interferer, and thus requires onlyO(N) measurement steps.

3.5 EVALUATION

We evaluate the accuracy of the simulators on the target network – the 12-node mesh testbed

described before. Average RSS (rss) and delivery ratio (dr) values for all link pairs in

the network are collected. Here, each node takes turn to transmit UDP broadcast packets

and every other node measures the averagerss anddr values. This process is similar to
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Figure 3.7: CDF of the error between the estimated and measured throughput capacity on
links.

measurements reported in [65, 71]. This takesO(N) steps for anN node network. Therss

measurements are used to seed simulator V4, while therss anddr measurements are used

to create the deferral and reception model for simulators V4and V3.

For validation, we perform direct measurements on the testbed to evaluate link capaci-

ties and then compare them with those estimated by the various versions of the simulators.

In each validation experiment,n nodes are chosen from the testbed as transmitters while

the remaining12 − n nodes act as receivers. Each transmitter then broadcasts packets as

fast as possible (to model saturated traffic) for 60 seconds.At the end of this time period,

the throughput on each one of then(12 − n) links is measured by counting the number of

packets received from each sender. For each such link, therearen − 1 interferers. We also

measure the transmission capacity (number of packetsactually transmittedin the air per

second) for each transmitter. This quantity is reported by the card to the Madwifi driver.

We have performed validation experiments with up to 5 interferers. Whenn = 2, it

is a single interferer scenario. Here, we have measured all possible combinations of such

scenarios, which require 66 experiments, and provide data for 132 transmitters, and 1320

links. When3 ≤ n ≤ 6, we randomly pick 50 random sets ofn transmitters each, which

results in data for50n transmitters, and50n(12−n) links. Overall, we have performed 266

sets of experiments resulting in 7820 data points in the plots to be presented next.

52



Figure 3.6 shows the CDF of the absolute error (i.e., estimated − measured) in the

sender side transmission capacity for the various simulators. We present capacity normal-

ized to the channel capacity. Since V1 and V2 use the same deferral and propagation model,

the transmission capacity of these two simulators are identical. Note that V4 is quite accu-

rate – the error is within 10% of the channel capacity 85% of the times. V3 is less accurate

than V4 (the error is within 15% of capacity 85% of the times),because V3 uses a model

for propagation rather than using direct measurement. V1 and V2 underestimatethe trans-

mission capacity significantly, likely because they model aweaker path loss. This results

in more deferral and lower transmission capacity.

Exactly similarly, we present the absolute error between estimated and measured link

throughput capacities at the receiver side in Figure 3.7. Once again, note the excellent

accuracy for V4 followed by V3. The 85 percentile error for V4and V3 is 10% and 15% of

capacity, respectively. Note again V2 and V1 provide very poor estimation,overestimating

the capacity this time. In the case for V2 and V1, the throughput capacity is almost the same

as the transmission capacity as collisions rarely happen because of almost perfect deferral.

In reality, however, many more packets are actually transmitted, but many of them actually

lead to collisions leading to much poorer received throughput.

The take-home message from these results is that careful measurement-based modeling

can be successfully used to develop accurate simulators (V4and V3). When measurements

are not used, even when best possible strategies are used in the simulation models (e.g.,

V2), the errors are very high. For example, for estimating throughput capacity, for 85% of

the scenarios, the error in V2 increases to 50% of the channelcapacity.

3.6 CONCLUSIONS

In this chapter, we have demonstrated that empirical modeling of the physical layer is nec-

essary in building more accurate wireless network simulators. We have specifically focused

on 802.11 and developed two versions of the popular ns-2 simulator that model the wireless
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physical layer with different levels of fidelity. In both versions, the deferral and reception

model are built using measurements. For the propagation modeling, one version (V4) uses

direct measurements and the other (V3) uses a modeling approach. In validation experi-

ments over a 12-node mesh testbed, both these versions were found to be reasonably accu-

rate (85 percentile errors about 10% of capacity). Simulation errors in more traditional sim-

ulation models were found to be unacceptably high (85 percentile error within about 50%

of capacity). Our future work will focus on improving the error margins and validating our

simulators with unicast traffic, with relayed traffic, etc. The eventual goal is to make such

simulators using various measurement data sets available to the research community for

evaluating protocol performance.
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CHAPTER 4

ESTIMATING INTERFERENCE USINGPASSIVE MONITORING

In this chapter, we present an approach to estimate the interference between nodes and

links in a live wireless network by passive monitoring of wireless traffic. Unlike Chapter 2

and Chapter 3, this does not require any controlled experiments or injection of traffic in the

network. Our approach requires deploying multiple sniffers across the network to capture

wireless traffic traces. These traces are then analyzed to infer the interference relations

between nodes and links. We model the 802.11 MAC as a Hidden Markov Model (HMM),

and use a machine learning approach to learn the state transition probabilities in this model

using the observed trace. This in turn helps us to deduce the interference relationships.

4.1 INTRODUCTION

Interference between radio links limits the capacity of a wireless network. The Holy Grail

of research thus has been the understanding and modeling of interference and its impact

on network capacity, ranging from very abstract modeling exercises [34] to more practical

analysis and evaluation [49, 67]. Needless to say that the practice has been mostly targeted

for WiFi (IEEE 802.11 Standard and its derivatives) networks, as it is by far the most

predominant wireless access network for end users.

While a lot of work has been done, WiFi network installationsare yet to gain from

these results. Interference is a serious concern in WiFi because the 802.11b/g band – pop-

ular because of its good propagation characteristics relative to the 802.11a band – provides

only three orthogonal channels limiting the scope for channel diversity. While one might

expect that dense AP deployments – as it is getting common nowadays – would provide for
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association diversity that would reduce interference, it is not unusual in practice to find mul-

tiple APs within the range operating on the same channel. Poor WiFi network performance

in congested scenarios has become well-documented measurement literature [40, 72].

Our goal in this work is to model and understand the prevalentwireless interference

in a real WiFi network installation. From a practical standpoint, we need to do this in the

most unobtrusive fashion possible, in particular (i)without installing any monitoring soft-

ware on the network nodes, and (ii) using acompletely passive technique. The need for

(i) comes from a matter of practicality. Many APs are often closed devices, and clients

may not be always accessible for monitoring software installations. The need for (ii) is

more obvious. Active measurements impact (and are impactedby) network traffic. Our

approach thus requires the use of a distributed set of ‘sniffers’ that capture and record

wireless frame traces. The traces are to be analyzed later for understanding interference

relations. While this requires additional hardware for measurement and analysis, we view

this as a third-party solution. Such independent third-party solutions for wireless moni-

toring are not uncommon in industry [1, 2]. The research world has also provided similar

approaches. See, e.g., DAIR [13, 14], Jigsaw [21] and Wit [61]. While these approaches

provide many monitoring solutions, they still do not provide fundamental understanding of

interference relations between network nodes and links.

Our approach can be used as a toolbox to understand the interference properties in an

arbitrary WiFi network. This can in turn help the system managers to perform capacity

planning and perform appropriate radio resource management, such as use of channels,

transmit powers or directional antennas.

4.1.1 APPROACH

Existing measurement-based modeling studies [49, 67] for modeling and analysis of inter-

ference in WiFi networks require elaborate measurement exercises that include (a) profiling

of the behavior of the radio interfaces to learn the carrier sense and packet capture behav-
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iors, and (b) RSS (received signal strength) measurements on the network nodes to learn

link-wise RSS values. None of these are very practical in thesetting we consider. These will

require profiling every type of interface used in the network, installing RSS measurement

code in all nodes, and measuring RSS specifically in quiet periods.

Thus, we take a fundamentally different approach. The distributed set of ‘sniffers’ col-

lect traffic traces from the live network. These sniffers do not transmit any packets making

the method completely unobtrusive. The traffic traces are later collated, merged and ana-

lyzed off-line to determine which link pairs interfere in the network. Merging of traffic

traces is an important problem by itself. Here, we benefit from existing work [84, 85, 61, 21]

that developed merging techniques with distributed sniffers.1 Then, a machine learning

approach using theHidden Markov Model (HMM)[68] is used to analyze the merged

traces to infer interference relationships. Since the approach is passive, it is only depen-

dent on the sufficiency of the available network traffic for the interference analysis. The

challenge in this case is to make accurate estimates even in presence of little traffic, and

traffic of unknown and arbitrary nature. This is important asall network APs may not be

heavily used all the time. There are indeed many other issuesrelated to the location of the

sniffers, fidelity of the merged traces, etc. that will impact the accuracy of the technique to

a varying degree.

4.2 RELATED WORK

4.2.1 ANALYZING INTERFERENCE

Interference in an 802.11 wireless network can be readily measured by putting saturated

traffic on two nodes or links simultaneously and measuring the aggregate throughput. The

decrease in throughput due to interference from the other transmission indicates the amount

of interference. This approach ordinarily needsO(n4) measurements for ann node net-

work. However, the work in [65] shows this can be done with only O(n2) measurements.

1These techniques also infer and add the packets that are missing from the merged trace.
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A more sophisticated approach does not perform direct measurements as above, but

uses certain modeling steps to reduce the number of measurements toO(n). The idea here

is to measure RSS on each link using broadcast beacons. A profiling study describing the

deferral and packet capture behavior of the radio interfacealong with the RSS measure-

ments help forming a model of the physical layer behavior of the wireless interface. A

MAC layer model is added to the physical layer model to form a complete model that can

estimate interference between active links and link capacities in presence of interfering

traffic. This approach is powerful enough to model realisticphysical interference. Different

variations of this basic approach have been presented in [71, 49, 67]. This method is still

unrealistic in live networks as the RSS measurements need a quiet, interference-free envi-

ronment. Also, the profiling study must be available.

In addition to the above, there are various sundry works on evaluating interference

characteristics in an 802.11 network. For example, in [38],authors investigate the impact of

carrier sensing. In [18] the authors develop a model for the physical layer capture. In [24],

the authors show that pairwise interference modeling is often not accurate and multiple

interferers must be accounted for.

4.2.2 USING DISTRIBUTED SNIFFERS

In contrast to the above methods requiring active measurements, we use passive monitoring

of a live network using distributed sniffers. Previous studies have used distributed sniffers

to conduct a range of measurements over live networks to learn various properties such as

congestion [40], protocol behavior in a hotspot setting [72]. Bahl et al also has used such

an approach in DAIR for troubleshooting [13] and security [14].

While earlier studies were conducted by analyzing individual traces, Yeoet al are the

first to provide a technique to merge individual traces to create a unified view of the network

activity [84, 85]. This unified trace, created using common references of beacons across

traces, provides more opportunities to analyze the link level characteristics of a wireless

58



network. Chenget al apply this technique for a large scale sniffer deployment tocreate

a system called Jigsaw [21], which they use to perform fault diagnosis across multiple

network layers in the network [20]. Mahajanet aldevelop a system called Wit, where they

advance the technique of Yeoet al of merging traces by proposing an inference engine

to guess any missing packets [61]. In our work, we employ the same technique to merge

individual traces into a unified trace. However, unlike the above studies which focus on

understanding MAC level behavior, anomaly or fault detection, our focus is on learning the

interference in the network.

A recent work by Schulmanet al questions the fidelity of such traces generated by

multiple sniffers [73]. They argue that in a high load scenario, a large number of packets

are lost and the timestamps of the packets may not be accuratedue to clock drifts. Thus,

the unified trace depicts an incomplete picture of network activity, and any inference based

on that may be inaccurate. Our technique relies on having sufficient information rather than

complete information, and can work even on incomplete traces. More is discussed about

this aspect in Section 4.3.2.

4.3 OVERALL APPROACH

4.3.1 PROBLEM STATEMENT

In 802.11, links can interfere either at the sender side or atthe receiver side or both. On

the sender side, the interference is because of deferral dueto carrier sense. On the receive

side, it is because of packet collisions that require packetretransmission. In both cases, the

sender additionally has to go through a backoff period, whenthe medium must be sensed

idle.2 The net effect of the interference is reduction of throughput capacity of the link.

For modeling convenience, we consider interference between link pairs only. Due to the

additive nature of the received power, a given link in reality interferes with a set of other

2We are assuming that the reader has an overall idea of the 802.11 MAC protocol. Specific
details will be brought up as necessary.
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links (so called ‘physical interference’) [34]. This is because a single transmission may not

generate enough power to cause deferral or collision for thegiven link, however, multiple

such transmissions may still cause deferral or collision. However, pairwise consideration

can still bring up a useful picture of interference. Also, inreality, multiple concurrent trans-

missions may actually be rare [61]. Thus, learning more elaborate higher order interference

relationships may not be very useful in practice. We do note that this simplification is not

fundamental to our basic technique. The technique can be extended, albeit with higher

computational cost, to physical interference.

In wireless networks, interference is hardly deterministic. It is rather probabilistic

because of the inherent fluctuation of the signal power due tofading effects and prob-

abilistic dependency of error rates with SINR (signal to interference plus noise ratio).

It is thus best to characterize the interference between twolinks as non-binary, using a

number between 0 and 1. Prior measurement and modeling studies have elaborated on this

aspect [65, 49]. Thus, our goal is to estimate via passive monitoring the non-binary, pair-

wise interference between any two network links, in terms ofprobability of interference.

For every link pair, the probability of interference is given by:

pd + (1 − pd)pc, (4.1)

wherepd is the ‘probability of deferral’ between the senders, andpc is the ‘probability of

collision’ at the receivers if both senders transmit together. A previously proposed mea-

surable metric also captures this probability. The metric is Link Interference Ratio (LIR)

proposed in [65].

4.3.2 DISCUSSIONS

The major challenge of using passive monitoring is that one can identify whether two nodes

or links interfere only if they both have packets to transmitat the same time. Obviously, the

observed behavior of two links that otherwise would interfere, but never transmit together

in practice, is no different from the case when the links do not interfere. Thus, our approach
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is based on the conjecture that if we observe live network traffic for long enough period,

such instances will arise where simultaneous transmissions are attempted in the network

for each link pair. Thus, interference between all link pairs can be estimated. Our goal is

to (i) identify such instances, and (ii) infer the interference behavior during such instances.

There are several challenges here that we discuss in the following.

GENERATING UNIFIED TRACE

Traces are collected by deploying several sniffers in the network for each channel to be

monitored. The exact location of the sniffers is not important. The idea is to simply have

enough sniffers at strategic locations so that a large percentage of frames that were trans-

mitted by every node could be captured by at least one sniffer. Having a large number of

sniffers alleviates the problem of positioning them optimally which is a complex problem

by itself.

The individual traces from the sniffers are merged to produce a single complete trace

with a common time base that will be analyzed. We use the technique proposed in recent

literature by Yeoet. al. [84] to merge the traces. The basic idea is to look for beacons

common to multiple sniffers and synchronize the packet timestamps in accordance with

the timestamps of these beacons, so that the final merged trace has a uniform time base.

It has been argued recently that such unified traces may suffer from two major problems

– possibility of missing packets due to collisions or packetlosses at sniffers, and timing

errors due to clock synchronization errors [73]. These problems may render the unified

trace incomplete and incorrect, thus jeopardizing its applicability for network analysis. For

the first issue, a technique of inferring missing packets hasbeen suggested in [61] that

can be used to complete the trace to a large extent. Even if thetrace is incomplete, if it

carries the same statistical relationships as a complete trace would, then our method should

still be effective. For the issue of timing problems, [73] shows that the drift between AP

clock and sniffer clock is significantly large even within a single beacon interval of 50ms.
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Inaccuracy in timestamps can significantly affect our method, as will be apparent later.

However, we expect that each sniffer would have a large number of unique APs it can

hear beacons from. The frequency of occurrence of such common beacons between traces

would be much higher than once every beacon interval, and so the packet timestamps will

be synchronized at much smaller time scales. This should reduce the timing errors as the

clock would be adjusted before the clock drift becomes too large.

Regardless, it is indeed a challenging problem to create a reasonably complete and

accurate unified trace for analysis. In [73], a metric has been proposed to measure the

quality of a unified trace in terms of its completeness. It canaid our method as it is possible

to choose only parts of the trace for analysis that has a high score for this metric.

L IGHTLY LOADED NETWORK

Typical hotspots and WLANs are usually lightly loaded on average. Note that several

measurement-based papers [40, 72, 39] that have highlighted performance artifacts in

802.11, have specifically chosen highly congested periods (e.g., conference and meetings)

to perform the study. However, a monitoring framework cannot depend on the use of such

selective periods. For example, it is appropriate to monitor a departmental WLAN during

regular usage, so that interference information can be inferred, that can help design a better

resource management strategy for periods when it could be congested, for example. This

is in contrast to waiting until a heavy usage period occurs, like a large meeting, to learn

the interference behavior. Short lived TCP flows (for web access, for example) are typical

in WLANs. There could be only few instances when flows are simultaneously active for a

given link pair. It is important for the inference mechanismto be robust even when a small

number of such samples are available in the collected trace.
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UNKNOWN LOAD

The monitoring infrastructure cannot look at the packet queues of the transmitters and does

not know when a packet captured in trace was indeed ready for transmission. Interference

modeling is fundamentally hard if the offered load is not known. To see this, assume that

frames from two senders alternate in the merged trace duringan observation period, and

no two frames overlap in time. This could indicate that the senders interfere. However, it is

also possible that they do not interfere and just happen to transmit in an alternate fashion

following a specific packet arrival pattern from the upper layer. Analysis of inter-packet

times, however, can provide certain confidence – a strategy we will utilize. For example, if

the inter-packet times are such that they could be produced by backoffs, this increases the

confidence that the two transmitters indeed interfere and are carrying saturated loads for

the period of observation. But this requires accurate timing analysis.

On the other hand, simpler methods are possible if saturatedperiods can be correctly

identified. For example, one can use a moving time window on the merged trace and

look for window positions where two transmitting nodes share the available bandwidth

within the window to the same extent that two saturated interfering senders would. If such

instances are found, then the two nodes can be declared interfering. However, choosing the

correct window size is a difficult problem. A large window will rarely get saturated, while

a small window will contain too few frames to provide enough statistical confidence.

USE OFSTRAIGHTFORWARD HEURISTICS

Straightforward heuristics have limited ability in inferring interference from packet traces.

The argument in the previous subsection points out one such issue, as offered load is typi-

cally unknown and searching for saturated portions in the trace can be hard. Similar other

heuristics are hard to design as well. For example, two packet transmissions overlapping

in time may indicate that the two respective senders do not interfere. However, concluding

that these senders are non-interfering from few such instances may be inaccurate. This is
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because the reason of this packet overlap may be due to backoff intervals counting down

to zero at the same instance. Another reason could be that theinterference between such

senders is probabilistic. Thus, sufficient statistics is needed to develop an accurate estimate.

4.3.3 APPROACH

Thus, to determine interference relationships in the network links, one needs a rigorous sta-

tistical modeling approach, instead of relying on heuristic-based trace analysis. In the next

section we develop such a rigorous approach based on the well-known Hidden Markov

Model (HMM) [68]. The basic idea is to model the sender-side of the interacting node

pairs in the network via a Markov process based on the MAC layer operation of 802.11.

The parameters of this process (essentially the state transition probabilities) depend on their

interference relationship (specifically, deferral probability). These parameters are deter-

mined from the observed trace using standard methods. Thesein turn estimate the deferral

probabilities.

It turns out that rigorous modeling is only needed to determine the sender-side inter-

ference. The receiver-side interference results in collisions that are easily detectable, as

they result in retransmissions.3 Retransmitted packets are identified by the set ‘retransmit

bit’ in the frame header. A retransmitted frame, sayR, can be correlated back to the prior

frame, sayP , that has not been received correctly. Any frameS from a different sender

overlapping withP must be the cause of collision. If no suchP exists, the packet loss is

due to wireless channel errors rather than collisions. Because of the probabilistic nature

of packet capture, sufficient statistics need to be built up to determine receiver-side inter-

ference. This is because frames likeS andP even when overlapping, may not result in a

collision sometimes. Thus, the fraction of times they collide would determine the proba-

bility of receivers-side interference.

3For unicast transmissions only. But unicasts are much more frequent relative to broadcasts in a
real network packet trace.
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Figure 4.1: State transition diagram for a single sender. CS= 0 (CS=1) means that the
carrier is sensed idle (busy). Q = 0 (Q =1) means that the interface packet queue is empty
(non-empty).

Prior measurements have, however, shown that collisions are rare even in congested

environments [61], indicating perfect or overly conservative carrier sensing in most WiFi

hardware as well as lack of synchronized transmissions. Ourown experience has also been

similar. Since receiver-side interference is easier to detect and also rare, we discuss only

the sender-side interference in the rest of this chapter.

4.4 HIDDEN MARKOV MODEL FOR 802.11 MAC INTERACTIONS

A hidden Markov model (HMM) [68] consists of a system modeledas a Markov process

with unknown parameters, where the states of the Markov process are not directly vis-

ible, but some observation symbols influenced by the states are visible. There are standard

methods [68, 25, 15] to learn the unknown parameters (such asthe state transition proba-

bilities of the Markov process) using the observation symbols. HMMs have been used in

various machine learning fields such as pattern, speech and handwriting recognition. We

65



will be using the HMM approach for inferring sender-side interference relations between

pairs of senders in an 802.11 network.

4.4.1 MARKOV CHAIN

The 802.11 MAC protocol can be modeled as a Markov chain for each sender [16, 49]. An

802.11 sender, sayX, resides in one of the following four states - ‘idle,’ ‘backoff,’ ‘defer,’

and ‘transmit.’ In the idle state, the sender does not have any packet to transmit (interface

packet queue empty). In all other states the sender has at least one packet to transmit. In the

backoff state, the sender is backing off, waiting for its backoff countdown timer to expire.

In the defer state, the sender is sensing carrier to be busy and it is thus ‘defering’ to another

transmission. In this state, the backoff timer, if already started, is frozen. In the transmit

state, the sender is actually transmitting a frame. These four states captures the essence of

the 802.11 MAC protocol. We are intentionally ignoring DIFSto keep the chain description

simple.

Let us call the 4 statesid, bk, de, andtx, respectively for brevity. At a high level, the

802.11 MAC works as follows. The sender remains in theid state until it has a packet to

transmit. When it has a packet to transmit, it senses carrier. If carrier is idle, it enters thetx

state. See Figure 4.1. If carrier is busy, it enters thede state. It comes out ofde when carrier

is turned idle. It then goes to thebk state, chooses a random backoff interval, and then goes

to thetx state once the countdown of the backoff timer is complete. Ifthe sender senses

carrier busy while in thebk state, it must defer the transmission. It then goes into thede

state, from which it comes back to thebk state once the carrier is idle again. The backoff

countdown timer is frozen while in thede state. Thus, the sender completes the remaining

backoff time when it comes back to thebk state.

After the transmission completes in thetx state, the sender goes back to theid state,

if it has no other packet to transmit. Otherwise, it goes backto thebk state after choosing

another random backoff interval. The state transition probabilities betweenbk and de
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Figure 4.2: Markov chain modeling the combined MAC Layer behavior of two nodes
(sender side only). Note that some arrows are bidirectional.

depend on the state of other nodes (i.e., transmitting or not) in the network, and the

deferral probabilities between the sender and these nodes.Similar argument applies for the

transition probability fromid to de andtx, and transition probability fromtx to de andbk.

Since the transmissions from other nodes impact the state transitions for a given node,

a combined Markov model needs to be considered to get a complete picture of the network

behavior. Here, each state is a tuple consisting of states ofindividual nodes. Such a Markov

chain would lead to a state space explosion with exponentialnumber of states, and would

thus be intractable. Since our focus in this work is on determining the pairwise interference

relationships, we can restrict ourselves to the consideration of a combined Markov chain for

only a pair of nodes, sayX andY . Each state in this Markov chain is a 2-tuple consisting

of the states ofX andY . For example, the state whereX transmits andY defers would
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be 〈tx, de〉. There could be 16 possible states in theory. However, 5 of them are not legal

(e.g.,〈de, de〉, 〈de, bk〉 etc.4), leaving 11 possible states. See Figure 4.2 for the combined

Markoc Process.

In this Markov chain, the state transition probability between certain states depends on

deferral probabilities betweenX andY . For example, from state〈bk, bk〉 to state〈tx, de〉 or

〈tx, bk〉 would depend on deferral probability ofY with respect toX. To see this, assume

that Y carrier sensesX perfectly. Then whenX moves frombk to tx state (i.e., starts

transmitting as soon as the backoff interval is over),Y must also move frombk from de as

it defers toX ’s transmission by freezing its backoff countdown timer. IfinsteadY never

carrier sensesX, it will remain in thebk state.

Note again that this combined Markov chain is specified for a node pair only, as we are

interested in pair-wise interference. This chain can be repeated for all pairs to determine

the sender-side interference between all node pairs. When considering a particular pair, we

filter out the packets of just the two senders for analysis, and ignore the other packets. This

may cause an active node to appear idle for certain periods oftime if the node defers for a

third node’s transmission. While this may result in our method missing out on an opportu-

nity to interpret the interaction between the particular pair as interfering or non-interfering,

it is important to note that this does not create any incorrect interpretation. Recent studies

[61] show that instances of 3 or more nodes simultaneously being active is much less than

instances of only a pair of nodes being active. Thus, we should get enough instances of

just a pair of nodes being active in a long trace. An alternatebut computationally inten-

sive method could try to identify portions of the trace whereonly the senders in a node

pair being considered are active. Another important observation is that the Markov Process

assumes that both nodes strictly follow the 802.11 protocol. Any MAC layer misbehavior

may cause the Markov chain to change and may induce errors in our analysis.

4Note that this Markov chain assumes only two nodesX andY interact. Thus, for example, the
state〈de, de〉 is not possible as both nodes cannot defer at the same time.
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4.4.2 OBSERVATION SYMBOLS

As we do not know the interference relation yet, the state transition probabilities of the

combined Markov chain is unknown. Also, the states of this Markov chain are not directly

visible in the packet trace. We thus need to map each state in this Markov chain to an obser-

vation symbol obtained from the trace that can be used to learn the state transition proba-

bilities. There are four possible observation symbols in the trace depending on whetherX

or Y transmits:

i: neitherX, norY transmitting.

x: X transmitting.

y: Y transmitting.

xy: bothX andY transmitting.

Each state in the Markov chain can be mapped to one of the four symbols above. This

mapping is not unique as more than one state can map to the sameobservation symbol. For

example, both states〈id, id〉 and〈bk, bk〉 map to the symboli. Similarly, both〈bk, tx〉 and

〈de, tx〉 map to symboly. The difficulty here is that backoff cannot be distinguishedfrom

defer or idle periods. This ambiguity can be reduced by usinga heuristic that exploits the

time duration of various observation symbols. This is elaborated below.

A backoff interval in 802.11 comes from a random process and can last for integral

number of slots (20µs in 802.11b). Also, the maximum backoff interval is bounded(31

slots in the first backoff stage5). While not impossible, it is very unlikely that a defer or idle

period will be within this bounded interval and also last forexactly an integral number of

slots.
5Only the first backoff stage is relevant, as we are only concerned about the sender-side interfer-

ence here. In any case, the backoff stage can be identified by observing the number of retransmis-
sions in the merged trace.
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Figure 4.3: CDF of observed inter-frame times in a recorded trace for a single saturated
sender.

This strategy to distinguish between backoff and idle/defer periods requires highly

accurate clocks (within few microseconds). Without any specialized technique the experi-

mentally observed accuracy is not sufficient. See Figure 4.3for a CDF of observed inter-

frame times in a recorded trace for a single saturated sender. Ideally, one would expect a

perfect staircase pattern (vertical risers and horizontalsteps) with 32 steps. While 32 steps

are visible, the pattern is wavy due to clock errors.

We thus use a weaker heuristic in this work that does not require strong clock accuracy.

We assume that defer/idle periods are always longer than 31 slots and backoffs are always

equal or shorter. This, however, introduces errors when airtime of an 802.11 frame is less

than 31 slots (620µs for 802.11b6). This also introduces errors for very small idle times.

With these sources of error, the results in the next section provide only a lower bound on the

accuracy obtainable by the base technique. In our future work, we will explore possibilities

of using accurate timing information to remove these sources of inaccuracies.

With the above weaker heuristic, each observation symbol can be of two types. The

symboli can be eitheris or il, corresponding to short (≤ 31 slots) and long (> 31 slots)

6This means TCP packets with payload less than 400 bytes in 802.11b to give the reader an idea.
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respectively. According to the heuristic,is is most likely output by〈bk, bk〉 state, whileil

is most likely output by〈id, id〉 state, for example. Similarly, the symbolsx andy can be

eitherxs andxl, andys andyl, respectively. Figure 4.2 shows the observation symbols for

each state.

Each packet in the merged packet trace consists of a timestamp for when the packet

was received at the sniffer, the id of the sender, size of the packet, and the rate at which

it was transmitted. This information is parsed to obtain thesequence of above observation

symbols from the trace. Based on this sequence, we use the following technique to learn the

state transition probabilities of the Markov chain, that inturn will provide the probability

of interference between the senders.

4.4.3 FORMAL SPECIFICATION AND LEARNING

We now provide the complete formal specification of the HMM using standard nota-

tions [68]. The HMM consists of the following:

• SetS of N states, whereN = 11. S is given by:

S = {Si} = {〈id, id〉, 〈bk, id〉, 〈tx, id〉, 〈id, bk〉,

〈id, tx〉, 〈bk, bk〉, 〈tx, de〉, 〈tx, bk〉, 〈de, tx〉,

〈bk, tx〉, 〈tx, tx〉}.

• SetV of M observation symbols, whereM = 7. V is given by:V = {is, il, xs, xl, ys, yl, xy}.

• Matrix A of state transition probabilities, indicated byA = [aij ], whereaij is the

transition probability from stateSi to Sj . This matrix is unknown at the outset and

will be determined. Note that some state transitions are invalid and suchaij is set to

0. Such transitions are absent in Figure 4.2.

• Matrix B of observation symbol probabilities, indicated byB = [bjk], wherebjk is

the probability that the observation symbol isvk for stateSj. In our case, observation
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symbols are deterministic for each state. But they are not unique. The mapping from

states to symbols are shown in a table within Figure 4.2.

• Vectorπ of the initial state distribution, indicated byπ = [πi], whereπi is the proba-

bility of initial state beingSi. We useπi = 1/N for all i, 1 ≤ i ≤ N .

The above defines the HMM,λ = (A, B, π). The packet trace provides the observation

sequenceO = O1, O2, · · · OT , where each observationOt ∈ V , andT is the number of

observations in the sequence.

Given the above HMMλ and the observation sequenceO, we wish to learn the model

parametersλ = (A, B, π) that maximizeP (O|λ). This is a difficult problem, and there is

no optimal algorithm for it. We can, however, use the expectation-modification (EM) algo-

rithm, which is an iterative method to determineλ, such thatP (O|λ) is locally maximized.

The EM algorithm alternates between an expectation (E) step, which computes the model

parameters most likely to produce the observation, and a modification (M) step, which com-

putes the maximum likelihood of model parameters across multiple E steps [25]. We use

the Baum-Welch method, which is a type of EM algorithm, basedon the forward-backward

algorithm developed by Baumet. al.[15]. The method insures that in every estimation step,

we find a model which is more likely to produce the observation. Thus, if we estimate the

parameters of the modelλ to getλ, thenP (O|λ) ≥ P (O|λ).

While using the Baum-Welch method, we do not readjust the parametersB andπ in

the modelλ. We initalize the state transition probabilities such thatequal probability is

assigned to all the outgoing valid transitions from each state. This ensures that there is

no initial bias in the model towards interfering or non-interfering pair of nodes. This aids

in quick convergence of the method. We also need to use the scaling technique in the

procedure [59]. This is needed as we deal with very long sequences of observations. and

continued multiplications of certain fractions creates problems with numeric accuracies.
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4.4.4 LEARNING DEFERRAL PROBABILITY

Transitions into any state with a defer component (i.e., states such as〈de, ∗〉 and〈∗, de〉)

indicate interference. Thus, our task is to evaluate the total probability of transition into

such states. Let us denote the set of these states asD, whereD ⊂ S. Let us denote byP

the set of states that have transitions into the states inD, according to the state transition

diagram in Figure 4.2. IfΠ = [Πi] is the stationary (steady state) distribution of the states,

then the deferral probability is the conditional probability that the chain enters a state inD

given that the chain is in a state inP . Thus, the deferral probability is given by,

∑

∀is.t.Si∈P

∑

∀js.t.Sj∈D

aijΠi.

Once the transition probabilitiesA = [aij ] are learnt,Π = [Πi] can be determined as

Π = limn→∞ πAn. The convergence is guaranteed asA is a stochastic matrix. The above

expression to compute deferral probability assumes a symmetric link between a node pair.

Links may be asymmetric in reality, and the above expressioncan be easily modified to

consider a one-directional deferral probability. However, in this work, we evaluate only the

bi-directional, and hence symmetric deferral probability.

4.5 EVALUATION

We evaluate the effectiveness of the HMM-based approach by experiments and simulations.

The first set of experiments serves as micro-benchmarking. Two senders and broadcast

traffic are used to specifically evaluate the sender-side interference using carefully con-

trolled load. The degree of interference is varied by repositioning the senders. The second

set of experiments are used to study the real-life behavior in our departmental WLAN.

Here, realistic TCP download traffic was used to drive the experiments. More elaborate,

network-scale evaluation is done using an ‘extended’ ns-2 simulator [7]. This extension is

meant to impart realism in the physical layer and interface behavior in ns-2. This extension

is based on our recent work and has been validated by real testbed experiments [44].
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4.5.1 COMPARISON POINTS

For performance comparison, we use two other methods to infer interference.

Profile based method (PROFILE) This technique is specifically based on [71, 49]. This

involves understanding the relation between the received signal strength (RSS) and the

probability of deferral. This is done by using a pair of nodesto collect a lot of measurements

for the above two variables and then creating a profile for thespecific interface card used.

This needs to be repeated for all different cards used in a network. Once the profile for

a specific card is known, the probability of deferral betweentwo nodes can be obtained

by measuring the average RSS values between them and doing a lookup on the profile.

Note that this technique is based on active measurements andis thus expected to be quite

accurate. We use this technique as a benchmark.

Moving window based method (WINDOW(t)) This technique is an example of a simple

heuristically based approach that may not perform well without extensive parameter tuning.

See the discussions in Section 4.3.2 in this regard. This technique involves using a moving

time window of sizet seconds to scan the combined packet trace, such that we consider only

the packets in the window at a time. For each window position,we try to infer if the nodes

interfere or they do not by analyzing their throughputs during the window (see below).

Finally, we use the ratio of the number of window instances where the nodes interfere and

the number of window instances where they do not to obtain theprobability of deferral.

Specifically, we use the following technique:

• Throughput of each node in the window being considered is calculated. If the

throughput is equal to or greater than half the capacity at the bit-rate of the sender

for both nodes, then the window is considered saturated, otherwise the window is

considered unsaturated.
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Figure 4.4: Combined performance results for 11 chosen scenarios for two node experi-
ments.

• Interference can be inferred only for saturated time windows. A saturated time

window is marked non-interfering if the throughput of at least one of the senders is

equal to or greater than half the capacity. It is marked interfering otherwise.

• Probability of deferral is the fraction of saturated time windows that are marked

interfering.

4.5.2 MICRO-BENCHMARKING WITH TWO NODES

We use a two-sender, two-sniffer scenario here. Each sniffer is co-located with a sender to

guarantee that all frames are received. In fact, we use just two machines are used for these

experiments, each with two 802.11 radios, where one radio acts as the sender, the other acts

as the sniffer.7

7We use a desktop machine running Linux with two PCI based 802.11 cards, and a laptop run-
ning Linux with a miniPCI and a PC based 802.11 card. All the cards are based on Atheros chipsets
and we run the popular MadWiFi [4] driver on both the machines.
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For the experiments, all the four radios are put on the same channel. The choice of

channel is immaterial. The sender radio is configured in ‘ad hoc’ mode. All experiments

are done for 802.11b and by setting the PHY-layer data rate to11Mbps.

We keep one machine fixed at one location, and relocate the other to various locations

in the building to create a range of interference scenarios where the two senders either inter-

fere or do not interfere, or interfere partially. For each scenario, we perform the following

measurements. First, we measure the actual probability of deferral between the nodes using

the method described in [65]. We let each sender broadcast 1400 byte UDP packets as fast

as it can in isolation for a minute, and measure their throughputs in isolation. We then let

them broadcast together as fast as they can, and measure their throughputs again. The ratio

of the sum of throughputs when the senders broadcast together to the sum of throughputs

when the senders broadcast in isolation is defined asBIR, or the broadcast interference

ratio. The ‘measured’ probability of deferral is estimatedas1/BIR − 1.

We also measure the RSS values at each sender when the other sender broadcasts in

isolation. This is again done for each scenario. This is usedto estimate the probability of

deferral using thePROFILE method described above. The interface card profiles have

been independently done using a method similar to [49].

Now, we do a series of experiments to capture live network traffic so thatHMM

andWINDOW (t) methods can be applied. We generate traffic in the following fashion

for each scenario. The senders broadcast 1400 byte UDP packets simultaneously for one

minute. The offered load is varied from 0.1 Mbps to 6 Mbps in 10steps. The inter-packet

times are chosen from a Poisson distribution. The PHY-layerbit rate is chosen to be

11 Mbps; thus, 6 Mbps for each node means saturated load. Meanwhile, each sniffer cap-

tures all the packets it hears in that duration. The packet trace from each sniffer is merged

using the techniques described earlier, and this combined trace is used to estimate the prob-

ability of deferral using theHMM and theWINDOW (t) methods. The later is repeated

for three different window sizes (t= 0.01s, 0.1s, 1s).
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We make such measurements for 11 different locations of the laptop, creating 11 dif-

ferent scenarios. The distribution of the measured probability of deferral at different loca-

tions is presented in Figure 4.4(a). For each scenario, 10 different values of offered load

are used between 0.1 Mbps and 6 Mbps, thus creating 110 measurements forHMM and

the WINDOW (t) methods, and 11 measurements (one for each scenario only) for the

PROFILE method. The distribution (CDF) of errors (‘estimated’ – ‘measured’ proba-

bility of deferral) is plotted for all three methods in Figure 4.4(b). Note that theHMM

approach is quite competitive with thePROFILE method (actually it is slightly better

overall for the particular distribution of deferral probabilities). The root mean square error

(RMSE) values are 0.165 and 0.208 forHMM andPROFILE, respectively. The RMSE

values forWINDOW (t) methods is 0.385, 0.408, and 0.402 fort = 0.01s, 0.1s, and 1s

respectively. We have noted before, however, that the PROFILE method is impractical for

analyzing live network traffic and it also requires access tothe network nodes.

Overall,HMM is quite competitive withPROFILE, but requires only passive mea-

surements. The experience with the window-based method is quite variable. It is also quite

sensitive to choice of window size.

4.5.3 EXPERIMENTS ONDEPARTMENTAL WLAN

These experiments are done on a departmental WLAN with 7 APs.The WLAN is spread

over two floors of a building. See Figure 4.5 for a layout. Two laptops are used as clients.

They fetch several large files sequentially via HTTP download for about 20 mins. This

simulates real network traffic that are sniffed using 9 sniffers (Soekris [74] single board

computers with 802.11 miniPCI cards with Atheros chipset and with external USB flash

memory to store packet traces). The sniffers are deployed based on convenience, i.e., near a

power outlet and in the rooms that we have regular access to etc. But an attempt was made

to keep them as close to the APs as possible. The client laptops are moved around among

7 possible locations, using one location pair at a time. (16 location pairs are tested.) The
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Figure 4.5: Locations of APs, sniffers and clients shown projected on 2D. The nodes are
distributed actually over two floors – APs on ceilings, sniffers on floors and clients on floors
or on tables.

Figure 4.5 shows all nodes projected on the layout of the 1st floor for brevity. However, the

nodes are actually distributed in a 3D space over two floors.

For each location pair, the two laptops associate with two different APs and then

simultaneously perform the HTTP download as mentioned before. Unlike the micro-

benchmarking experiments, the default auto-rate control with 802.11b is used. Also, the

802.11 frames are now unicast with ACK. RTS/CTS are switchedoff. For each case, the

probability of interference between the pair of download links (AP to client) is ‘estimated’

using equation 4.1. First the probability of deferral (pd) is estimated using the HMM-based

method using the merged sniffed traffic traces from all sniffers. Second, the probability of

collisions (pc) are estimated by observing the retransmissions for overlapped packets as
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Figure 4.6: Estimated and measured probabilities of deferral for the 16 test cases with the
departmental WLAN.

described in Section 4.1.1. However, in all cases retransmissions were rare, typically less

than 1% of frames were retransmitted. This is consistent with prior experimental observa-

tions [61]. Thus,pc could be safely ignored withpd alone determining the probability of

interference.

For validation,pd is ‘measured’ via the BIR method described in the previous subsec-

tion. For these measurements, simultaneous saturated UDP traffics on the downlinks are

used for about 2 mins. The validation results are shown in Figure 4.6 as a scatterplot. Note

the high degree of predictability of the estimation in this real-life experiment. The straight

line is the least square fit with the condition that that the line passes through 0. Note that it

is very close to they = x line. TheR2 value for this line is 0.88 showing a good fit.
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A careful reader will notice a slight bias at the low end of thedeferral probabilities.

The HMM method consistently overestimates deferral probability, when the probability is

very small. We have also observed this in our micro-benchmarking though it does not show

up in the CDF plots. The reason for this is the heuristic we used in our modeling (Sec-

tion 4.4.2) that defer/idle periods are always assumed longer than 31 slots. When there is

little interference, often idle periods could be shorter than backoffs. If they are misclassi-

fied as backoffs, the possibility of misclassifying some idle states as defer increases. As

discussed in Section 4.4.2, a stronger heuristic using moreaccurate clocks could address

this issue.

We have only reported experiments in a WLAN environment. However, there is nothing

specific in the technique related to one-hop network, as the technique estimates interference

between link pairs. Thus, it is as applicable to a multihop network as it is for a one-hop

network.

4.5.4 SIMULATIONS

To evaluate the performance of HMM technique in a realistic network setting (beyond two

node experiments that we did in the previous section) we makeuse of simulations. Sim-

ulations let us create arbitrary topologies and hence interference conditions easily. How-

ever, one problem with using simulations is that the physical layer (including interface

behavior for carrier sense and packet capture) implementation is often idealized or unreal-

istic. In our prior work [46] we addressed this issue by extending the popular ns2 simulator

with realistic measurement-based models. The models have been validated by experiments

showing excellent accuracy. Thus, we are confident that the packet traces generated by the

extended simulator is reflective of packet traces obtained in a real network experiments,

except missing packets and clock synchronization errors are absent in simulations.

For the sake of completeness, we note here that in [46] the enhancements are done

specifically in the following physical layer components – (i) radio propagation model, (ii)
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deferral or carrier sense model, and (iii) packet receptionmodel. For (i), models are derived

from real measurements in a testbed. For (ii), a measurement-based profile of a testbed

is created where every value of RSS is mapped to a deferral probability. Erstwhile, the

deferral model in ns-2 consisted of having a carrier sense threshold, which in presence of

a constant signal strength would always produce binary interference. For (iii), a similar

measurement-based profile is used at the receiver-side to model the packet capture prob-

ability with respect to the SINR. These profiles make the interference relations between

links non-binary.

We consider 3 scenarios, where 20 nodes are uniformly and randomly distributed in

a 200m×200m area, a 150m×150m area, and a 100m×100m. These 3 scenarios produce

different topologies ranging from sparse to dense. We generate traffic by creating one-hop

TCP flows on random feasible links. A link is considered feasible if the delivery ratio

on the link is greater than 50%. The difference between the start times of successive flows

comes from the Poisson distribution. The duration of each flow also comes from the Poisson

distribution. We vary the ratio of the duration and the inter-arrival time of flows to change

the load on the network.

We run the simulation long enough to give the opportunity to all pairs of nodes and

links to be potentially active together. As the traffic is random, this may not happen for

some pairs. For the results presented here (See Figure4.7),the simulations were run for

180s, the average duration of each flow was 5s, and the averageinter-arrival time between

flows was varied from 2.5s to 1s, such that the average load in the network varies from 2 to

5 flows.

In Figure 4.7 the results are shown in rows, one row for each network density – low

(200m×200m), medium (200m×200m) and high (200m×200m) density. The first plot in

each row shows the ‘measured’ probability of deferral for node pairs. The next two plots

show the CDF of error performances ofHMM andWINDOW (t) methods similar to the

previous experiments. The lightest and heaviest loads usedare shown separately as we now
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know that the load impacts the performances of these methods. ThePROFILE approach

is not shown here as it would be perfectly accurate in the simulator (as the simulator’s

deferral model itself uses the same profile model). From the plots note that HMM performs

significantly better than the window-based method. AverageRMSE value for the HMM

method is about 0.09, while the average RMSE value for the window based method is about

0.5. As expected, the accuracy of HMM is better with more interference (dense network).

Also, heavier traffic load works slightly better than lighter traffic. Overall, HMM performs

within 10% error at least 90% of the times.

4.6 CONCLUSIONS

We have investigated a novel machine learning approach to estimate interference in a WiFi

network. The technique uses a merged packet trace collectedvia distributed sniffing. It

then recreates the MAC layer interactions between network nodes via a machine learning

approach using the Hidden Markov Model. This is finally helpful in inferring interference

relationships. The advantage is that the proposed technique is purely passive and thus can

work with a live network without any access to the network elements. We have demon-

strated via experiments and simulations that the HMM-basedtechnique can provide accu-

racy similar to existing methods that uses profiling and active measurements directly on

network nodes. Simpler, heuristically based passive methods have been shown to perform

very poorly.

While the HMM-based technique is able to estimate non-binary interference relations,

one shortcoming at this point is that it can infer only pairwise interference and not phys-

ical interference. However, this is more of a limitation of our current study and not of the

basic approach. The Markov model can be extended from node pairs to node triplets, node

quadruplets, and so on. In each step, the number of states increases making the learning

process computationally more intensive. However, for all practical scenarios, we do not

expect this needs to be extended beyond a handful of nodes at atime. This is because it is
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unlikely that a large group of nodes will actually transmit together in a live network. Our

future work will extend our approach to physical interference, and will also perform more

performance studies with live networks.
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Figure 4.7: Performance results for 20-node scenarios withthe extended ns-2 simulation.
Distribution of probabilities of deferral for node pairs and CDF of interference estimates
for low and high traffic are shown for three network densities.
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CHAPTER 5

VOIP ON WIRELESS MESH NETWORKS

In the previous chapters, we presented various methods to model interference, and its

impact on the network capacity. In Chapters 2 and 3, we built methods to estimate the

capacity of a link in a 802.11-based network in presence of multiple interferers, first by

analytical methods, and then using measurement-based simulators. In Chapter 4, we pre-

sented a machine learning approach to estimate interference between links. We now present

an application of having a capacity model.

We study the problem of supporting VoIP calls in a wireless mesh network. Specifi-

cally, we propose solutions for call admission control (CAC) and route selection for VoIP

calls. Call admission decisions must evaluate how the capacity of the mesh network is uti-

lized by the existing calls. We address this issue via a measurement-based modeling effort

to model mutual interference between wireless links. The modeling approach evaluates

whether capacity constraints (or, required QoS metrics) will be satisfied if a new call is

admitted with a given route.

5.1 INTRODUCTION

Voice over IP (VoIP) applications have seen tremendous growth in the recent years. This has

led to the emergence of VoIP applications, e.g., Skype, and service providers, e.g., Vonage,

Packet8, etc. Recently, with the advent of dual interface cellphones with WiFi interfaces

and ubiquitous availability of wireless LANs, the VoIP overWLAN is gaining popularity.

In typical scenarios, the footprint of each Access Point (AP) in a WLAN is limited to

250 meters outdoors, and up to 100 meters indoors. For providing wide area coverage
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such as in a shopping mall or campus area, the deployment and maintenance of this wired

backplane required for connecting a large number of APs becomes a fairly arduous task.

This is where the emergingwireless mesh networks[10] can be useful. Mesh networks

add routing functionalities to the APs of WLAN, thus eliminating the wired backplane,

making them easier to deploy. Because of their potential wide-spread use, it is of paramount

importance to study methods to implement VoIP services on wireless mesh networks.

SUPPORTINGVOIP OVER MESHES

In this chapter, we focus on quality of service (QoS) provisioning issues for supporting

VoIP over mesh networks. Specifically, we address two related questions: a) How can we

maintain the QoS of VoIP calls over a mesh network and b) How can we improve the

capacity of the mesh network in terms of the number of VoIP calls that can be supported?

We answer the above questions by solving thecall admission control(CAC) androute

selectionproblems for VoIP calls in the mesh network.

The role of CAC is to determine whether to accept or reject an incoming VoIP call

based on the available capacity of the mesh network. CAC is a necessary component of a

VoIP service in order to maintain QoS of the ongoing calls while ensuring that calls are

not rejected when network capacity is available to accommodate the call. Accuracy of the

CAC depends upon how well the mesh network capacity is inferred. This is inherently

difficult because of wireless interference: two wireless links in the vicinity interfere to

some extent. Interference also leads to MAC protocol inefficiency: two interfering links

when active simultaneously often provides less aggregate throughput than when only one

of them is active. A result of all these is that any new VoIP call can reduce throughputs (and

hence QoS) of many existing calls even without directly sharing any link with them in the

chosen route. Thus, call admission decisions must somehow model wireless interferences

accurately and must be able to predict the available capacity. This is a hard problem.
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Further, routing decisions are closely coupled with admission control. For efficient

route selection, one not only has to look for a feasible route(i.e., one that has enough avail-

able capacity), but also one must ensure that the choice of routes still leaves enough residual

capacity to be able to admit future calls for a given calling pattern statistics. Because

of wireless interference, checking for feasibility itselfcan be computationally intensive.

This is because there are exponentially many paths between asource-destination pair, and

because of wireless interference, each one of them must be checked in its entirety for fea-

sibility. Thus, practical and effective heuristics are desired for the route selection problem.

CONTRIBUTIONS

With this background we make the following contributions inthis work.

A. In order to develop an effective call admission decision,we develop ameasurement-

basedcapacity utilization model for 802.11-based mesh network.This model pro-

vides the current view of every node’s available capacity that needs to be met when

admitting a new VoIP call. Using a 802.11a-based testbed, weexperimentally demon-

strate the effectiveness of this modeling approach in making call admission decisions.

B. We address the problem of finding a feasible route for a VoIPcall while meeting

any capacity constraint. We develop a polynomial time solution that can always find

a feasible route if one exists. We show via simulations that by discovering feasible

routes, we can increase the call acceptance rate by 20% compared to the traditional

shortest path routing using hop count metric.

C. Finally, we demonstrate that if a distribution of callingpattern is known, it is possible

to find routes that can improve the VoIP call acceptance rate.We present an algorithm

that creates routes by avoiding critical links and results in increasing the acceptance

of future calls. We show via simulations that using this routing approach, we can

achieve up to 40% increase in call acceptance rate.
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5.2 RELATED WORK

Studies focussing specifically on VoIP over 802.11 have considered the delay and loss

characteristics under the PCF and DCF modes [81, 36, 82]. A recent work on VoIP over

WLAN [33] presents analytical studies on the number of callsthat can be supported in

a single hop WLAN. The study reports that increasing the payload per frame increases

the number of supported calls. Various methods for improving the performance of VoIP

in wireless mesh networks have been proposed in [63, 30]. These methods include using

path diversity and packet aggregation. Our work addresses amore challenging problem of

determining the capacity of a call along a path in a multi-hopmesh network.

Several models have been proposed to compute the capacity ofa wireless network.

Bianchi proposed a model for determining the capacity of 802.11 in a single cell [16]

which has been followed by other similar models as in [80]. Inmulti-hop wireless mesh

networks with given interference and traffic models, the works in [37, 53, 57] formulate a

linear program to solve the joint routing and scheduling problem to maximize the capacity

of the network. The work in [77] addresses capacity issues specifically for VoIP calls, but

it assumes a TDMA based MAC layer. All these works assume someform of scheduling at

the MAC layer that is not available with 802.11. An analytical model to compute the end-

to-end throughput capacity of a multi-hop path in 802.11-based network has been proposed

in [31]. The capacity models proposed above use a somewhat abstract and idealized model

of interference, that assumes that interference is binary and is between link pairs only.

Further, interference is assumed to be based on physical distances between the transmit-

ters and receivers, simplified radio propagation models, idealized transmitter and receiver

characteristics, and so on. In practice, interference is a complex phenomenon as demon-

strated in experimental studies in [65, 71], where practical, measurement-based methods

are promoted to estimate the interference between 802.11 links.

For multihop wireless networks, several modifications to on-demand routing protocols

have been proposed to support QoS for real-time applications [58, 83, 19, 78]. In spirit,
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Figure 5.1: Architectural block diagram for the approachesdeveloped in this chapter. The
number in the parantheses in each block indicates the section where it is discussed.

these techniques propose or modify an on-demand routing protocol to support QoS. These

techniques cannot guarantee that a feasible path will be found if one exists as the proposed

protocols perform only neighborhood checks to verify capacity constraints. Furthermore,

the above on-demand protocols require exchange of multihopmessages to find the route

and result in significant call set up time.

5.3 ARCHITECTURE OVERVIEW

In a typical mesh network deployment for supporting VoIP services, a person can make

VoIP calls using WiFi enabled phones. Any “internal call” (calls made between clients

inside the network), or “external call” (calls made to or from clients outside the network)

goes through a central Session Initiation Protocol (SIP) server. The SIP server authorizes

the calls and resolves IP addresses and phone numbers, and then the route is established

between the clients.
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Figure 5.1 shows various system components in our architecture. An interference map

is created based on the measurements reported by each mesh node. The interference map

models the interference for the given mesh topology. A list of active calls along with their

respective routes is maintained. From the list, the currentoffered load at each node is

obtained. The capacity utilization model is constructed from per-node traffic load along

with the interference map. This model is updated every time acall arrives or departs, or

a new measurement report is received. Using this capacity utilization model, a route for

the new arriving call is computed, and the call admission decision is made depending on

whether a feasible route is found.

Upon call arrival, the call setup must be done within a few seconds. The call setup

consists of SIP authorization, route computation, call admission control, and the actual

route setup. SIP authorization and route setup are not studied in this work.

The entire system apart from the node-based measurements isdeployed on a central

server. Such acentralizedarchitecture has several benefits: a) a central server can easily

interact with the SIP server, b) minimum functionality at mesh nodes paves the way for

deployment of commodity hardware and software platforms that is also easy to upgrade.

Many commercial WLAN and mesh network platforms [27, 62] already have a central

manager node where the CAC and routing software can be deployed. The centralized view

is also consistent with one of the deployment scenarios currently being standardized by the

CAPWAP working group [64].

5.4 VOIP CALL ADMISSION CONTROL

A good call admission control design must look at a VoIP specific QoS metric and under-

stand the effect of the network performance parameters suchas delay and loss on this QoS

metric. A capacity model can then be built based on this understanding.

VoIP QoS Measure:For G.729a encoder, VoIP sends 50 packets per second of 20 bytes

each. TheR-factor, orR-score, proposed in [22] is a popularly used QoS metric for VoIP
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Figure 5.2: On a 2-hop path, the graph shows how R score depends on capacity. Once the
capacity threshold is reached delay increases due to queuing delay and R score goes down.

calls.R-score takes into account one-way delay, loss rate, and the type of the encoder. For

example, for the G.729a encoder [29],

R = 94.2 − 0.024d − 0.11(d − 177.3)H(d − 177.3)

−11 − 40 log(1 + 10e),

where

• d = 25 + djitter buffer + dnetwork is the total one-way delay in ms comprising of 25

ms voice encoder delay, delay in the de-jitter buffer (50ms), and network delay;

• e = enetwork + (1 − enetwork)ejitter is the total loss rate including network and jitter

losses;

• H(x) = 1 if x ≥ 0, else0. R-score should be larger than 70 for acceptable call

quality.

Meeting the target VoIP QoS: The quality of a VoIP call is sensitive to delay and loss.

The exact dependence is non-linear as given by theR-score formulation above. In order to
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maintain a good call quality (R ≥ 70), the one-way delay should be less than 200ms and

the packet loss rate along the path should be less than 5%. Packet loss rate can be reduced

by choosing a path consisting of links with a high delivery ratio. Packet transmission delays

at each hop is typically within a few millisec. However, queueing delays can add up.

From elementary queueing theory, the average queueing delay increases with load, but

really becomes large when the average load reaches close to the capacity. We demonstrate

this in connection with VoIP and mesh networks using an experiment with a 2-hop segment

of a 802.11a-based mesh testbed (testbed described later inSection VII). The 802.11a links

are operated at 6 Mbps (and thus in theory each link individually can support 42 calls using

calculations of [33]). In the experiments we keep adding VoIP calls to this 2-hop segment

and record averageR-score and total one-way delay. See Figure 5.2. Notice that at the point

the queueing delay starts increasing abruptly (around 20 calls), R-score also falls rapidly

from around 60-70.1 This experiment demonstrates that the 2-hop segment can support a

maximum of about 20 calls,2 a limit admission control protocols must understand a priori.

Capacity utilization: Based on the above observation, we conclude that in order to meet

the QoS for a given set of active calls, the load on each node inthe mesh network must

meet a capacity bound. In order to ensure the above condition, we determine the capacity

utilization at every node for a given set of active calls. Specifically, we solve the following

problem:For a mesh network ofn nodes, modeled as a graphG = (V, E), and a set

of paths fork active calls,P = {p1, p2, ..., pk}, find the normalized capacity utilization

ci, 0 < ci < 1, for each nodei in the network.Here, a path is defined as a sequence of

nodes. Normalized capacity utilization of a node is the total bits/sec traffic transmitted,

received or heard by the node (i.e., the total busy time for the radio medium as perceived

by the node), normalized to the nominal link capacity.

1We relax the acceptableR-score limit to 60 to account for unavoidable errors caused due to
random losses on the wireless link.

2Ideally, we should get half of the theoretical capacity of a single link, which is 42 calls.
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Call admission decision:The call admission controller is invoked once route computation

is attempted for a new call. The route computation is described in the section VI. The route

must ensure that the capacity constraint at all the nodes in the network is satisfied (i.e.,

ci < 1) with this new call admitted on this route, i.e., the route isfeasible. If no such route

is found, the call is rejected. If a feasible route is found, the call is added to the set of active

calls and the capacity utilization is recomputed for futureuse.

5.5 MODELING CAPACITY UTILIZATION

Capacity utilization is modeled by first measuring the amount of interference between

nodes and creating an interference map. The individual VoIPcall’s contribution to any

node’s capacity utilization can be inferred from the interference map.

5.5.1 INTERFERENCEMAP

Following our recent work on measurement-based interference modeling [48], we charac-

terize interference between a node pair in terms of thecarrier sense factoror csf. For two

nodesx andy, csf y
x (carrier sense factor of “x” with respect to “y”) is defined as the ratio

of the actual transmission rate ofx when bothx andy attempt to transmit at the maximum

possible rate, to the transmission rate ofx, whenx transmits alone at its maximum possible

rate.csf y
x thus denotes the “normalized transmission rate” forx in presence ofy.

Typically, csf y
x takes values between 0.5 and 1. A value of 0.5 implies thatx andy

are perfectly within carrier sensing range of each other. Onthe other hand, a value of 1

implies thatx andy cannot hear each other.csf between a pair of nodes can be indirectly

estimated by using the correlation with the delivery ratio of the link y to x, as well as the

signal strength and noise of received packets on the linky to x [71, 48]. This requires just

O(n) measurements in a mesh network, where each node takes turn inbroadcasting at the

maximum possible rate, and the other nodes measure the required parameters, i.e., delivery

ratio and signal strength from received packets.csf can also be explicitly measured by

93



doing pairwise experiments for all pairs of nodes in the network. In each experiment, two

nodes broadcast at the maximum possible rate, and the numberof packets sent out can be

measured at each node to get thecsf values. This, however, requiresO(n2) measurements.

This strategy is somewhat similar to techniques described in [65].

csf estimates (or measurements) between all node pairs define the interference map for

the network.

5.5.2 CURRENT OFFEREDLOAD

The offered load (l) at each node is normalized with respect to the link capacityof the node.

As pointed out before, the maximum number of calls that can besupported on an 802.11a

link at 6Mbps is 42. Thus, for a single two-way call on a link, the offered load on each node

is 1/84. For a two-hop call on path A-B-C, the offered load on Aand C is 1/84, while the

offered load on the middle node is 2/84, because it has to forward traffic in both directions.

Thus, for any call with a given path, the offered load on the source and destination of the

call is 1/84, while at the intermediate nodes, it is 2/84. Foreach nodei, the offered load due

to all active calls can be added to compute the total offered loadli, 0 < li < 1.

5.5.3 CAPACITY UTILIZATION AT NODES

The normalized capacity utilization at any node has been defined in the previous section.

For brevity, we may not always use the term “normalized.” Note that if capacity utilization

of a node isci, it means that the unutilized (or residual) capacity of the node is1 − ci.

Capacity utilization can be modeled by the following factors.

Actual traffic load on the node: One of the components of the capacity utilization

of a node is the actual traffic the node is transmitting. Actual traffic load (ti) at a node

(i) is greater than the offered load (li). It is equal to the offered load plus the extra traffic

the node has to transmit due to retransmissions caused by packet collisions. Packets will

collide at the receiver if the receiver has another transmitter in its carrier sensing range
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that is outside the carrier sensing range of the transmitter(hidden terminal phenomenon).3

Thus, a nodej is a hidden terminal fori, if for the receiverk, csf j
i = 1 and csf j

k <

1. The fraction ofj′s traffic reachingk is 2 · (1 − csf j
k). Let the amount of traffic sent

by i to k be denoted aslik, such that
∑

k lik = li. Since the packet transmissions are

uniformly distributed over time, the probability of collision of a packet at the receiver can

be approximated aslik·lj ·2·(1−csf j
k ). This amount of traffic must be retransmitted byi. The

retransmitted packets may collide again with a smaller probability. So, if we approximate

the number of MAC layer retransmissions to just one, and add the extra traffic generated

due to all such hidden terminals (j) and all the neighborsk at i, we get the expression,

ti =
∑

k lik · (1 +
∑

j lj · 2 · (1 − csf j
k)), if csf j

i = 1 andcsf j
k < 1.

Amount of traffic overheard : The amount of traffic the node can overhear is also

included in the capacity utilization of the node. This is because the node is unable to

transmit during that time, and hence the capacity is utilized for that moment. A nodei

can hear the traffic of all the nodesj, wherecsf j
i < 1. If csf j

i = 0.5, the node can listen to

all the packets fromj. When0.5 < csf j
i < 1, the amount of traffic the node can listen to is

2 · (1 − csf j
i ). Thus the amount of traffic overheard at nodei, sayoi, can be approximated

asoi =
∑

j 6=i tj · 2 · (1 − csf j
i ).

Consideration of residual capacity: The residual capacity is given by1 − ti − oi.

The residual “usable” capacity is in fact less than this because of possible collision and

retransmissions due to hidden terminals. We model this effect indirectly. Assume that the

residual capacity is1 − ci. Thus, the node can generate an extra1 − ci amount of traffic.

The extra traffic generated due to retransmissions of this traffic, sayri, can be given asri =

maximum of(1 − ci) · (1 +
∑

j lj · 2 · (1 − csf j
k)) if csf j

i = 1 and csf j
k < 1, over all

neighborsk. This is similar to the method in the first step.

3Note that the RTS/CTS is not useful in VoIP. This is because VoIP payloads are small (20 bytes),
and relatively RTS/CTS would be a significant overhead.

95



To determineci, we add up all these components and equate it to 1. This gives the

equation:ti + oi + ri = 1. This equation is solved forci to get the capacity utilization at

each node in the network.

5.6 ROUTE COMPUTATION

For a new call, if a feasible path is found that meets the capacity constraint for all nodes

(i.e., ci < 1, ∀i), we can accept the call and use the path to route the call. A question of

routing metric arises if there are more than one feasible paths. Conventional link quality

based metrics like ETX [23] is not appropriate in this context. The assumption is that only

good links are chosen and the interference map-based approach in Section V has already

modeled the effect of interference. Instead our goal here isto choose feasible paths that

increase the number of supported calls and minimize future call rejections. We first focus

on studying the feasibility aspect.

Typically, a feasible route can be constructed by incrementally including links from

the network graph and forming a path that connects the sourceto the destination (note

that we are not trying to optimize any path metric here). Any incremental strategy usually

results in a fast polynomial time algorithm for discoveringa feasible path. However, such

an incremental strategy works only if the following condition is true:when more than one

links are determined to be feasible in isolation to carry a certain amount of traffic, they

remain feasible when considered together.In case of wired networks, the above condition

is true. Thus, if links are determined feasible, any path in the subgraph containing only

the feasible links is also feasible. However, in wireless networks, the above condition is

generally not true.

For call admission, we need a fast heuristic to discover a path. We cannot exhaustively

explore all paths and check for feasibility, as there are exponentially many of them. We

take a different approach. Instead of checking for feasibility on a link basis, we check

for feasibility on a sequence of links (path segment) and then string these path segments
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Figure 5.3: Transmission range (R) = carrier sense range (S). In the worst case scenario, two
nodesA andE 4 hops apart in a path do not share any node in their carrier sense ranges.

together. A sequence of links is able to capture the capacityutilization of a larger area that

reflects the interference region of the intermediate nodes in the sequence. Essentially, our

goal is to find the length of the path segments such that if individual path segments are

determined to be feasible, so is the path comprising of thesepath segments. If we consider

a unit disk model, we can show that this length depends upon the ratio of carrier sense range

(S) to the transmission range (R). We assume thatS andR are circular regions around a

node, which define the area where a packet transmission by thenode can be sensed and

received respectively.

We start with the simplest case, whereS = R. See Figure 5.3. It can be argued using

geometry that the nodes such asA andE that are 4 hop away must be at least2R = 2S

distance away from each other in the worst case, whenδ (distance of A-B) tends to 0. If

they are any closer than this, the number of hops will decrease as well.

NodesA andE that are at least 4 hops apart are guaranteed not to share any node that

are within both of their carrier sense ranges. Clearly, thisimplies that if a path segment

S1 : (AB, BC, CD) is feasible and path segmentS2 : (BC, CD, DE) is feasible, so is

S1 ∪S2. Therefore, if one just considers feasible 3 hop path segments and finds a path using
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these segments, one can discover a feasible path. In order touse this approach, we need to

mark all infeasible path segments from the original graph. Any path using the unmarked

path segments is then feasible. Checking for feasibility ofeach path segment can be done

in O(k + 1) time, wherek + 1 is the number of nodes in the path segment. The number of

suchk hop segments in the network can be estimated asO(ndk), wheren is the number of

nodes in the network andd the average node degree.

We can similarly show that for the case of carrier sense rangetwice the transmission

range (i.e.,S = 2R), the hop-wise length of the path segments to be considered is 7.

We note that with higher length, the marking of the path segments can become a slower

process as the number ofk-hop path segments grows asO(ndk). However, it still remains

polynomial time.

For fast computation of route, we consider only 2 hop path segments (i.e., edge pairs)

as a heuristic in our evaluations. The penalty we pay for thissimplicity is that, occasion-

ally routing may determine routes that are actually infeasible. However the call admission

controller determines the infeasibility of such routes andrejects them. In experiments (as

reported in the next section), we have found that the chance of finding infeasible routes

using this2 hop technique is negligible. We next present the algorithm for computing fea-

sible paths using this approach.

5.6.1 EDGE-PAIR ALGORITHM

From the given original graphG = (V, E), we construct an edge graphGE = (VE, EE)

where an edge inG is represented as a unique node inGE. There is an edge between two

nodes(x, y) in GE only if (x, y) represents a feasible edge pair in the original graphG.

For example, if(a → b), (b → c) are two edges inG forming a feasible edge pair, then the

corresponding nodesx : (a → b) andy : (b → c) in GE have an edge between them.

In order to find a feasible route between nodesa andb in G, we consider the node set

X andY in GE such thatx ∈ X, y ∈ Y represent edges incident froma and tob in G
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FeasibleRoute(G, a, b)
/* First compute the edge graph containing only feasible edge pairs. */
ComputeGE , whereV [GE ] = E[G] and

E[GE ] = {((a, b), (x, y)) : (a, b) ∈ E[G],
(x, y) ∈ E[G], b = x, and
Check Feasibility((a, b), (x, y)) = T RUE}.

Find setX ⊂ V [GE ] wherex ∈ X is edge incident froma.
Find setY ⊂ V [GE ] wherey ∈ Y is edge incident onb.
Add nodes to V [GE ] and edgess to X in E[GE ].
Add noded to V [GE ] and edgesY to d in E[GE ].
Find shortest pathP from s to d in GE .
ConvertP = {s, (a, b1), (b1, b2)...(bj , b), d} to
P ′ = {a, b1, b2, ...b}.
ReturnP ′.

Figure 5.4: Fast heuristic algorithm to find a feasible path in the graphG.

respectively. The set of pathsP from x ∈ X to y ∈ Y for all x, y forms the feasible path

set froma to b. The algorithm is presented in Figure 5.4.

In the above algorithm, the feasibility of an edge pair is determined by using the tech-

nique described for CAC in Section IV and V. The current offered load on the nodes in

the edge pair is increased assuming the edge pair will lie on apath of an incoming call.

The increase in offered load depends on the position of the edge pair in an end-to-end

path, because end points generate traffic only in one direction and do not relay traffic. The

capacity utilization at all nodes is then recomputed and if the capacity constraint at any

node is violated, the edge pair is marked infeasible.

In order to select a path inGE, we add two virtual nodess andd to VE with edges

from s to X and edges fromY to d. We compute shortest path froms to d in GE. This

gives us theshortest feasible pathfrom a to b in original graphG. In order to choose less

loaded paths, we can also assign a weight to each link that is,for example, proportional

to the current load along that link and use this metric to compute the shortest path. In the

evaluation section, we refer to this extension asmax residual feasible path.
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Note that the above algorithm can be extended to 3 hop or longer path segments. For

example, in case of 3 hops, we need to first createGE with 2 hop segments or edge pairs.

FromGE, we constructG2
E (a graph with edge pairs as vertices and links between feasible

edge triplets as edges) by repeating the same process as usedto getGE from G. This tech-

nique is quite efficient, because, before considering the feasibility of a 3 hop path segment,

we check the feasibility of 2 hop segments and thus reduce thenumber of 3 hop segments

to be checked.

5.6.2 ROUTING USING CALL STATISTICS

So far, we have restricted our attention to finding feasible paths efficiently and focused

less on which of the many feasible paths that might exist should be selected for routing

the incoming call. We indeed have provided two simple methods for selection – shortest

feasible path and max residual feasible path. However, a potentially better approach for

path selection could be to allow more calls to be supported infuture. Such an approach is

important to VoIP service providers that are interested in supporting as large a call volume

as possible while maintaining call quality. The exact sequence of future call arrivals may be

unknown; however, an approach can be designed simply based on long-term call statistics,

specified in terms of the probabilityp(a, b) of a mesh node pair(a, b) to be the source and

destination of a new call. Such statistics may be available to the service providers collected

via long term measurements. Hot-spot nature of certain meshrouters or regions of mesh

networks can generate quite skewed distributions that can be exploited in this approach.

A similar idea calledMinimum interference routing algorithm (MIRA)[52] has been

proposed for traffic engineering work in wireline networks.The basic principle behind

MIRA is to define a notion of criticality for a given link and select a route that best avoids

critical links. For a given sourcea and destinationb, a link is critical if it belongs to the

min-cut [28] betweena andb. The level of criticality is determined byp(a, b).
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Loosely based on MIRA, we propose a route computation algorithm for VoIP calls

over mesh network using call statistics. A weight is assigned to each link based on link

criticality. The notion of criticality is explained below.Weights are defined such that a route

computation becomes as simple as finding a shortest path on the weighted graph after the

feasibility has been ascertained. In order to capture the interference properties in a wireless

mesh network, we initialize all link weights to zero, and then develop the following weight

assignment rule when a new call arrives between nodess andd.

• Assign weights to links based on their criticality– In the first phase, the set of critical

links for each node pair except(s, d) is determined. In wired networks, a critical link

for a node pair is one which belongs to any one of the min-cuts for that node pair.

All the critical links for a node pair can be found by running the Ford-Fulkerson

max-flow algorithm [28] just once. This constitutes a critical link set for a node pair

(a, b) and is denoted asC(a, b). Since we have a wireless medium, any link which

interferes with the critical link should also be a critical link, because adding traffic

on that link reduces the maximum flow between the node pair as well. So, we add all

the links which have any node which interferes with any of thenodes in the critical

links, (csf < 1), to the critical link setC(a, b).

Then at this stage, the weight of each linkl is given as

w0(l) =
∑

(a,b):(a,b)6=(s,d),l∈C(a,b)

p(a, b).

• Add capacity utilization constraint– In the next phase, the weight of each link calcu-

lated in the first phase is multiplied with the capacity utilization at the link. Capacity

utilization of a link is the maximum of the capacity utilization at the nodes of the

link. The revised weights are

w1(l) = w0(l) × max(cu, cv), wherel = (u, v).

• Make weights non zero– In the final phase, all links which still have a zero weight

are assigned a very small weight,ǫ, such that this weight is not significant enough
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Route Using Call Statistics(G, a, b)
Collect call statistics to getp(x, y), ∀x, y ∈ V [G].
∀l = (u, v) ∈ E[G],

w0(l) =
∑

(x,y):(x,y)6=(a,b),l∈C(x,y) p(x, y), where
C(x, y) is the set of critical links for node pair(x, y).

w1(l) = w0(l) ∗ max(cu, cv).
w(l) = w1(l), if w1(l) > 0, ǫ, if w1(l) = 0.

ComputeGE from G as in Figure 5.4.
Assign weights to links inE[GE ],

wE((u, v), (v, w)) = w(u, v) + w(v, w).
Find shortest pathP in GE and convert it toP ′ in G.
ReturnP ′.

Figure 5.5: Algorithm for routing using call statistics in the network graphG for a call
between nodesa andb.

to make the weight of the link comparable to a critical link, or a link with some

capacity utilization. A non zero weight is required becausethe path weight is the

sum of link weights, and smaller paths are desired. We chose the value of 0.001 for

our experiments. The final link weights are

w(l) = w1(l), if w1(l) > 0; otherwisew(l) = ǫ.

With the above link weight assignment, we compute the shortest path on the edge graph

(GE) proposed in the previous subsection. Formal description of the algorithm is given in

Figure 5.5.

5.7 PERFORMANCE EVALUATION

Here, we present the results of the evaluation of the capacity utilization model and routing.

The capacity utilization model and call admission decisions are evaluated on an experi-

mental testbed. Routing is evaluated on the ns-2 simulator [26], as this evaluation requires

a large number of nodes.
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5.7.1 EXPERIMENTAL TESTBED

We evaluate our capacity model using a testbed consisting ofsix identical Dell laptops

runing Linux 2.6.15, and using Atheros 802.11a/b/g cards and madwifi driver [4]. The

laptops are located at different locations in one floor of theNEC Labs building (150’ X

120’) to create various topologies. 802.11a is used at 6 Mbpsfor all experiments. Using

802.11a provides us with shorter links so that interesting topologies can be created within a

small area. As indicated before, each such link can support 42 VoIP calls. For each topology,

an initial experiment is run to generate the interference map by measuringcsf values, and

to find the delivery ratio on each link of the network graph. Static routes are setup between

nodes using only those links which have a close to 100% delivery ratio. Calls are generated

as a Poisson process with a mean rate ofλ calls/sec. The average duration of a call is

exponentially distributed with the mean rateµ sec. Calls originate between random source-

destination pairs. Since there is no waiting time for the calls, the system can be modeled

like anM/M/∞ queue, and the average number of calls in the system at any time is given

by λ/µ. In our experiments, we fixλ to 0.2 calls/sec, and varyµ to increase the load in the

system. Also, we check theR-score of all the active calls for 2 sec intervals and record it

for later analysis.

We use three different mesh topologies for the experiments,as shown in Figure 5.6.

The solid lines indicate the good links which are used in routing VoIP calls. “Topology 1”

is a linear chain where every node can hear nodes only one-hopaway. Thus, a node 2-hop

away would be a hidden terminal for a node. “Topology 2” is a dense mesh network, while

“Topology 3” is a sparse mesh network.

5.7.2 EVALUATION OF CAPACITY UTILIZATION MODEL

We compare our model of creating the capacity utilization graph with a naive model that

simply reserves capacity based on the traffic the node generates and the traffic it receives or

overhears. In the experiment, we use “Topology 1” (linear chain) that measures the number
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#Calls predicted by #Calls predicted by Actual #calls
Path length naive capacity model our capacity model supported

1 42 42 42
2 21 19 18
3 17 14 14
4 14 11 10
5 14 10 9

Table 5.1: Number of calls supported in a linear network

of calls that can be supported on a path as we increase the pathlength from 1 to 5. We

then predict the number of calls that can be supported using our capacity model as well

as the naive capacity model. Table 5.1 shows that our model estimates the number of calls

that can be supported much better. The supported number of calls is separately determined

by observing beyond how many calls the averageR-score drops below 70. As the path

length increases, the naive model keeps overestimating thecapacity because it does not

consider collisions due to hidden terminals. Our model is much more accurate and predicts

the capacity within 10% of the obtained capacity.

5.7.3 EVALUATION OF CALL ADMISSION CONTROL

We use the random calling patterns as described in subsectionA above to evaluate the effec-

tiveness of CAC. All three topologies are considered. 100 calls are used for each experi-

ment with a) CAC enabled, and b) CAC disabled. We increase theload (λ/µ) on the net-

work from 5 calls to 30 calls. This range includes very low load to very high load (much

beyond network capacity). The results for the three topologies are shown in Figure 5.6. For

all topologies, medianR-scores for all calls and the number of calls that are rejected are

plotted against network load (λ/µ).

Note that for all cases, in absence of CAC, the medianR-score gets poorer for higher

load. However, in the presence of CAC, theR-score is relatively stable independent of load.

Also, note that since “Topology 2” is relatively denser, CACreally kicks in at a higher load

104



 0

 40

 80

M
e

d
ia

n
 R

 s
c
o

re

with CAC
without CAC

 0

 20

 40

 5  10  15  20  25  30

#
 R

e
je

c
te

d
 c

a
lls

Load

 5  10  15  20  25  30

Load

 5  10  15  20  25  30

Load

Topology 1 Topology 2 Topology 3

Figure 5.6: Evaluation of CAC for various topologies.

and rejects less number of calls. Also, for any topology CAC does kick pretty much at

the same load where we would haveR-score degradation without CAC. It does, however,

seem that the CAC is slightly aggressive. The reason for thisis that for the current model

link delivery fractions are assumed to be ideal (100%). While we indeed chose very good

links to route packets in these experiments, we still had to cover for less than perfect link

qualities by being slightly conservative in accepting calls.

5.7.4 SIMULATION SETUP

The simulation experiments are performed on ns-2 [26] using802.11b 11Mbps links. The

radio propagation model uses the two-ray ground reflection path loss model for the large-
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scale propagation model, augmented by a small-scale Riceanfading model [66]. We also

patched ns-2 with a realistic packet capture model.

We use two separate topologies for our evaluation. The first is a13×13 grid in a4000×

4000 square meter area. The radio models are such that the transmission range is about 250

meters and the carrier sense range is set to 550 meters. Thus,every non-boundary node has

four neighbors at a distance of 250 meters in each direction.Each vertical or horizontal

edge in the grid represents a link and every node can listen upto its two-hop neighbors.

The links have no network losses and thecsf between nodes is either 0.5 or 1. The second

topology contains 169 nodes randomly placed in a2000 × 2000 square meter area. For

call pattern, we consider two scenarios: uniform and skewed. For uniform, the source and

destination pair for a call is selected with a fixed probability. For skewed scenario, the

source destination pair is chosen based on a weight following the zipf distribution.

A centralized program runs various routing algorithms and determines the routes for

the calls. These routes are then fed as static routes in the simulator. If a feasible route is not

found, the call is rejected. Calls arrive as a Poisson processλ = 1/6 calls/sec, and we varyµ

to increase the load in the system. Also, we check theR- score of all the active calls every

5 seconds, and drop the calls for which the R score is less than70. We run a single long

simulation for every scenario, which stops when 2000 calls have been completed.

5.7.5 FEASIBLE ROUTE CALCULATION EVALUATION

We first show that using feasible routes, we can support more calls in the network. Figure

5.7 shows the maximum number of calls that can be supported inthe grid as we choose node

pairs further away from each other. The metrics used are shortest path (SP) and shortest

feasible path (SFP) . We observe that while lesser number of calls can be supported for

calls with larger path length, there are more opportunitiesfor finding non-interfering paths,

and hence the network can support 10-15% extra calls at saturation.
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Figure 5.8: Comparison of shortest path (SPF) with max residual feasible path (MRFP) for
different load.
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Next, we evaluate two routing strategies: a) shortest feasible path (SFP) routing and b)

max residual feasible path (MRFP) routing. Figure 5.8(a) and Figure 5.8(b) show the per-

centage of calls rejected or dropped for each routing schemein grid and random topologies.

For grid topology, drops or rejections by using MRFP reducesby about 30% for large loads

when compared to SFP. For random topology, this factor can beupto about 50%.

5.7.6 EVALUATING ROUTING USING CALL STATISTICS

Here, we compare routing using call statistics (RCS) with SFP and MRFP routing. To gen-

erate interesting calling patterns where the RCS techniquecould be beneficial, we assume

calls are generated only at hot-spot routers and only a fraction of routers in the network

are such hot-spots. This information is provided to the RCS protocol. It is intuitive to see

that RCS should perform better when the VoIP traffic is heavily skewed. When the traffic

is fairly balanced, all the node pairs have the same weight and if the network topology is

also uniform, all the links in the graph get similar weights based on the criticality. RCS

degenerates to MRFP routing in such cases.

We present results on a random topology. A grid is not favorable to RCS due to its

uniformity. We present results for two cases – 2% and 10% hot-spots, representing a

heavily skewed and a lightly skewed traffic pattern shown in Figures 5.9(a) and 5.9(b). As

expected, RCS drops lesser number of calls in a heavily skewed traffic pattern, but similar

to MRFP routing in lightly skewed traffic.

5.8 CONCLUSIONS

We have addressed two important questions in running VoIP onwireless mesh networks.

First, maintaining QoS means that call admission control must be performed. However,

without any reasonable model of multihop capacity of the network, the admission deci-

sions cannot be taken. We have shown how a simple, measurement-based model can

fairly accurately model the available capacity and thus canguide call admission decisions.
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Second, because of the wireless interference, looking for afeasible route to accommodate

an incoming call can be computationally hard. We have simplified this issue by introducing

the assumption of the knowledge of the ratio of interferenceand carrier sensing ranges.

This ensures that path segments of constant length can be evaluated separately to deter-

mine feasibility in polynomial time. We have also introduced routing metrics such as max

residual feasible path and new strategies like routing using call statistics. Both improve

performance significantly compared to naive methods.

Our modeling work is general enough that it can be extended for newer architectures

such as directional antenna or multi-radio/multi-channelsystem – something that we will

address in our future work. We have not explicitly accountedfor data traffic in our eval-

uation, as our methods can always be used to set aside some amount of capacity for data

traffic.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we have proposed several methods to model interference and its impact

on capacity. We have relied on measurements rather than using analytical or theoretical

methods, which makes our models realistic and practical to be used for deployed Wi-Fi

networks. We demonstrate the application of such modeling using the example of sup-

porting VoIP calls over a wireless mesh network. Specifically, we have made the following

contributions –

• We first develop a link capacity model based on the physical interference model,

which uses measurements on the target network. The methods we proposed are prac-

tical. The profiling measurements used to model the physicallayer can be kept in

a library and reused. The measurements on the target networkare simple and take

O(N) steps. The model solutions using analytical and simulation-based methods

compare favorably with experiments done on a real network.

• We then demonstrated that measurements from a real network can be used to accu-

rately model the physical layer of a wireless network simulator. We create two ver-

sions of the ns-2 simulator with different levels of fidelityand measurement require-

ments to model deferral, reception, and propagation behaviors at the physical layer.

We show excellent accuracy of this modified simulator when compared with experi-

ments on a real network.

• We propose a novel machine learning approach to estimate interference in a Wi-Fi

network. The technique uses a merged packet trace collectedvia distributed sniffing.
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It then recreates the MAC layer interactions between network nodes via a machine

learning approach using the Hidden Markov Model. This is finally helpful in inferring

pair-wise interference relationships. The advantage of this approach is that it is purely

passive and thus can work with a live network without any access to the network

elements. We have demonstrated via experiments and simulations that this technique

estimates interference with accuracy similar to methods using measurement-based

profiling and active measurements directly on the network.

• We finally show an application of the capacity model we have created. We address

two important questions in running VoIP on wireless mesh networks. First, main-

taining QoS means that call admission control must be performed. However, without

any reasonable model of multihop capacity of the network, the admission decisions

cannot be taken. We have shown how a simple, measurement-based model can fairly

accurately model the available capacity and thus can guide call admission decisions.

Second, because of the wireless interference, looking for afeasible route to accom-

modate an incoming call can be computationally hard. We havesimplified this issue

by introducing the assumption of the knowledge of the ratio of interference and

carrier sensing ranges. This ensures that path segments of constant length can be

evaluated separately to determine feasibility in polynomial time. We have also intro-

duced routing metrics such as max residual feasible path andnew strategies like

routing using call statistics. Both improve performance significantly compared to

naive methods.

111



BIBLIOGRAPHY

[1] AirMagnet. http://airmagnet.com.

[2] AirPatrol. http://airpatrolcorp.com.

[3] Mathematica 5.2. http://www.wolfram.com/.

[4] Multiband Atheros Driver for WiFi (MADWIFI).

http://sourceforge.net/projects/madwifi/.

[5] OpNet. http://opnet.com.

[6] QualNet. http://scalable-networks.com.

[7] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns.

[8] HFA3863 Data Sheet: Direct Sequence Spread Spectrum Baseband Processor with

Rake Receiver and Equalizer. Intersil Corporation, 2000.

[9] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris. Link-

level measurements from an 802.11b mesh network.SIGCOMM Comput. Commun.

Rev., 34(4), 2004.

[10] Ian F. Akyildiz, Xudong Wang, and Weilin Wang. Wirelessmesh networks: a survey.

Computer Networks and ISDN Systems, 47(4):445–487, 2005.

[11] Mansoor Alicherry, Randeep Bhatia, and Li (Erran) Li. Joint channel assignment

and routing for throughput optimization in multi-radio wireless mesh networks. In

MobiCom ’05, pages 58–72, 2005.

112



[12] TR Andel and A. Yasinsac. On the credibility of manet simulations. Computer,

39(7):48–54, 2006.

[13] Paramvir Bahl, , Jitendra Padhye, Lenin Ravindranath,Manpreet Singh, Alec

Wolman, and Brian Zill. Dair: A framework for managing enterprise wireless net-

works using desktop infrastructure. InAnnual ACM Workshop on Hot Topics in Net-

works (HotNets), November 2005.

[14] Paramvir Bahl, Ranveer Chandra, Jitendra Padhye, Lenin Ravindranath, Manpreet

Singh, Alec Wolman, and Brian Zill. Enhancing the security of corporate wi-fi net-

works using dair. InMobiSys ’06: Proceedings of the 4th international conference on

Mobile systems, applications and services, pages 1–14, New York, NY, USA, 2006.

ACM.

[15] Leonard E. Baum and J. A. Eagon. An inequality with applications to statistical

estimation for probabilistic functions of markov processes and to a model for ecology.

Bull. Amer. Math. Soc., 73:360–363, 1967.

[16] G. Bianchi. Performance analysis of the IEEE 802.11 Distributed Coordination Func-

tion. JSAC, 2000.

[17] Joseph Camp, Joshua Robinson, Christopher Steger, andEdward Knightly. Measure-

ment driven deployment of a two-tier urban mesh access network. In MobiSys 2006,

2006.

[18] Hoon Chang, Vishal Misra, and Dan Rubenstein. A GeneralModel and Analysis of

Physical Layer Capture in 802.11 Networks. InProc. IEEE Infocom, 2006.

[19] Lei Chen and Wendi Heinzelman. Qos-aware routing basedon bandwidth estimation

for mobile ad hoc networks.IEEE Journal of Selected Areas in Communications,

2005.

113



[20] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer Chiang,
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