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Abstract of the Dissertation

Measurement-based Modeling of Interference in Wi-Fi Netweoks: Techniques and

Applications

by
Anand Kashyap

Doctor of Philosophy

Computer Science
Stony Brook University

2008

Characterizing interference is critical to understandimg performance of a wireless
network. Many protocol and algorithmic work fundamentadlgpend on such charac-
terization. However, current research considers intenieg models that are either over-
simplified or too abstract with unknown parameters limitihgir use in practice. We
address this issue in connection with WiFi networks (iEEEE 802.11-based) due to their
widespread use.

We first develop a practical, measurement-based modelitoastthe capacity of any
given link in the presence of any given number of interfedings in an actual deployed
802.11 network, carrying any specified amount of offered I&&r a network with N nodes,
only O(N) measurement steps are needed to gather metriasdiordual links that seed
the model. We provide two solution approaches: one basedrect dimulation (slow, but
accurate) and the other based on analytical methods (fésteapproximate). We also

show that as a by-product of our research we can create g/lagblirate simulation model



(e.g., using a packet level simulator such as ns2) of a redbged network by seeding the
simulator with measurement data.

In an application of the above-mentioned capacity modeladdress the issue of sup-
porting voice-over-IP (MoIP) calls in a wireless mesh netwd@pecifically, we propose
solutions for call admission control (CAC) and route setector VoIP calls. Call admis-
sion decisions are made by using the capacity model to pretiiether the capacity con-
straints at various nodes will be satisfied if a new call is gigyah with a given route. We also
develop a polynomial-time algorithm to search for feasiolgtes. In addition to studying
feasibility, we study several routing metrics such as "sbrteasible path and maximum
residual feasible path.

The above modeling approach requires active measurenfdats.it requires instru-
mentation access to network nodes. These could be impabkitimany deployment sce-
narios. To address this issue, we develop an approach toagstthe interference between
nodes and links in a live 802.11 network by passive monigpahwireless traffic using
a distributed set of sniffers. We model the 802.11 protosoaddidden Markov Model
(HMM), and use a machine learning approach to learn the statsition probabilities in
this model using the observed wireless traffic traces. Thisiin helps us to deduce the
interference relationships. We show the effectiveneshisfapproach via simulations and

real experiments.
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CHAPTER 1

INTRODUCTION

Wi-Fi is the common name for the popular wireless technologysisting of a suite of
IEEE 802.11 protocols (802.11n, 802.11b, 802.11g, 802.&tka). These protocols are
defined for both the physical and MAC layer for wireless netirtg. Wi-Fi operates in
the frequency bands of either 2.4GHz or 5GHz. Using stoc&rards, the range of Wi-Fi
connectivity is limited to a range of 100-1000 meters, whgimuch less than cellular
wireless technologies, but higher than short-range wasetechnologies like Bluetooth,
Zighee motes, etc. The feature which gives Wi-Fi significaahtantage over medium-to-
long range wireless technologies is the achievable bartywidhich can be upto a raw data
rate of 54Mbps using 802.11g or 802.11a, and even as high&dds using 802.11n.
The above features, along with the ability to operate inagmsed spectrum, have made
Wi-Fi the wireless technology of choice for several home huasiness applications, such
as internet access, gaming, video streaming, etc. The aoyubf Wi-Fi has driven down
the price of such radio interfaces, due to which Wi-Fi candaenfl in several consumer
devices, such as laptop computers, PDAs, mobile phones, etc

Owing to the ubiquitous presence of cheap Wi-Fi devicegrsgWi-Fi networks have
been deployed in recent years. Such networks can geneeatiiabsified as infrastructure-
mode network, such as wireless LANs or wireless mesh nesyarkinfrastructure-less
network, such as ad hoc networks. A wireless LAN (WLAN) castsiof Wi-Fi access
points (APs) deployed on a wired backbone, and provide adoad/i-Fi clients on the last
hop. WLANSs are deployed on small scales in places such asecsffops, conference halls,

and homes, as well as on large scales, such as in campugestsaihotels, and offices. A



wireless mesh network (WMN) is similar to a WLAN except thia¢ WiFi APs commu-
nicate wirelessly as well. There has been a recent inigdtivdeploying community-wide
and city-wide wireless mesh networks. Unlike WLANs and WM B svireless ad hoc net-
work is a decentralized network, where instead of a clieRti#eraction, each participating
node becomes a part of the network. Such networks are ellpesieful in emergency sce-
narios, like miliary operations or natural disasters, andases where a quick deployment
is needed.

The major technical challenge faced by all these Wi-Fi neétwes the phenomenon of
wireless interference. In this dissertation, we look at svimycharacterize interference and
develop applications using such characterization. laterfce limits the aggregate capacity
of Wi-Fi networks, causes starvation and collisions, artices the quality of user expe-
rience. A lot of research has been done to develop techniguestigate interference.
Several methods have been proposed in the area of topologypkeadio resource assign-
ment, MAC layer enhancements, routing and even applicatesign to reduce interfer-
ence. However, while interference can be reduced, it cana@iminated, and this moti-
vates our work in this dissertation. We argue that protoeold algorithms for wireless
networks should be developed by incorporating an accuratgehof interference. With
this regard, we develop a measurement-based model to éstinesimpact of interference
in a wireless network. We also show the benefit and accurasydf modeling by devel-

oping interference-aware applications which take adwpntd such models.

1.1 Key COMPONENTS

In this dissertation, we focus on suggesting ways to imprmer performance in real and
deployed networks. This leads to several practical consiiams, which are discussed in

this section. Following are some of the key components ofrauk.

Interference from multiple interferers — Prior research has often characterized inter-

ference as a parameter between a pair of nodes or links. iMeis the representation of the

2



interference model as a conflict graph [37]. Due to its sioili the conflict graph model
has been used extensively in developing algorithms formmdlaassignment [11, 69], power
control [11], and routing. It has also been used for develgpnodels to estimate capacity
of a network. Such algorithms have often been shown to parfooorly in real deployed
networks. This is because, in practice, interference igusbia pairwise entity. A link may
suffer from interference from multiple interferers at ongéis has been modeled as the
physical interference model proposed in the seminal worGpta and Kumar [34]. In
our work, we consider the more realistic physical intenfiee2model, thus considering the
effect of multiple interferers. We build the model for cajpa@nd the interference-aware
applications by considering the physical interference ehcather than a pairwise interfer-

ence relationship.

Non-binary interference — In addition to using a conflict graph model, interference has
often been considered as a binary value, which means that &ito nodes, or links, inter-
fere or they do not. This is based on the simplified assummtidhe physical layer of a
wireless network. This further simplifies protocol and aition development because the
conflict graph considered is just an unweighted graph. llityedue to the irregularities of
the wireless medium, the interference relation betweedsslmay vary with time. Padhye,
et. al. [65] ask the question that if two links interfere,rilfbow much” do they interfere?

In our work too, we use a non-binary notion of interferenae] astimate the probability

that a set of nodes/links interfere with each other.

Measurement based modeling of physical layer —Many theoretical and analytical
models have been proposed to predict the capacity of a w#aletwork. In addition
to using a simplified interference model explained abovey thse a simplified physical
layer model. They make assumptions on the propagation @ment and the inter-
face characteristics and use various model parameters gath loss exponent) that are

hard to instantiate. Since our emphasis is on reaslism ofeimgj we do not make any



such assumptions. We rely on measurements done over a ttealrkdo characterize

interference at the physical layer. Recent years have slawimcreasing emphasis on
measurements to evaluate wireless networks [71, 65, 43]Ju¥demeasurement based
modeling to develop accurate wireless simulators, and waneasurements to instantiate

our capacity model.

Real and deployed Wi-Fi networks — We target our work for real deployed Wi-Fi net-
works, such as wireless mesh networks, or enterprise wg&lANs. Thus, the models we
develop need to be accurate, and the applications shoukl lbevoverhead and should
have good performance in practice. This motivates the elaficneasurement-based mod-
eling of interference. The applications we have proposetthisywork are developed for
such networks. We develop algorithms to support VoIP callwireless mesh networks,

and we develop a radio resource management for enterprigeNa/L

1.2 CONTRIBUTIONS

We make the following contributions in this dissertation

« We develop a measurement-based model to predict the capéeity given link in
a 802.11-based wireless network in the presence of any guetber of interferers
carrying any specified amount of offered load [45]. O6lyN) measurement steps
are needed to gather metrics for individual links that seedriodel. We provide two
solution approaches — one based on direct simulation (flotvaccurate) and the

other based on analytical methods (faster, but approxjmate

e We address the issue of unrealistic simulations of wirelessvorks using a
measurement-based approach. The idea is to use empirichlimg using mea-
surement data as a mechanism to model physical layer beh#éodemonstrate
the power of this approach for 802.11-based networks usg®j a packet-level

simultator by replacing the physical layer with measuretmé&om a real testbed.
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« We develop an approach to estimate the interference betwed@es and links in
a live 802.11 network by passive monitoring of wirelessfitafising a distributed
set of sniffers. We model the 802.11 protocol as a Hidden B\aModel (HMM),
and use a machine learning approach to learn the statetiban®iobabilities in this
model using the observed wireless traffic traces. This in h&lps us to deduce the
interference relationships. We show the effectivenedsistipproach via simulations

and real experiments.

e We study the problem of supporting VoIP calls in a wirelessimeetwork [47].
Specifically, we design solutions for call admission cof@®C) and route selection
for VoIP calls. We address this issue via a measurementhaseleling effort to
model mutual interference between wireless links. The nioglapproach evaluates
whether capacity constraints (or, required QoS metricB)wisatisfied if a new call

is admitted with a given route.

1.3 QUTLINE

The rest of this dissertation is organized as follows. We fievelop a measurement-based
capacity model for 802.11-based networks in chapter 2. \&fe pnesent a method to make
ns-2 more accurate for wireless simulators using the idems the modeling work in
chapter 3. In chapter 4, we present the machine learningoapprfor estimating pair-
wise interference in Wi-Fi networks. In chapter 5, we prédbka first application for the
measurement-based modeling - supporting VoIP calls ovezlegs mesh networks. We

present our conclusions in chapter 6.



CHAPTER 2

MEASUREMENTBASED LINK CAPACITY MODEL

In this chapter, we present a practical, measurement-lvasddl that captures the effect of
interference in 802.11-based mesh networks. We model thecitst of a given link in the
presence of any given number of interferers in a deployedoar&t carrying any specified
amount of load. A link capacity model has several applicetion deployed networks, such

as for radio frequency resource assignment, and for wselesvork management.

2.1 INTRODUCTION

Practical models for predicting the wireless link capaeitg crucial to an efficient opera-
tion and deployment of wireless network. The performanagedivork protocols and algo-
rithms such as QoS routing, load balancing, admission ebatrd channel assignment can

be significantly improved with an accurate model of link aapa Capacity models are

5 Mbps
o \\G—»G
4 Mbps

Figure 2.1: Example of problem.
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also required as analysis tools to efficiently explore a gashoetwork configurations and
traffic load scenarios for performance evaluation.

Recently, the proliferation of 802.11 based wireless LAN aresh networks has lead to
several research efforts focussing on predicting the ¢gpaican 802.11-specifiavireless
link [65, 71]. What makes the accurate estimation of 802idk ¢apacity an inherently
challenging task is that the link capacity is an ensemblecefbf physical layer behavior,
complex CSMA-based MAC layer interaction, and interfeeeaffect from multiple active
sources.

The objective of our work is to characterize and model thesictpf interference caused
by active traffic frommultiple surrounding nodes on the link capacity. For example, refer-
ring to Figure 2.1, consider a set of active links (CA, BD ai tith specified amounts of
offered traffic loads (in Mbps, for example). Our goal is teate a model that can predict
the throughput capacity of any given link (e.g., BC or ABg,. j.the maximum amount of
traffic (in Mbps) that the link can carry. Unlike the plethmfmodeling work in existing
literature [16, 32, 55] that uses purely analytical apphes¢ our end goal is testimate
link capacities in a real deployed network.

Characterizing the impact of interference: Interference impacts the sender by reducing
its maximum sending rate as determined by the CSMA based 802AC layer interac-
tion. Interference also impacts the receiver by reduciegtiobability of successful packet
reception by causing collisions at the receiver. The smscdi the MAC protocol (e.g.,
random backoff) as well as implementation-specific physigar components such aar-

rier sense threshol(l.e., what received power must be sensed to decide thatédeum is
busy) andhacket capture thresholde., threshold of signal-to-noise-plus-interfereresr

to be able to receive a packet successfully) are other faetbich affect the interference-
limited capacity of a wireless link.

Existing models for single-hop [16, 55] and multi-hop [32)2811 networks suffer

from the limitation that they are based on the assumptioni@élized channel condition



where each link is lossless. They also assume that inteders ‘pairwise’ (i.e., happens
between node or link pairs only) and ‘binary’ (i.e., integfece is either present or absent).
The popularly used protocol model of interference [34] isaample of such interference
modeling. However, recent measurement studies [65, 2a&& shown that interference
is neither pairwise or binary. The effect of multiple intxdrs and effect of realistic channel
and interface behavior must be accounted for accurate mngdel

Measurement-based capacity modelEvidently, a model built on actual measurement
of appropriate metrics can avoid the unrealistic assumptiblowever, such models must
be of a reasonable measurement complexity to be practichharst also be robust to
potentially changing operating conditions. To that endta@ent model based on measuring
just signal strengths between node pairs has been propgdedibet al. [71] to predict
capacity of a link. Their model however is described for theecof single interferer and
does not address the general and realistic case where #w effsimultaneous multiple
interferers on link capacity must be considered. The casentdtiple interferers is chal-
lenging because of the following reasons. The model hasrnsiderevery possibleom-
bination of interfering transmitters, because any numib#rem could be transmitting at a
time. The model also has to capture the effect of any possibiiec load scenarios at the
interferers.

Main contributions: The contributions in our work are as follows.

i. We develop a general framework for modeling 802.11 nekwo{Sections 2.3
and 2.4). This presents a novel “coupled” approach, wherd&H#ayer model uses
a measurement-based PHY-layer model and seeds it usingiragsnts from the
target network. These measurements consist of easily maddsdink metrics and

can be done il (N) steps for anV node network.

ii. We develop a tractable analytical solution approachtfer model (Sections 2.5
and 2.6), that — while approximate relative to direct sirtiates — presents an excel-

lent tradeoff for speed and accuracy. We show how this apfrzaable to estimate
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the throughput capacity of a given link with any number oenférers with given

traffic loads.

iii. We provide extensive validations using direct measuats from the testbed (Sec-
tion 3.5). Our validation results show, for example, tha&t thodel is able to predict
the link capacity for over 90% of cases within an error lessth0% of the channel
bitrate. We present validation results up to 5 interferemvigling a very complete

study.

iv. We also demonstrate why modeling approaches like oungpsrtant. Existing algo-
rithmic and analytical work uses very simple and unrealistpacity models for
evaluation. We pick three such models and show that such Isoften fare very
poorly in estimating link capacities in real networks redatto our approach (Sec-

tion 2.8.2).

2.2 RELATED WORK

The capacity of a wireless link depends upon the quality efittk and the amount of inter-
ference. Several measurement studies [23, 9, 51, 17] haredme in literature to study
the link quality in 802.11-based wireless networks. Sinylaeveral works have looked at
the issue of interference in such networks in addition tk Goality [38, 24, 65, 71, 18].
In [38], authors investigated the impact of carrier sensing18], the authors developed a
model for the physical layer capture. In [65], Padkyal.developed a measurement-based
methodology to characterize link interference in 802.1tlvoeks. They pointed out that
interference between links is not “binary” in practice Urliassumed in many analytical
work that use simple graph-based conflict models. In [24]atlithors showed that pairwise
interference modeling is often not accurate and multipierferers must be accounted for.
The work by Reiset al. [71] is the most related to our current work. They proposed
a model to use the measured signal strength between pairdesnthus requiring only

O(N) experiments, to characterize link quality as well as to ter@gphysical layer model
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for deferral and collision. The model, though useful for agé interferer case, is not
trivially extensible to multiple interferer scenarios. IGapproach is similar to that of [71]
in terms of measurement complexity. However, the main fafwsir work is to develop a
very general model that captures the effect of multiplerfeters and any loading scenario
for the interferers.

There have been several studies in characterizing andagivajuhe capacity of wireless
networks using analytical modeling. The capacity in thiateat is the network capacity
for multihop flows. Prominent examples include asymptadipacity modeling in [34] and
capacity modeling using concepts from network flow maxirdain [37, 56]. They all use
various abstract link interference models — from pairwisalels, such as protocol model,
to more general models, such as physical interference mbdséd on SINR (signal to
interference plus noise ratio). Typically, simple patlslasodels are assumed for RF prop-
agation. Even with the most realistic models, instantgasnch models in a real network is
hard without actual measurements, as models come withadexgmnown parameters. The
papers in this category are interested in performance Isand typically do not use any
MAC protocol model except slotted TDMA scheduling.

Finally, several papers have considered analytical mogeli 802.11 MAC protocol in
multihop context to determine throughput and fairnessasttaristics. For example, Garetto
et al. [32] extended Bianchi’s single hop analytical model [16htoulti-hop 802.11 net-
work to derive the per-flow throughput in a multi-hop netwo@aoet al. [31] have pro-
posed another analytical model to determine the end-tatfedighput capacity of a path
carrying a flow in a multi-hop 802.11 network. However, akks$ke works still use simple
pairwise (or protocol) model of interference. The advaatafjusing such pairwise model
is that a node that is not an interferer in isolation cannobb® an interferer in conjunction
with other nodes. However, in SINR-based physical interiee model, this is a possibility.

Our work is complementary to many of these analytical apghea as it provides a

vehicle to characterize interference modeling via real susaments. A fresh modeling
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approach is needed to enable use of real measurements due tequirement that we

handle SINR-based physical interference unlike the aboaéyaical approaches.

2.3 MODELING APPROACH

In this section, we formally present the problem we are asking, and present our

approach towards solving it.

2.3.1 HROBLEM FORMULATION

We are interested in determining the capacity of a specificih a 802.11 network given
the offered load on a set of other links. More formally, assam/N node network with all
nodes in the same channel and using the same PHY-layer déitAasume a subnetwork
with n+1 nodes consisting of a setoftransmittersZ = {z; ... z,}, and a receiver;. We
are interested in evaluating the throughput capacity ofittkdrom one of the transmitters
(say, zj) to the receiver. In this case;; acts as sender and all nodesdn— {z;} act as
interferers. All other nodes in the network outside the siork above are assumed silent.
We will use the notatioilSen" (set of interferersto designate throughput capacity of the
link. Thus, we are interested in determining the througlyapiacity,C% (Z — {zi}), of the
link zj to x, given the offered loagl on each transmitter i&f.

The capacity of an 802.11 wireless link depends on the fatigactors — (i) channel
quality that determines the bit error rate for a given PHy€labit rate (governed by mod-
ulation used); this translates to packet loss rate from thet pf view of an upper layer
protocol; (i) interference from other transmissions ie tietwork that influences how the
802.11 MAC protocol behaves at the sender side and whetbkepeollisions occur at the
receiver side. Our goal is to develop a measurement basedlrinad captures the “time
averaged” behavior of the physical and MAC layers in 802&kid thereby predicts the

throughput capacity of a wireless link in presence of any pemof interferers and with
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Figure 2.2: Overview of the modeling approach.

any given traffic load matrix. Note that given the time vagyimature of wireless channels,

“instantaneous” behaviors are very hard to model using areagent based approaches.

2.3.2 QVERVIEW OF APPROACH

A high level block diagram of our approach is shown in Figuéa\&ith pointers to sections
where different parts are described in this chapter. Théecgiece is a MAC-layer model
of 802.11 that is fed by a PHY-layer model. The PHY layer madebtels two behaviors
that MAC depends on: (Qeferral whether enough interference power is received to indi-
cate carrier busy, (iipacket capturewhether the SINR is high enough such that packet is
received correctly. These dependencies are modeled viaumegaents in a one-time pro-
filing experiment. The profiling is done for each interfacedcanodel or type, and can be
reused.

These models are seeded by link-wise measurement of RSSv@dcsignal strength)
values in the target wireless LAN or mesh network. The RS8estan be measured by

having each node taking turn and sending a set of broadcekeéfsa For a given broad-
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casting sender, rest of the nodes record RSS. Fa¥ amode network, the measurement
requiresO(N) measurement steps and provides the metrics for alMfw — 1) links.
This seeding now makes the MAC-layer model amenable to nareeliution.The solution
evaluates how long the model stays in appropriate statetsabiatribute to capacityWe
propose two solution approaches - (a) analytical method(Bhdimulation. The analyt-
ical method (Section 2.5) translates the model to a set gflediequations that are solved
using numerical methods. The method uses certain (reag)regsumptions to make it
analytically tractable, which also makes the solutiongaxmate. Simulation, on the other
hand, accurately follows the MAC-layer model (describe@ettion 2.4), but results in
much slower computation. We will demonstrate this furthrethie evaluation section in
Section 3.5.

We validate the entire approach by comparing the link cajgscestimated via this
modeling approach with direct measurements on the targeh metwork testbed. Note
that the dotted blocks in Figure 2.2 are not needed for cgpagaluation in a deployed
network. The profiling is to be done one time only and should\zelable as a library for
different interface card models. The validation step ig algt necessary. It is used only to
demonstrate the power of our approach in this chapter and@somparison with other

approaches of estimating link capacities.

2.4 MODELING 802.11 BEHAVIOR

We begin by stating an assumption that we have made in moseafapter for modeling
convenience. We assume that 802.11 is using only broadcastsmplementing unicast
using broadcasts. Broadcast does not have link-layer A@kgexponential backoffs. This
simplifies the model to some extent. It has also been showimtieaference between links
carrying unicast traffic can be well predicted by the amotiimterference computed when

they carry broadcast traffic [65, 71]. Note that we are meusiyg this simplification for
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Figure 2.3: State transition diagram for 802.11 on the sesidie.

brevity. The modeling approach is general and can be extelodeicasts, as will be shown
in Section 2.7.2.

We present the behavior of 802.11 MAC protocol from the pointiew of a single
node as a discrete time Markov chain (see Figure 2.3). Fenihidiscretize time, albeit
somewhat artificially, into slots. These slots are differeom 802.11 slots. The size of
the slots is chosen such that they are small enough that thecpi state does not change
within a slot, and the duration of any protocol state has artlgger number of slots.

There are five possible states — IDLE, DIFS, BACKOFF, DEFERBHT. Each of
these states consists of many sub-states denoting the nofndlets they span. We need
multiple sub-states because the sub-states are not indieqmtest each other. When the node

is not attempting any transmission, it is in the IDLE statehefV in IDLE state, in every
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slot the node checks if it has any packet to transmit. Thissddp on the offered loafl

for the nodez;, and represents the probability to begin packet transanis$Vhen traffic is
backlogged, a node never enters the IDLE state. When, the Imagla packet to transmit,

it moves to the DIFS state (this is an inter-frame spacingiddfin the protocol standard),
which hass sub-states, whereis the number of slots a node has to be in DIFS state. If
the node senses the channel busy during this period, it gastd the beginning of DIFS,
i.e., DIFS(s — 1). The probability of channel being busy is givenasalso called the
probability of deferral This probability is a PHY-layer aspect and depends on thecsagte
power from other nodes reaching this node. This in turn deépen the current state of the
other nodes.

After successful completion of the DIFS period, i.e., upeswhingD [ F'S(0), the node
chooses a random BACKOFF period, spannirgjots, where) < k < CWpin, and moves
to the sub-stat& AC KOF F(k — 1). It then counts down the BACKOFF timer, and thus
progressing from one BACKOFF sub-state to the other, but drthe channel is sensed
idle. If the channel is sensed busy (again with probabjljfyhe node goes into the DEFER
state, where it freezes the BACKOFF timer. It remains in tl&BR state as long as the
channel is busy. The node goes back to the BACKOFF state tlptobability of the
channel being idle (probability — p). Having counted down the BACKOFF timer to O,
the node starts transmitting the packet. This brings it @XMIT state. Assume that the
XMIT state stays forn slots depending on the PHY-layer bit rate and packet sizeerAf
completing the packet transmission, the node goes backltk Kdate if there is no other
packet to transmit, or prepares for the next transmissidm aviother DIFS.

One key approximation made in this model is that the def@n@babilityp is assumed
to be constant during the evolution of the Markov procegBis probability depends on the
activity of the other nodes. Thus, the state transitionstioéionodes are closely coupled.

When we solve this model using a direct simulation (i.e.,uating the Markov chain)

INote similar approximations are used in popular models @ BDalbeit in a different context,
e.g., in [16].
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we do not make such constgnassumption and use the valp@s computed at that slot.
When we solve the chain using the analytical approach indhewing sectionp is the
“average” deferral probability. This averaging works doi@h inherent approximation used
in the analytical solution approach to be described moniénta

So far we have described only the transmitter side. On theiveside, the model is
simpler. A node not in XMIT state can receive a complete pasla by slot, assuming
it receives it error-free in each slot. The probability ofoetfree reception of a complete
packet packet capture probablijydepends on the bit-error rate (BER) in the PHY-layer
which in turn depends on the SINR (signal to interference ploise ratio). Ignoring error
correction coding, the probability of packet capturélis- BER)®, whereb is the packet
size in bits. Thus, packet capture probability depends dIRSI

Both probabilities for deferral and packet capture are tions of one or more powers
(signal, interference and noise). They are input to the mddewill determine these func-
tions via profiling experiments and seed them by power measemnts in the target net-

work.

2.5 ANALYTICAL APPROACH

Due to the coupling of the Markov chains of individual nodesreentioned before, solving
an equivalent Markov chain for the network as a whole is camatmnally hard. This is
because of a state-space explosion, as all possible cotabisaf states for all nodes can
be a potential state in the combined Markov chain. Directgition of the Markov chain is
of course viable, and we will indeed use simulation as oursmhation approach. However,
as we will see later in our evaluation, simulations are slovthis section, we develop an
alternative solution approach using analytical modeling.

The analytical approach makes an approximation that thewrustate of the process
does not depend on the previous state. This is similar togheaimation made in [32] for

modeling tractability. With this approximation, the presecan move to any of the above
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five states (ignoring sub-states for now) based on a conptabgbility at the end of a
slot. These probabilities depend only on the average behafnetwork nodes. Much of
the work in the modeling here is formulating these probtabdi Once formulated, one
can write up the steady state equations, one for each of thensmitters, and then solve
these equations to derive the fraction of time a node is irXiMéT state, thus giving the
transmission capacity of this node.

On the receiver side, the approach is similar. Instead oeéiodr rate,packet cap-
ture probabilityis used directly. This again depends on the activities oéiotlodes. Any
receiverz in a slot receives correctly a packet on the air (only onewgtoth) from a desig-
nated sender; with this probability. This contributes to the throughpapacity of the link
from z; to z.

Going forward, we start by assumingsaturated trafficregime. This means that all
transmitters are always backlogged. This saturated trgBamption is useful as it elimi-
nates traffic load from the model and eliminates the IDLEestéte will later show in Sec-
tion 2.7.1 that the analytical approach is easily amenabt®nsideration of non-saturated

traffic.

2.5.1 BASELINE NOTATIONS

Consider an observation interval bfslots, wherel" - oo. In each slot, a subset of the
n transmitters inZ = {zy, ..., zn} may attempt transmission. The sétdoes not change

during the duration of slots. Let us first define the following notations:

« J; is the set of time slots in which nodgis idle. This is when nodg; is in the IDLE,

DIFS or BACKOFF states.

« D;isthe set of time slots in which nodedefers because it can sense the transmission
of other nodes. This is the period whegdreezes its backoff timer and goes into the

DEFER state.

« T; is the set of time slots in which nodgtransmits, denoted by the XMIT state.
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ii = |£i]/|T, is the fraction of time nodse; is idle.

di = | Di]/|T'|, is the fraction of time node; defers.

ci = |Til/|T, is the fraction of time node; transmits. Sog; is the normalized

transmission capacity of nodg

¢y, whereY [7]is the fraction of time all nodes in s&ttransmit. Thus,

L}
Cy = E Ti§|r|- (2.1)

z; Y1

ty, whereY [7] is the fraction of time when all nodes nhtransmit, while none of

the other nodes (i¥ — Y') transmit. Thus,

I 1 I 1
tv=H Ti- T (2.2)
nal 2 [IZFY

If Y consists of a single node, say we abuse the notation slightly to represent it
ast; to representy,y. tj is thus the fraction of time nodg transmits, and no other

node inZ transmits.

e p!, whereY [A-— {z}, is the conditional probability that when all nodes}in
transmit in a slotg; defers its transmission because it senses the channel tesipe b

WhenY has just one node, say, then we again abuse the notation to represent it as

.

Interference affects link capacity by limiting the transsion rate at the sender side
and causing packet collisions at the receiver side. We dghete aspects as “sender-side

interference” and “receiver-side interference” resp@tyi and model them separately.

2.5.2 S$NDER-SIDE INTERFERENCE

To compute the impact of sender-side interference, we m@terthe transmission capacity

(¢i) of each node irZ. Using the notations defined abovg, D; andT; are disjoint sets.
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Also, every slot is at least in one of these three sets folyavede. Thus/; LDk (LI =T.

This implies that
1i+di +ci = 1. (2.3)

In the saturated traffic scenario, a node is idle only duringSor backoff period.
This happens for every packet transmission. DIFS is conhidtawever the backoff period
is random, uniformly chosen between 0 afidll,,i, slots of, say, sizer for broadcast
packets Knowledge of packet size and channel bit rate can now praaidexpression for
the ratio () of the idle and transmit times, on average:

i _ DIFS 4 3CWoino 24
Ci (P+ H)/W

Here,P is the packet payload siz#, is the size of the headend; is the channel bit rate.
Using the standard values of DIFS, slot siz€$}in and various headers, we determine
« at the lowest bit rate for 802.11b (1 Mbps) for 1400 byte paplagloads. This comes to
0.03 for 802.11b.

Equation 2.3 can now be re-written as
(1 + Oé)Ci +dij = 1. (25)

In the above expressiot, is the fraction of time slots nodg defers due to the transmission
of other nodes. In each slot, there can be a set of nodesY(}#yat transmit. For each slot
the conditional probability that; defers toY’, given that all nodes iy are transmitting is
p . We can now add up the deferral probabilities in each sloaligyossible combinations
of Y to obtaind;. Note thatty is the fraction of time slots in which all nodesYhtransmit.

Thus,

I:IY
di = Dbi tY? (26)

Y [P(Z2—{zi})

whereP (S) is the power set of sef. This leaves us with; andty to be determined for

each possibl&’, such that” 71— {z;}.

2Note that here there is no exponential backoff as there igtnansmission.
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DETERMINING p;*

Recall thatp! is the conditional probability that; defers when all nodes W are trans-
mitting. Here, we need to model the MAC protocol’s interaotwith the physical layer,
as this probability should depend on the aggregate signaésoreceived at; from all
nodes inY". To make further progress, the relationship between therggfprobability and
received signal strengths must be modeled. Since thisimartely related to the actual
radio interface used, we use a measurement driven stragegy h

The first step is to create an empirical relationship for tihebpbility of deferral
between two nodes based on received signal strengths. Wessxihis relationship as a
function f(-), such thap! = f(rss)), whererss! denotes the average of measured signal
strength value of packets transmitted frejrand received at;. We determine functioff(-)
from a prior profiling study. Note that this function modeatsarface properties rather than
wireless propagation in an actual deployment. Thus, sucoh profiling study is possible.
However,in our experience, individual cards do not need to be profihdtiis fashion, only
card types or card models need to be profilétese profiles can be reused from a library
for different modeling applications. This is in contrasttsimilar profiling approach used
in [71], where individual cards are profiled. Note that oupgach is general and is not
restricted to a homogenous system using identical cardsekkr, for brevity, our experi-
mental results show results from a homogeneous deploymbatprofiling methodology
to determinef (-) will be discussed in Section 3.5.

Once the functiory (-) describing the relationship between the deferral proliglaihd

signal strengths is determineg, can be expressed as in the following.
1 1

L 1
= f BT T 2.7)

zj Y1
This is true since the deferral only depends on the aggresigel strengths. Now, if the

measurements of the pairwiﬁes{ values in the deployed network are availahlg,can
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be determined for any. Note that measuring atlss! values require§) (V') measurement

steps.

DETERMINING ty

Recall from equation 2.2 tha{ is the fraction of time all nodes in s&t transmit, and all
nodes in the complement sé&t— Y remain silentcy on the other hand is the fraction of
time nodes inY” transmit, but nodes in sef — Y may or may not transmit. We determine

ty interms ofcy using equations 2.1 and 2.2. From thesml-:' equations,

-1 [ 1
L 11 11 |

by = oy — 7 1 7
zi [Y1 zj ZFY

.

LH

The second term on the right hand side can be expanded usmyititiple of inclusion
and exclusion of set theory, which after evaluation redtceise following —
1
ty = (—=1)™ley (2.8)

X [P{Z-Y)
whereP (S) denotes the power set 6t

We still need to determing, , which is the fraction of time nodes i transmit together.
Nodes inY” transmit together when every nodeYindoes not defer for every other node in

Y. Thus,cy can be expressed as,

L 1 _—
oy = (L=pi i (2.9)
zi [Y1
Equations 2.6, 3.2, 2.8 and 2.9 can be used to oltand then used in equation 2.5 to

write an equation consisting of's andrss{ as the only unknowns.ss values come from
the measurements, leaving oniys as unknowns. Now, for each value of the subscript
(i.e., a transmitter) one such equation is obtained, givieguations for transmitters. We

solve these equations to derive the normalized transmétaiyp; for each transmitter.

2.5.3 RECEIVER-SIDE INTERFERENCE

So far, we have modeled transmission capacity of the tratesmiVe now need to model

receiver-side interference to determine how much of thestrassion capacity actually
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translates into throughput. Receiver-side interfereesses collisions. Thus, if the sender
and multiple interferers transmit concurrently, we neethtlel the probability of packet
capture at the receiver. As discussed before, this is dodeltying a relationship between
the capture probability and the SINR. This is done in the stasbkion as in the case of
deferral probabilities in the previous section. Exactlybatore, we relate packet capture
probabilities to SINR via a functiop(-) that is profiled via independent measurements.
The profiling methodology to determing-) will be discussed in Section 3.5.

Define delivery raticdr{ from z; to z; as the fraction of packets received hythat are
transmitted by; in the absence of any other interfering transmitter. Letefind dr! (V)
as the delivery ratio from; to z; in presence of the set of interferérs Our first task is to
modeldr? asdr! = g(rss! /noise. This simply relates packet capture probability to SNR,
the ratio of the received signal strength and noise. hlesé denotes the average signal
strength of packets received fromto z; in absence of interference. We have observed that
the functiong(-) does not change even if we consider multiple interfererafork, and the
signal strengths of all interferers can be summed up to EESINR. This is in constrast
to the results of [76] for the Mica2 motes with CC1000 radios.

Once the function(-) has been modeledy! (Y') can be expressed as follows:

. o O
drd (V) =g SINR(Y) (2.10)
where,
) i
SINRI(Y) = =2 (2.11)

oSSk + noise
As in the case of equation 3.2, the above equation also ejonly pairwise measureds

values in the deployed network.

2.5.4 (QPACITY OF LINK

Now, we combine the sender and receiver-side interferanatermine the capacity of the

link. Let us choose; as the designated sender from thesgand letr be the receiver. All
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the other transmitters are interferers for this link. Asstthmat only a subsét of the set of
interferersZ — {z;} is active in a slot and the others are silent (due to deferrialleness).
By definition, ¢ty is the fraction of slots with this property,,; v1is thus the fraction of
time the sendet; transmits along with some subset of the interferers. Thigletsthe
packets that are transmitted from the sender notwithstgreénder-side interference. This
quantity multiplied bydr! (Y) models how many of them are captured at the receiver
notwithstanding receiver-side interference.
Thus, the overall link capacity (in bits per sec) from thedsan; to receiverx in the

presence of a set of interferefs— {zi} is given by,

p 1
g < dry Xt (2.12)
Y [B(Z—{zi})

The first term models the header overhead and the secondpenifiss the channel bit rate.

CHZ —{a}) =

The third term models the above argument. Consideratioheopower set is necessary as
any set of interferers can be active in a slot. The summati@n all these possibilities
works as they are all mutually exclusive.

In Section 2.5.2 we indicated how to computs. ty’s can be determined using equa-
tions 2.8 and 2.91r’s come from the measurement-based modeling directly. ,thedink
capacityC' can be determined using equation 2.12. The approach oingpéquations is

described in the following section.

2.6 SOLVING EQUATIONS

The first and hardest step in the solution is solving for threlse side model as described
at the end of Section 2.5.2. This generates a set of nonrlggaations involving;’s as
the only unknowns, which need to be solved to determine nigrmalues fore;’s. This is
the computationally intensive part of the model solutionc€x;’s are determined, the rest
of the steps needed to determine the capacfy”Z — {z;}) is relatively straightforward,
as they need only value substitutions. Thus, for brevity,ony discuss the sender-side

solution (determining;’s).
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There aren equations, one for each transmitter The number of terms in each equa-
tion can be exponential in involving all possible combinations ef’s in a product form,
i.e., terms likec;, cicj, cicjck, €tc., going uptaic; . .. cn. The equations are solved using
numerical methods. More on this is in Section 2.8.3. In olidaéion work, we have often
had opportunities to simplify the equations that reducesmber of terms involved and
thus the computation time. Two types of simplifications anegible (see below). This is

easily understood by looking at equation 2.6.

= p/ = 0: This means that the nodgdoes not defer for the nodesin In such cases,

the termp) ty becomes 0.

. pj‘f =1 andpf( = 1: This means that nod& andz; can hear each other perfectly,
and their transmissions never overlap each othgr{; = 0). In such a case, the

termpi*3 . .4 becomes 0.

Also, these terms do not need to be perfectly 0 or 1 to be editath Terms close enough
to 0 or 1 can be approximated as 0 or 1. In our testbed, we folamy such opportunities

to reduce the number of terms in each equation.

2.6.1 EAMPLES: TWO AND THREE TRANSMITTERS

To get a better understanding about these equations, weomlider two sets of examples
below — one with 2 transmitterg,(and z,), and other with 3 transmitters,( z, and z3).
For notational convenience, we will writg,, ,;3 ast; j. Similarly, we writepi* aspl¥.

The equations for two transmitters case are:

(1 + a)cl +p§02 =1

(14 a)cy +pher =1 (2.13)
The solutions are
B U ) Bt S U ) g/ 2
(1+ )2 —pips’ (14 a)?—pips
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Nodes Equations Predicted| Delivery-based Distance-based Measured
in testbed o, C1, C2 o, C1, C2 Co, C1, C2 Co, C1, C2
'/O 1.03co+c1+c—re2 =1 0.01 0.33 0.33 0.09
° oo 1.03¢c1 +co =1 0.97 0.5 0.5 0.9
1.03¢c; + g =1 0.97 0.5 0.5 0.9

Table 2.1: Example contention scenarios for a three nodgpset in black,z; inred,z, in
green. The corresponding nodes in the testbed are 6, 4 antdrg Between nodes shows
that they do not interfere with each other.

Let us consider two special cases, one in which both nodeteaneach other perfectly
(p? = p} = 1), and another, where neither can hear the other ofife=(p: = 0). The
solution for 802.11bdq = 0.03) is (c; = 0.49,¢, = 0.49) and ¢; = 0.97,¢, = 0.97)
respectively.

The three transmitter case is a little more involved. As aamgple, the equation for a

single nodef;) is
(1+ a)er + pita + pits + pPtas = 1, (2.14)
where

lo =cr— a3, t3 = €3 — (23, 123 = (23,

3= (1 —pg)(l - pg)0203, pi’3 = f(rssi + rssf).

To show how our model can detect the starvation caused dine tadssical ‘flow-in-
the-middle’ problem [32], we present the set of equatiomsafeimilar scenario from our
testbed shown in Figure 3.2. Nodes 4, 6 and 8 form a scenagoentode 6 can hear both
nodes 4 and 8 perfectly, which are hidden from each othes Hads to the starvation
of node 6, which loses out of transmission opportunitiesabse it has to defer for both
nodes 4 and 8. Simple capacity models based on distanceieergels described later in

Section 2.8.2 are unable to predict this, while our modedlijgts the starvation of node 6.
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The equations, their solutions and the measured capaditgwvéor this case are shown in

Table 2.1.

2.7 EXTENSIONS

Now, we will pay our attention to the two simplifying assurngois we have used so far.
The first is related to the assumption of saturated traffibérainalytical solution approach.
The second is the consideration of broadcast transmissilgn\We will now discuss how

to handle these issues.

2.7.1 NON-BACKLOGGED INTERFERERS

To model non-saturated conditions, we will need to accourttie IDLE state in Figure 2.2.
Assume first that there are only two transmitteysnd z;. Assume that, the interferer,
is not backlogged and has packets to transmit éftgiction of times. In other words, the
normalized offered load at; is [. Let us now represent the capacity of linkto = in
presence of such an unsaturated interfer&r?as:,, /), with a little abuse of notatioh\We
show howC?%°(z1, () depends oi€'z°(z1 ), the capacity in presence of a saturated interferer.
If [ is greater tham,, z;’s transmission capacity, the case is similar to the satdrat
interferer because nodemust be always backlogged to satisfy its offered loadisfless
thancy, nodez;’s demand is satisfied, ang can use the silent period ef for transmitting
packets. The fractiody/c;, thus, can be seen as the fraction of time the two transmiitter
behave as if they are in backlogged conditions. The remgiinaction of time,l —[/c; is

monopolized by’s transmissions. Thus,

% Ol O -
~Lop@) + o), l<a

C()2(0 (Zlv l) =
%(zl), otherwise

(2.15)

We can extend this approach for solving for the non-baclddggterferer to multiple

such interferers. Assume, nodads the receiver, node, is the sender, and a set of nodes

3C20({z1}, 1.0) is written asCZ°(z3).
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7 = {z,...,2n} are the interfering nodes. Assume, the nodes irZskave normalized
offered loadsL. = {li,...,[.}, respectively. Let us consider the interfergr, with the
smallest load, such that its demand can be satisfied. Thiofndg/c; can be seen as the

fraction of time when all the nodes have backlogged traffiaus]

1T 1 L1 1
CB(Z,L) = 1-1 xcm(z—{a}19
&
+ L x02(7) . (2.16)

Cj
where L"is the residual offered load vector after the load in thetfoscof time with

saturated conditions with has been satisfied. Foy, current residual load |Z§D
l.
F=1 — = xg. (2.17)

The above equation can be further reduced by consideringetkienode with the smallest

demand and so on, until we are left with backlogged nodes only

2.7.2 MODELING UNICAST

Unicast transmission in 802.11 provides reliability usiettansmissions when the packet
is not delivered successfully, and an ACK is not receivediftbe receiver. When retrans-
mitting a packet, the backoff window is doubled. This is doepeatedly until the ACK
is received, or the retry limit has been exceeded. The bestdnodel presented in Sec-
tion 2.4 and Figure 2.3 can be easily extended to handle A@Ksracreased backoffs for
each retransmission. This would require an extra tramsftiom the XMIT(0) state to the
BACKOFF (Y state with a probability equal to collision probability ¢ateled byl — dr)
wherektis the new backoff window) < £7< 2CWin.

Let us consider a scenario with sendgrreceiverz, and interferersZ as before. The
analytical approach presented in Section 2.5 needs fallpwiodifications to solve the

unicast model.

< Idle time computation Due to retransmissions, and multiple backoffs for the trans

mission of a single packet, the ratio between normalizesltidies {;) and transmit
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times ;) does not remain a constant. We can compute idle time by densg all
possible subset¥” of the interferer setZ and the collision probability with each
of these subsets, when they are active. For éacthe backoff time evolution is a

geometric process with the collision probability as parené& hus,

L—pArs + SIFS + bo(Y)
(P+H)/W

tzo} Y1 (2.18)

1j =
Y [B(Z)

where,bo(Y") is the average backoff time spent for transmitting a padketyding
retransmissions) frony to = when a subset of interfere¥sis active:
™ 1
bo(Y)= (1 —dr)*2*1CWhino. (2.19)
k=0

Here,m denotes the retransmission limit for a packet.

» Consideration of ACK We keep equation 2.3 unchanged by considering ACK trans-
missions as part of a sender’s transmission. Thus, in anyTX$ltit, a node may
be transmitting data, or receiving ACK. ACK packets are $raadl their impact in
causing interference is also small relative to data packdss, ACK is transmitted
only once per successful packet transmission, while thieghaway be retransmitted.
Thus, for a single packet, the proportion of time slots otedipy ACK is very small
compared to the time slots occupied by data. In the XMIT sla@GK may impact
the deferral probability, and the probability of collisiby causing DATA-ACK, or
ACK-ACK collisions. Both these probabilities may still beoateled by attributing
a small (appropriately computed based on sizes) probabiien XMIT slot being
occupied by an ACK transmission. Another simplified modaildosimply ignore

the effect of ACK transmissions in causing interference.

With the above modifications, the link capacity can be coragas in the case of broad-
cast following the same steps. Note that once the slots aighder’s transmission has been
identified, the unicast capacity for those slots is idehticéahe broadcast capacity. This is

because if the probability of packet capture is fixed, it doesmatter whether a packet
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is being transmitted or retransmitted. The throughput eflihk will be the same in both
cases, as throughput only depends on the number of unigietpaticcessfully received.
Summarizing, modeling unicast requires modifying the nhddeidle time compu-

tation, and considering the probability of collision andeteal for ACK packets. Even
though the inclusion of these in the model makes the modet mccurate, it adds an extra
complexity for the analytical and simulation-based apphes. The impact of these fac-
tors are small because ACK packets are small in general,henextra idle time is much
less than the packet transmission time for large packes®, Al we argued above, retrans-
missions do not impact the capacity computation for a linkegt for the extra idle time.
Given this, it is worth debating whether there is much bem¢fl from modeling the more
complex unicast. It has been shown before in [65, 71] thatrttexference between uni-
cast transmissions can be well estimated by estimatingiteeférence between broadcast

transmissions. We also observed similar behavior in otibéels(not reported here).

2.8 EXPERIMENTAL PROCEDURE

Our experimental testbed consists of 12 Dell Latitude D%#2dps running Linux 2.6.15
kernel. The testbed is located in one floor of a modern office-tab environment. See
Figure 3.2 for a network diagram. Each laptop uses a DLinkPAamier DWL-AG660
802.11a/b/g PC card with Atheros AR5212 chipset. The Madin¥ier, Version 0.9.6 [4]
is used. The cards are configured in ad hoc mode when usedhamttier, and in monitor
mode, when used as receiver. Thus, measurements ahdrss values are done in the
monitor moderssis in the prism monitoring header which is obtained whenavsacket is

captured when the card is in monitor mode. The value reptmtestheros cards is the gain

dB relative to the noise floor. In particular, the card repdine valuel0log,,(2%'), where
S is the received signal power arids the aggregate interference powstjs a fixed noise

floor (fixed at -95dBm). According to the above representatamy external interference
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Figure 2.4: Locations of the nodes on the floor map and linkis miore than 90% delivery
ratio. Width of the map is 60m.

will influence the measuradsvalue between two linkéTo alleviate this problem, we have
done all our experiments in the night in a relatively ‘quigtivironment so that interference
I from other 802.11 networks could be considered zero. Treigasuredssis simply a
dB gain over a fixed noise floor and can be easily convertedweptmW or dBm) to use
in the formulation in Section 2.5. Instead of inventing nestations, we will be using the
termrsseverywhere. In the experiments it is in dB, in the analysis it dBm or mW.

All experiments reported here are done for 802.11b. We alda dimilar set of vali-
dations for 802.11a and had very similar experience. We sthtmpresent 802.11b results
here as it gives longer range links and has a rich set of eremtes in our testbed. All
experiments are done at the lowest phy-layer rate (1 Mbpwath large (1400 bytes)
packet sizes. We have verified that profile for one packetcanebe used for other packet

sizes. Profiles also seem quite independent of the choickasinels. However, profiling

“In other cards, for example, Prism2-based [8], it may beiptest measure the external inter-
ference as noise.
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Figure 2.5: Profile for functiong(-), probability of deferral, and(-), probability of cap-
ture.
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Figure 2.6: CDF of error between the estimated and meastaiedniission capacity of
sendersg; for nodez;.

needs to be done for each possible data rate. Needless thfsagnt card models must be

profiled separately.

2.8.1 HROFILING EXPERIMENTS

We do a set of measurements to create the profile@sandg(-), which form the inputs to
the 802.11 MAC model. Recall that functigii-) models the probability of deferral in terms
of the received signal strength (equation 3.2), while fiamct(-) models the probability
of packet capture in terms of SINR on the link (equation 3T8)create the profiles, we

use two laptops (as described above), sagndz; , and place them at different random
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Figure 2.7: CDF of error between the estimated and measlredghput capacity on links,
C%(Z — z) for link from z; to .

locations to create a large number of samples of ave;raéeandrss} value$ and then
relate these samples to measured valuqé aa‘ndp}. To do this,c; and¢; are measured
when both of the nodes have saturation UDP broadcast traffit then equation 2.13 is
used to computg! = %}““)C‘,p} = =594 Eachigl rssCpair thus obtained is plotted
in Figure 2.5(a). A large number of such points are obtainedepeating the process for
different random locations of; andz;, which gives different samples of link quality and
sender-side interference.

To create the profile fog(-), we use similar random experiments using two nodes. (In
fact both these experiments are done together to save)effothis case, the&s /N R{ is
determined from equation 3.4 4sss! /noise, as there is no interference. The delivery
ratio dr{ is directly measured. As before, a plot is created (Figus€b) relating capture
probability and SINR.

The figures show the measured values as scatterplot andhalddtéd curves. The
curves for the desired functions are fitted using a linearpulation of average values

in buckets of 2dB each. An interesting observation in thelgsais that the profile for

packet capture probability is shifted to the right when canep to the profile for deferral

SAll averages are long term averages. Some methods of dnliestable average statistics for
802.11 are described in [65, 71]. We follow very similar teicues.
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probability. This is expected, as the threshold for defasrdower than the threshold for

successful packet delivery.

2.8.2 MODEL EVALUATION AND VALIDATION EXPERIMENTS

This part of the work concentrates on the target network -1#aode testbed described
before. Average ss values for all link pairs in the network are collected. Haexrach node
takes turn to transmit UDP broadcast packets and every ot measures the average
rss values. Again, this process is similar to measurementgtegphm [65, 71]. This takes
O(N) steps for anV node network. The profiles generated in the previous seatidrthe
values collected are used to seed the 802.11 model desanilS=ttion 2.4. Both analyt-
ical approach and direct simulation can now be used to sbkerodel to determine the
throughput capacity of any given link. We have written a datar in C which implements
the Markov Chain based 802.11 model. We use a slot size of #10802.11b, which is
small enough such that all protocol states span integer auwfislots. We will later see
in Section 2.8.3 that there is an accuracy vs. computatioe tradeoff between these two
methods.

For validation, we perform direct measurements on the ¢elstb evaluate link capaci-
ties and then compare them with those estimated by the miodehch validation experi-
ment,n nodes are chosen from the testbed as transmitters whilerti@mingl 2 —n nodes
act as receivers. Each transmitter then broadcasts pask&ist as possible (to model sat-
urated traffic) for 60 seconds. At the end of this time peribé, throughput on each one
of then(12 — n) links is measured by counting the number of packets recédieed each
sender. For each such link, there are- 1 interferers. We also measure the transmission
capacity (hnumber of packegstually transmittedn the air per second) for each transmitter.
This quantity is reported by the card to the Madwifi driver.

We have performed validation experiments with up to 5 iltenfs. Whem = 2, it

is a single interferer scenario. Here, we have measuredsdliple combinations of such
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scenarios, which require 66 experiments, and provide data32 transmitters, and 1320
links. When3 < n < 6, we randomly pick 50 configurations aftransmitters each, which
results in data fos0n transmitters, and0n(12—n) links. Thus, overall we have performed
266 sets of experiments resulting in 7820 data points in libis po be presented next.

Figure 3.6 shows the CDF of the absolute error (modetesheasured) in transmis-
sion capacity for both solution approaches — analytical dirett simulation. We specify
capacity as a fraction of the channel bit rate. Note that tbdehperforms quite well for
fewer interferers, increasingly losing accuracy with mmterferers, where the approxi-
mations used in the modeling and measurement errors sttgring more. Also, note that
simulation provides better accuracy relative to the anadlymethod. This is expected due
to the approximations used in the analytical method.

Exactly similarly, we present the absolute error betwedimased and measured link
throughput capacities in Figure 3.7. Once again note thellext accuracy. It may appear
here that the accuracy is more than for transmission capaait Figure 3.6. This appear-
ance is due to the fact that throughput capacities are snthfle transmission capacities;
thus absolute errors are also smaller. The horizontal sfddeth the plots are the same.
The summary statistics for the errors will be presented nmangy in the following sub-

section.

COMPARISON WITH SIMPLER MODELS

It is instructive to compare our model with simpler modelattbne would use in absence
of approaches such as ours. We use three simple models fgracmon -(i)naive model
(also used in [71]), where the link delivery ratio on a linkuised as an estimate of link
capacity; (ii)delivery-based modelvhere sender-side interference is modeled by assuming
that the normalized transmission capacity of the sendef(ist-no. of neighbor¥ and then
multiplying this number with the link delivery ratio; (iiflistance-based moddashioned

after the protocol interference model [34]). Here, trarisiamge, interference and carrier

SHere, a node is a neighbor if it has a link with at least 90%veei ratio.
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Figure 2.8: Summary error statistics for different models different numbers of inter-
ferers.

sensing rangésare first determined based on a set of independent measuseinghe
same environment. If two links have a receiver in interfeeerange of the other sender,
or have the senders in each others sensing range, then thegidrto be in conflict. The
normalized capacity of a link in this model i5(1 + number of conflicting links The
capacity is 0 for non-existent links (i.e., sender and reareare outside transmit range).
We compare these models with our analytical and simulatgpraaches. The CDFs
for errors for these models are also plotted in Figure 3.%teNwat the naive model over-
estimates capacity a lot, as it ignores interference. Theetg-based model also overes-
timates significantly as it does not have any way to model ¢geeiver-side interference.
This is very apparent from the plots with small number of ifeeers. On the other hand,
the distance-based model underestimates significantly.i$ tikely because of conserva-
tive range estimates and the mistaken assumption that tigesaare isotropic. For larger
number of interferers, it appears that errors are going dimwrhe delivery-based and
distance-based models. This is an illusion as the capgaditie also smaller with larger

number of interferers and thus absolute values of erroralacesmaller.

790% probability for respective events are considered fomesing ranges.
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Figure 2.9: Computation time for analytical and simulatapproaches with increasing
number of interferers.

Figure 2.8 summarizes the errors in estimating link capeescior all the models in terms
of percentage of predictions with absolute error within 10%is data directly comes from
the CDF presented in Figure 3.7. Note again that the sinmunldiased solution is the most
accurate, estimating capacities of links more than 90% eftithes with an error that is
within 10% of the channel bit rate. This goes down to about 8%e times in the analyt-
ical approach. The simpler models typically perform muchsepthough distance based
model becomes competitive for larger number of interfer&sing back to the example
in Section 6.1 note that both delivery and distance-basedefaalo a very poor job in

modeling the ‘flow-in-the-middle’ scenario (see Table 1).

2.8.3 (OOMPUTATION TIME

Recall the discussion on the complexity of solving the eiguatfor the analytical solution
from Section 2.6. Long computation time will limit the apgability of our approach. We
thus need to analyze the computation time issues.

For the plots presented above, we have used Mathematioa $8]ve the equations. It

uses the Newton’s method [50] for solution, which in turnsuigenethod of linear approx-
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imation. Newton’s method requires a set of good startingesfor rapid convergence. We
have seeded the variables with the values from the delivasgd model. Note that this
model is computationally very cheap. We have set the maximumber of iterations to
1000. We have also specified the stopping criteria, suchthigatterations stop when an
accuracy of 10% has been achieved.

For simulations, we have used thatch means methdd ensure that simulations con-
verge to a target level of confidence. Our target for the alvalidation plots has been 95%
confidence interval of batch means being less than 5% of thetbvean statistics. Figure
2.9 shows the computation time for the analytical approachthe simulation approach.
For simulations, we now also add the times for a less accanaglation (90% confidence
interval less than 5% of mean). This demonstrates a tradedifeen accuracy and com-
putation time. Simulations are almost an order of magnitsidever than the analytical
approach. The computation times are reported for a Dell R@ &8 GHz Pentium pro-
cessor with 4GB of RAM, running Linux. For the purpose of tpist, we have evaluated
computation times up to 12 transmitters (i.e., 11 inter@ren our 12 node testbed. Note
that the time to solve the analytical approach increasesslewly, and is approximately
0.35 sec even with 11 interferers. The trend indicates tlit avpowerful computer, the
analytical solution approach should be useful even forieadecision making for resource
scheduling, at least at a coarse time scale (second or sobeje For example, for appli-
cations such as coarse-grain channel assignment, admissirol, centralized routing,
etc. 0.1-1 second computation time is easily affordabled@hg the computational issues

further is on our future research agenda.

2.8.4 \ALIDATION FOR NON-BACKLOGGED INTERFERERS

In this section we present some validation results to detrateshat our model extends to
the case when the interferer is not backlogged. We show thecitst of a link in presence

of an interferer for three cases — when the interferer casmeder-side interference, when
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Figure 2.10: Capacity of a link (1,3) in presence of one naoklbgged interferer. Interferer
2 contends for channel with; 4 causes collisions, whilél does not effect the link.

the interferer causes receiver-side interference, anahwieinterferer does not affect the
link at all. To do this, we pick one link in the testbed and ctémeohree suitable nodes as
interferers to validate these three cases. In each caseternii@e the capacity of the link
in question from our model and compare it with the measuredady. Figure 2.10 shows

the accuracy of our prediction using analytical modelingach case.

2.9 CONCLUSIONS

In this chapter, we have addressed the challenging probiemodeling link capacities in a
real, deployed 802.11 network. This is a departure from titiag methods of analytical
or simulation-based modeling that often make unrealisstimptions. Our model is based
on the realistic physical interference model that drivessardte time Markov chain-based
model of 802.11 behavior. The physical interference malptofiled using measurements
and is seeded again by measurements on the target netwogket@mlated. The methods
we proposed are practical — (i) The profiled measurementdedkept in a library and
reused. (ii) The measurements on the target network ardesimmgl takeO(/N) steps. (iii)

The analytical solution time is of “sub-second” scale opgnip a lot of applications that

38



use course-grain decision making, such as overlay MAC sdimgr routing, admission
control and channel assignment. Our future work will explsome of these applications
using the proposed model.

While we have used a single channel, single packet sizelesdaja rate and single
interface card model in our work here, this is not a limitatiBrofiling can be done for all
these parameters separately. Some additional modelingdaed help in profiling effort.
For example, profiling for one size can possibly be extrapdlfor other sizes. In principle,
the modeling approach is able to handle heterogenous systeémere different nodes use
different parameters, so long as cards with all such paemsettings have been profiled
for. The harder problem is handling dynamically changingppeeters, for example, auto
rate control in 802.11. In this case, the rate control atgorimust be modeled as a part of
our approach. Also, our approach is general enough suclexitextsions of 802.11 (e.g.,
802.11e) can be modeled using a similar Markov model, thongte states probably will

make the solutions more compute intensive.
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CHAPTER 3

MEASUREMENTBASED APPROACHES FORACCURATE SIMULATIONS

In this chapter, we address the issue of unrealistic simamaiof wireless networks using
a measurement-based approach. The idea is to use empiddaling using measurement
data as a mechanism to model physical layer behavior, as apt€h2. We demonstrate
the power of this approach for 802.11-based networks uss2g a packet-level network
simulator. We build the models for deferral, reception, amgphal propagation using mea-

surements from a real network.

3.1 INTRODUCTION

Simulation-based modeling is a useful tool for evaluatiegfgrmance of network pro-
tocols. Simulations served the networking community wetlWwired networking regime.
However, simulations for wireless networks have often lpesstioned [54, 12], primarily
due to the lack of realistic lower layer models. Howeverydsearch community has not yet
practiced serious validation exercises for wireless ngtwmnulators barring minor excep-
tions [60]. Our goal in this work is to revisit the issue of aalistic simulation models of
wireless networks for the lower layers, and address thel@mohsing a new approach that
uses measurement-based modeling.

Network simulators widely used in wireless networkingritieire such as ns-2 [7],
gualnet [6], opnet [5] etc. implement the network proto@ydrs in the same fashion as
in a real system. The upper layer implementations (suchaaspiort and network) are
fairly accurate. This is because they are implemented itwaoé in a real system. This

makes it easier to model them in the simulation softwares Thalso true for MAC-layer
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models as detailed specs and firmware implementations aitalate to a serious simulation
modeler. However, the wireless physical layer has been toangdodel. While theoretical
models do exist, they make assumptions on the propagatisroement and the interface
characteristics and use various model parameters (eth.lqss exponent) that are hard to
instantiate. Also, often such models work at a much finer $icage (at the bit or symbol
level, e.g.) while popular network simulators operate ahekpt-level time scale. Making
the timescale finer may cause a serious slowdown of the siamgiminating the scal-
ability benefit — one possible reason why such attempts havéeen seriously pursued
yet. On the other hand, research has shown that physicaldaygeling can make serious
impact on the upper layer protocol performance [79] therabiing realistic modeling all
the more important.

Our goal here is to propose measurement-based approaghesébthe physical layer
of protocol stack so that not only popular packet level sataris can still be used, but
also the simulation accuracy is vastly improved. The apgraa not simulator specific,
but we have used ns-2 because of its popularity. Similarly,weork is not MAC/radio
specific, but we focus on 802.11 because of its ubiquity. Watifly three components that
comprehensively capture the physical layer behavior inGgh18.-based network. They are
(i) signal propagation model, (ii) carrier sensing modetloe sender side, and (iii) packet
reception model on the receiver side. We propose measutdrasad approaches to model
the above three components. The idea is to use measurerogreserve realism where
analytical models are inadequate.

We validate the accuracy of the measurement-based apg®aitia-vis direct exper-
imentation on a 12-node 802.11-based indoor mesh netwsite@. Our general conclu-
sion is that the technique is very accurate when measuretia¢mtfrom an actual testbed
is available. When complete testbed is not available forsumesments, measured data
from a limited set of nodes can also be used for modeling uiiagoroposed approach

while providing high level accuracy compared to existingigiations approaches. Our
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hope is that this study will encourage the wireless netwaykesearch community to use
measurement-based techniques for simulation studie® &ddption will also lead to reuse

of measurement-based models making the approach vergffestive in terms of effort.

3.2 RELATED WORK

In [54], the authors describe unrealistic assumptionsnofteade in wireless network
simulators. They also develop a simulator that they vadidedainst real experiments;
however they report experiments related to propagationefiraglonly. Several emulation
approaches are described to validate wireless ad hoc rlesiraulations in [41]. How-
ever, here comparisons against real networks are not egphdrt a recent comprehensive
article [12] the authors survey many questionable prastioe simulating mobile ad hoc
networks. They note inadequate modeling of protocols atlddévalidations as two major
issues. They also note other issues such as improper dotatioanor lack of statistical
validity that are not explored in our work. In [60], a validat approach has been developed
using direct execution simulators for ad hoc networks.

In [35], the effect of detail in wireless network simulat®oand how they influence
the conclusions are studied. In [79], a careful study is deieg different simulators that
shows how the details in physical layer modeling can impageu layer protocol perfor-
mance in a simulator. Physical layer emulations [42] andouarhybrid approaches [86]
have recently been promoted to impart realism to modelingjss. However, they are quite
complex, require significant amount of hardware and areo/betwidely adopted.

The measurement approaches discussed in this chapter ihalagises with several
recent works, such as [71, 17, 65, 24, 49] for 802.11 netwankk[75] for Berkeley mote-
based networks. These papers emphasize the significansmgfrneasurements over ana-
lytical modeling. Some of these papers also promote usisggairwise signal strength
measurements between nodes to model interference andpigetinWe utilize these ideas

in our work in the context of creating an accurate and reahgireless network simulator.

42



3.3 APPROACH

The physical layer components in an 802.11 network simutato be classified into three
broad categories — (fadio propagation mode(ii) deferral or carrier sense modeh the
sender side, and (iipacket reception modeh the receiver side. We describe our approach

to handle them below.

3.3.1 HFROPAGATION

Typically, wireless network simulators assume a genempagation model, such as free
space model or two-ray ground reflection model coupled wighadowing model [70]
as in ns-2. Naturally, such a generic model may not be apjatepior the propagation
environment to be evaluated. Further, parameters of sudeise.g., path loss exponents)

still need to be instantiated. Our approach here is as fallow

a. If a testbed is availablenve perform direct measurement on the testbed to determine
propagation behavior. Here, the receiver simply measheaeteived signal strength
(RSS) and no real modeling is performed. This requires 6HliY) measurements
for an N node network. Each node can transmit a beacon and everymatesimply

measures the RSS. Commodity 802.11 interfaces allow suasunaments.

b. If a testbed is not available (but a pair of network nodes arailable), we model
the propagation behavior using an empirical, measuretnasgd approach in the
environment being considered. This is not unlike early worlcellular commu-
nications that gave rise to popular empirically derived elecdsuch as Okumura-
Hata models [70]. A similar modeling approach has also beesidered in outdoor

802.11-based networks with reasonable accuracy [17].

INote that there are subtleties here that commodity carde/ @SS measurements only when
the packet is received correctly. Prior measurement studggcated that impact of this is relatively
minor [71].

43



3.3.2 DEFERRAL AND RECEPTION

Carrier sensing in 802.11 cards is implemented using a &aaquisition module, which
determines whether the channel is idle for transmissiois iBbmodeled in simulators by
using a carrier sense threshold, and a received signal wghiehpower than this threshold
makes the channel busy. It has been observed [65] that caemsing between a pair of
nodes is not deterministic, and in practice, if a pair of reogigempt to transmit simultane-
ously, the probability that one node defers due to other nesgy¥mlue somewhere between
0 and 1.

Modeling the packet reception is harder. This depends amabig interference plus
noise ratio or SINR, where signal is the received signal poavel interference is the
aggregate of the interference powers received at the mcéiterference is simply signal
transmitted by any node other than the designated trarsnitindamentally, SINR affects
the bit-error rate (BER) in a received packet [70]. The SINRBER relationship typically
depends on receiver design and modulation used. BER udiynaffects PER (packet-error
rate) depending on the coding used. Note again the pros@abitiature of packet recep-
tion. Usually, there is a sharp fall in BER (and hence PERhwitreasing SINR. Thus,
often simulators simplify this by assuming a simple twopdtienction to model SINR vs.
PER relationship. This essentially translates to the #edaapture thresholdsignifying
an SINR threshold needed for successful packet receptign #when modulation/coding
specific SINR vs. PER relationship can be used (the best,cass)unclear whether a

universal theoretically based model would suffice for argriiace.

3.3.3 MODELING STRATEGY

Direct measurements are possible for modeling the projmaghthavior in Section 2.1
(usingO(N) measurements). However, similar direct measurementsatrpassible for
modeling deferral or packet reception behaveven when a testbed is availablEhe

reason is that all possible subsets of transmitting nodest biconsidered, requiring an
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Figure 3.1: Versions of the simulators considered and theatsaised by them.

exponential number of measurement steps. This requirestake an empirical modeling
approach that still only use3(/NV) measurement steps and the rest is done via modeling.
The modeling part assumes that only aggregate interfenemwer is important to deter-
mine deferral or reception, and not individual interfepowers or number of interferers.
Note that this assumption should be true in theory. We haslead performed limited
amount validations to test this out (reported in the nextise

We develop several versions of the ns2 simulataty differing in the physical layer
implementation To describe the simulators better, let us categorize tlpagwyation,
deferral and packet reception modeling in the simulato aategories. See Figure 3.1.
We name the simulator versions V1 to V4, with increasing dexity. V3 and V4 replace
the entire physical layer by our measurement-based motel difference in V3 and V4
is that in V4, direct RSS measurements are used to model gatipa (note (a) in Section
2.1); while in V3, a model is used for propagation that is\elifrom measurements (note
(b) in Section 2.1).

V1 and V2 use simpler models. V1 is very similar to the defagh2 simulator. Here,
the propagation model is a free space propagation modeptiea is based on a SINR

threshold and deferral is based on a carrier sense threshold. Thesshithds are tuned

2The default ns2 has an even simpler reception model, whsirajily compares signal with one
interferer only at a time. V1 makes it somewhat more realisyi using a true SINR computation.
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using measurement data as a guide. V2 differs from V1 in thades a somewhat more
sophisticated model for packet reception based on thedhealty derived PER vs. SINR

curves [8].

3.4 MEASUREMENTBASED MODELS

In this section, we present the measurement-based modalsevior the simulators. All
measurements were done on our experimental testbed d¢ogsist2 Dell Latitude D520
laptops running Linux 2.6.15 kernel. The testbed is locatexhe floor of an office-cum-lab
environment. See Figure 3.2 for a network diagram. Eaclofapses a DLink AirPremier
DWL-AG660 802.11/a/b/g PC card with Atheros AR5212 chip3éte Madwifi driver,
Version 0.9.6 [4] is used. The cards are configured in ad hodenwchen used as trans-
mitter, and in monitor mode, when used as receiver. RSS nmeragmts use the appropriate
field in the prism monitoring header which is obtained whemevpacket is captured when
the card is in monitor mode. The value reported by Atherods&10 log,,(S + I/N),
whereS is the signal strength andis the interferencey is fixed at -95dBm (noise floor).
All experiments reported here are done for 802.11b. We atgidhilar set of validations
for 802.11a and have very similar experience. But we chaogestsent 802.11b results here
as it gives longer range links and has a rich set of interfexem our testbed. The exper-
iments are done in nights when interference from extern2llB0networks is expected to
be minimal. All experiments are done at the lowest PHY-lagéz (1 Mbps) and with large

(1400 bytes) packet sizes.

3.4.1 MODELING PROPAGATION

Radio propagation in indoor environment is a complex phesrtan There are three main
factors that play a role in determining the received sigravgr — path loss, shadowing
and multipath fading [70]. At a high level, path loss desesilthe exponential decay of

signal power with distance, with the exponent dependindherptopagation environment.
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Figure 3.2: Locations of the nodes on the floor map and linkis miore than 90% delivery
ratio. Width of the map is 60m.
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Shadowing describes random variation of path loss in sinpitapagation environment,
commonly modeled by a Normal distribution in dB (log-normsbhdowing). Following a
similar modeling work [17] we ignore multipath fading duet®modeling complexity and
impact only in small time and spatial scales.

Combining path loss and log-normal shadowing, we have
7=
Py (d) = Pys(do) — 10alogio A +Xm (3.1)

where Pyg (d) is the received signal power at distantel, is a reference distance where
power measurement is already availablas the path loss exponent, atid-js a Normal
random variable in dB having a standard deviatior dB and zero mean. The path loss
exponenty is 2 in free space, but is higher in a cluttered environment.

We use an empirical method to estimateand ¢ from measurement data following
similar work in [17]. We collect average RSS values for eaah pf nodes in the testbed
from 132 separate measurements (12 transmitteisl receivers) and use least square
linear regression to find the path loss exponent for our ¢égsémvironment. Figure 3.3(a)
shows the scatterplot, and the fitted line, which gives thé p@ss exponent as 4.66.
Similarly, e is estimated by fitting a Normal distribution for the errofues in the above
regression. See Figure 3.3(b). We get 5.48. We use this model in the simulators V3.
Note that if a complete testbed is not available, but onlywpt®of nodes are available, we
can still create this model by performing a large number ocbR&asurements by placing

just two nodes in different random locations in the test emunent.

3.4.2 MODELING DEFERRAL

The first step is to create an empirical relationship for thabpbility of deferral between
two nodes based on received signal strengths. We expraseetationship as a function
F(-), such thatp! = f(rss)), wherep! is the (deferral) probability that nodedefers to

the transmission of nodjeandrss{ denotes the measured values of average signal strength

of packets transmitted from nodeand received at node We determine functiorf(-)
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Figure 3.4: Determining (a) deferral and (b) packet recepgirobabilities.

simply by taking two nodes and positioning them in many randocations in the test
environment, and then directly measuring the RSS valuesdegt them as well as the
deferral probability.

The deferral probability is measured as follows. Both nagte=mpt to broadcast UDP
packets as fast as possible. Thus, they always have baekldgaffic. We measure the
transmit rate (rate at which a node is transmitting packethe air) of each node. We also
measure transmit rate when the node is transmitting aldrerdtio of these two rates gives
the deferral probability. A large number of such measurementp, rss > are taken and
are shown in the scatterplot of Figure 3.4(A):) is estimated as the linear interpolation
of average values qgf for small buckets of ss values. Further, it is assumed that deferral
probability p depends only on the sum ofs values if multiple transmitters are present.
Thus,

1 1
L1
pl = f rss | (3.2)
j@x

whereY denotes a set of active transmitters.
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3.4.3 MODELING PACKET RECEPTION

A similar approach is taken for modeling the packet recephiehavior. Definalelivery
ratio dr{ from nodej to nodei as the fraction of packets received fhat are transmitted
by j in the absence of any other interfering transmitter. Letef'médrf (Y) as the delivery
ratio from j to 7 in presence of the set of interferers Our first task is to modefr{ as
dr} = g(rss) /nois@. This simply relates packet reception (capture) probghiti SNR,
the ratio of the received signal strength and noise. hlesé denotes the average signal
strength of packets received froio i in absence of interference.

Once the function(-) has been modeledy! (Y') can be expressed as follows:

. 1 . [
dri(Y) =g SINRK(Y) (3.3)
where,
i i
SINR)(Y) = =] (3.4)

eSSk + noise
As in the case of equation 3.2, the above equation also exjoiy pairwise measureds
values in the deployed network.

A set of experiments as before is devised to empirically rhgde. Two nodes are
placed in many random locations. One of them transmits lwastdJDP packets and the
other receives. The average andrss values are recorded at the receiver. The scatterplot
in Figure 3.4(b) shows the experimentally obtained vali&e functiong(-) is obtained
via interpolation as before. As stated before, these eauvdt for the lowest PHY-layer rate
(1 Mbps), and thus the(-) function is specific to this data rate. Similar experimentsm
be done at all data rates to get the rate spegificfunctions.

Note that the empirical technique above measures SINR wuitithoy interferer (thus,
actually SNR) with an assumed noise floor (-95dBm). We hase @lidated that indeed
when one or more interferer is added, the functign) estimated above still holds.
Figure 3.5 shows the experimentally obtained deliveryorat. SINR scatterplot in the

presence of 1 interferer. Note the similarity of this plotiwirigure 3.4(b). This provides
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credence to our approach that functigi) can be modeled using measurements without

any interferer, and thus requires orily N') measurement steps.

3.5 BEVALUATION

We evaluate the accuracy of the simulators on the targetonktathe 12-node mesh testbed
described before. Average RS&4) and delivery ratio {r) values for all link pairs in
the network are collected. Here, each node takes turn termiatUDP broadcast packets

and every other node measures the averageanddr values. This process is similar to
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links.

measurements reported in [65, 71]. This tak&d/) steps for anV node network. Thess
measurements are used to seed simulator V4, whilesthanddr measurements are used
to create the deferral and reception model for simulatoraivV3.

For validation, we perform direct measurements on the eelstb evaluate link capaci-
ties and then compare them with those estimated by the \&aviensions of the simulators.
In each validation experiment, nodes are chosen from the testbed as transmitters while
the remainingl2 — n nodes act as receivers. Each transmitter then broadcaststpas
fast as possible (to model saturated traffic) for 60 secofdthe end of this time period,
the throughput on each one of thél2 — n) links is measured by counting the number of
packets received from each sender. For each such link, énere— 1 interferers. We also
measure the transmission capacity (number of padetsally transmittedn the air per
second) for each transmitter. This quantity is reportedhieyctard to the Madwifi driver.

We have performed validation experiments with up to 5 irtenfs. Whem = 2, it
is a single interferer scenario. Here, we have measuredsdliple combinations of such
scenarios, which require 66 experiments, and provide dath32 transmitters, and 1320
links. When3 < n < 6, we randomly pick 50 random sets oftransmitters each, which
results in data fos0n transmitters, and0n(12 —n) links. Overall, we have performed 266

sets of experiments resulting in 7820 data points in thesitobe presented next.
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Figure 3.6 shows the CDF of the absolute error (i.e., eséthat measured) in the
sender side transmission capacity for the various simidatde present capacity normal-
ized to the channel capacity. Since V1 and V2 use the samealedad propagation model,
the transmission capacity of these two simulators are ickdntNote that V4 is quite accu-
rate — the error is within 10% of the channel capacity 85% eftitmes. V3 is less accurate
than V4 (the error is within 15% of capacity 85% of the timém¢cause V3 uses a model
for propagation rather than using direct measurement. \dlVé@underestimat¢he trans-
mission capacity significantly, likely because they modeleaker path loss. This results
in more deferral and lower transmission capacity.

Exactly similarly, we present the absolute error betwedimased and measured link
throughput capacities at the receiver side in Figure 3.ZeCagain, note the excellent
accuracy for V4 followed by V3. The 85 percentile error for &4d V3 is 10% and 15% of
capacity, respectively. Note again V2 and V1 provide vergrgstimationpverestimating
the capacity this time. In the case for V2 and V1, the througbppacity is almost the same
as the transmission capacity as collisions rarely happeause of almost perfect deferral.
In reality, however, many more packets are actually trattedhibut many of them actually
lead to collisions leading to much poorer received throughp

The take-home message from these results is that carefsumegaent-based modeling
can be successfully used to develop accurate simulatorarfg4/3). When measurements
are not used, even when best possible strategies are udeel smtulation models (e.g.,
V2), the errors are very high. For example, for estimatinguighput capacity, for 85% of

the scenarios, the error in V2 increases to 50% of the chaapelcity.

3.6 CONCLUSIONS

In this chapter, we have demonstrated that empirical mogeli the physical layer is nec-
essary in building more accurate wireless network simeaitle have specifically focused

on 802.11 and developed two versions of the popular ns-2atorihat model the wireless
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physical layer with different levels of fidelity. In both \@ons, the deferral and reception
model are built using measurements. For the propagatiorelmgg one version (V4) uses
direct measurements and the other (V3) uses a modeling agprin validation experi-
ments over a 12-node mesh testbed, both these versionsous@dtb be reasonably accu-
rate (85 percentile errors about 10% of capacity). Simaitegrrors in more traditional sim-
ulation models were found to be unacceptably high (85 péiteearror within about 50%
of capacity). Our future work will focus on improving the ermargins and validating our
simulators with unicast traffic, with relayed traffic, ethéleventual goal is to make such
simulators using various measurement data sets availaltheetresearch community for

evaluating protocol performance.
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CHAPTER 4

ESTIMATING INTERFERENCE USINGPASSIVE MONITORING

In this chapter, we present an approach to estimate thdardace between nodes and
links in a live wireless network by passive monitoring of @éss traffic. Unlike Chapter 2
and Chapter 3, this does not require any controlled exp@itsra injection of traffic in the
network. Our approach requires deploying multiple snéffacross the network to capture
wireless traffic traces. These traces are then analyzeddo time interference relations
between nodes and links. We model the 802.11 MAC as a Hiddekdv&odel (HMM),
and use a machine learning approach to learn the statettoansiobabilities in this model

using the observed trace. This in turn helps us to deducetedarence relationships.

4.1 INTRODUCTION

Interference between radio links limits the capacity of eeleiss network. The Holy Grail
of research thus has been the understanding and modelimgedference and its impact
on network capacity, ranging from very abstract modelingreises [34] to more practical
analysis and evaluation [49, 67]. Needless to say that thetipe has been mostly targeted
for WiFi (IEEE 802.11 Standard and its derivatives) netvgorats it is by far the most
predominant wireless access network for end users.

While a lot of work has been done, WiFi network installati@re yet to gain from
these results. Interference is a serious concern in Wikl the 802.11b/g band — pop-
ular because of its good propagation characteristicsveltt the 802.11a band — provides
only three orthogonal channels limiting the scope for cledudiversity. While one might

expect that dense AP deployments — as it is getting commoadays — would provide for
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association diversity that would reduce interference, gt unusual in practice to find mul-
tiple APs within the range operating on the same channek. e network performance
in congested scenarios has become well-documented messnirkterature [40, 72].

Our goal in this work is to model and understand the prevalerdless interference
in a real WiFi network installation. From a practical staaufjy, we need to do this in the
most unobtrusive fashion possible, in particulamiidhout installing any monitoring soft-
ware on the network nodgeand (ii) using acompletely passive techniqughe need for
(i) comes from a matter of practicality. Many APs are ofteaseld devices, and clients
may not be always accessible for monitoring software itegtahs. The need for (ii) is
more obvious. Active measurements impact (and are impdmntedetwork traffic. Our
approach thus requires the use of a distributed set of &sifthat capture and record
wireless frame traces. The traces are to be analyzed latemferstanding interference
relations. While this requires additional hardware for meament and analysis, we view
this as a third-party solution. Such independent thirdypaolutions for wireless moni-
toring are not uncommon in industry [1, 2]. The research evbds also provided similar
approaches. See, e.g., DAIR [13, 14], Jigsaw [21] and Wi}.[@ahile these approaches
provide many monitoring solutions, they still do not pravidindamental understanding of
interference relations between network nodes and links.

Our approach can be used as a toolbox to understand theenetecke properties in an
arbitrary WiFi network. This can in turn help the system ngara to perform capacity
planning and perform appropriate radio resource managersech as use of channels,

transmit powers or directional antennas.

4.1.1 APPROACH

Existing measurement-based modeling studies [49, 67] tmtating and analysis of inter-
ference in WiFi networks require elaborate measurememtises that include (a) profiling

of the behavior of the radio interfaces to learn the caregise and packet capture behav-
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iors, and (b) RSS (received signal strength) measurementiseonetwork nodes to learn
link-wise RSS values. None of these are very practical irséteng we consider. These will
require profiling every type of interface used in the netwanmktalling RSS measurement
code in all nodes, and measuring RSS specifically in quiebger

Thus, we take a fundamentally different approach. Theiligted set of ‘sniffers’ col-
lect traffic traces from the live network. These sniffers dbtnansmit any packets making
the method completely unobtrusive. The traffic traces ae leollated, merged and ana-
lyzed off-line to determine which link pairs interfere inetmetwork. Merging of traffic
traces is an important problem by itself. Here, we benefihfexisting work [84, 85, 61, 21]
that developed merging techniques with distributed srsffeThen, a machine learning
approach using thélidden Markov Model (HMM)68] is used to analyze the merged
traces to infer interference relationships. Since the @ggr is passive, it is only depen-
dent on the sufficiency of the available network traffic foe ihterference analysis. The
challenge in this case is to make accurate estimates evaesernxe of little traffic, and
traffic of unknown and arbitrary nature. This is importanafisnetwork APs may not be
heavily used all the time. There are indeed many other is®la®d to the location of the
sniffers, fidelity of the merged traces, etc. that will imptre accuracy of the technique to

a varying degree.

4.2 RELATED WORK

4.2.1 ANALYZING INTERFERENCE

Interference in an 802.11 wireless network can be readilgsued by putting saturated
traffic on two nodes or links simultaneously and measuriegatipgregate throughput. The
decrease in throughput due to interference from the othestnission indicates the amount
of interference. This approach ordinarily need&:*) measurements for am node net-

work. However, the work in [65] shows this can be done withyah(n?) measurements.

1These techniques also infer and add the packets that aregnissm the merged trace.
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A more sophisticated approach does not perform direct meamsants as above, but
uses certain modeling steps to reduce the number of measnotetoO(n). The idea here
is to measure RSS on each link using broadcast beacons. Amyafiudy describing the
deferral and packet capture behavior of the radio interédorg with the RSS measure-
ments help forming a model of the physical layer behaviorhef wireless interface. A
MAC layer model is added to the physical layer model to fornoaplete model that can
estimate interference between active links and link cdiggcin presence of interfering
traffic. This approach is powerful enough to model realighigsical interference. Different
variations of this basic approach have been presented jiif167]. This method is still
unrealistic in live networks as the RSS measurements neadeg mpterference-free envi-
ronment. Also, the profiling study must be available.

In addition to the above, there are various sundry works @luating interference
characteristics in an 802.11 network. For example, in [@88fhors investigate the impact of
carrier sensing. In [18] the authors develop a model for thesigal layer capture. In [24],
the authors show that pairwise interference modeling ienoftot accurate and multiple

interferers must be accounted for.

4.2.2 \BING DISTRIBUTED SNIFFERS

In contrast to the above methods requiring active measuremnee use passive monitoring
of a live network using distributed sniffers. Previous stschave used distributed sniffers
to conduct a range of measurements over live networks to leaitous properties such as
congestion [40], protocol behavior in a hotspot setting.[Bahl et al also has used such
an approach in DAIR for troubleshooting [13] and securi#][1
While earlier studies were conducted by analyzing indigidtaces, Yecet al are the

first to provide a technique to merge individual traces tat@a unified view of the network
activity [84, 85]. This unified trace, created using commeferences of beacons across

traces, provides more opportunities to analyze the linklletaracteristics of a wireless
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network. Chenget al apply this technique for a large scale sniffer deploymentreate

a system called Jigsaw [21], which they use to perform faiaglosis across multiple
network layers in the network [20]. Mahajahal develop a system called Wit, where they
advance the technique of Yext al of merging traces by proposing an inference engine
to guess any missing packets [61]. In our work, we employ #mestechnique to merge
individual traces into a unified trace. However, unlike theae studies which focus on
understanding MAC level behavior, anomaly or fault detattour focus is on learning the
interference in the network.

A recent work by Schulmaet al questions the fidelity of such traces generated by
multiple sniffers [73]. They argue that in a high load scémaa large number of packets
are lost and the timestamps of the packets may not be acduat® clock drifts. Thus,
the unified trace depicts an incomplete picture of netwotivigy, and any inference based
on that may be inaccurate. Our technique relies on havirigmurt information rather than
complete information, and can work even on incomplete gabtore is discussed about

this aspect in Section 4.3.2.

4.3 OVERALL APPROACH

4.3.1 HROBLEM STATEMENT

In 802.11, links can interfere either at the sender side thexteceiver side or both. On
the sender side, the interference is because of deferrabciagrier sense. On the receive
side, it is because of packet collisions that require paekeansmission. In both cases, the
sender additionally has to go through a backoff period, wthermedium must be sensed
idle.2 The net effect of the interference is reduction of throudtgaypacity of the link.

For modeling convenience, we consider interference bet\elepairs only. Due to the

additive nature of the received power, a given link in rgaliterferes with a set of other

2We are assuming that the reader has an overall idea of th@BO2AC protocol. Specific
details will be brought up as necessary.
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links (so called ‘physical interference’) [34]. This is laese a single transmission may not
generate enough power to cause deferral or collision fogiven link, however, multiple
such transmissions may still cause deferral or collisiooweler, pairwise consideration
can still bring up a useful picture of interference. Alsoreality, multiple concurrent trans-
missions may actually be rare [61]. Thus, learning moreakstie higher order interference
relationships may not be very useful in practice. We do nlad this simplification is not
fundamental to our basic technique. The technique can lendet, albeit with higher
computational cost, to physical interference.

In wireless networks, interference is hardly deterministi is rather probabilistic
because of the inherent fluctuation of the signal power duding effects and prob-
abilistic dependency of error rates with SINR (signal tcerférence plus noise ratio).
It is thus best to characterize the interference betweenlite as non-binary, using a
number between 0 and 1. Prior measurement and modelingstoave elaborated on this
aspect [65, 49]. Thus, our goal is to estimate via passiveitorang the non-binary, pair-
wise interference between any two network links, in termgprobability of interference

For every link pair, the probability of interference is givay:

pa + (1 = pa)pe, (4.1)

wherepy is the ‘probability of deferral’ between the senders, apds the ‘probability of
collision’ at the receivers if both senders transmit togeti& previously proposed mea-
surable metric also captures this probability. The megitink Interference Ratio (LIR)

proposed in [65].

4.3.2 DSCUSSIONS

The major challenge of using passive monitoring is that @madentify whether two nodes
or links interfere only if they both have packets to transamihe same time. Obviously, the
observed behavior of two links that otherwise would intexfdut never transmit together

in practice, is no different from the case when the links domerfere. Thus, our approach
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is based on the conjecture that if we observe live networfkidrior long enough period,

such instances will arise where simultaneous transmissaoa attempted in the network
for each link pair. Thus, interference between all link paian be estimated. Our goal is
to (i) identify such instances, and (ii) infer the interfiece behavior during such instances.

There are several challenges here that we discuss in tlogvfod.

GENERATING UNIFIED TRACE

Traces are collected by deploying several sniffers in thevork for each channel to be
monitored. The exact location of the sniffers is not importd he idea is to simply have
enough sniffers at strategic locations so that a large pgage of frames that were trans-
mitted by every node could be captured by at least one sniiffering a large number of
sniffers alleviates the problem of positioning them optignevhich is a complex problem
by itself.

The individual traces from the sniffers are merged to predasingle complete trace
with a common time base that will be analyzed. We use the tqukrproposed in recent
literature by Yeoet. al. [84] to merge the traces. The basic idea is to look for beacons
common to multiple sniffers and synchronize the packet $tar@ps in accordance with
the timestamps of these beacons, so that the final mergedhsaca uniform time base.

It has been argued recently that such unified traces may $udffe two major problems
— possibility of missing packets due to collisions or padksses at sniffers, and timing
errors due to clock synchronization errors [73]. These lgrms may render the unified
trace incomplete and incorrect, thus jeopardizing itsiappllity for network analysis. For
the first issue, a technique of inferring missing packetslb®en suggested in [61] that
can be used to complete the trace to a large extent. Even tfdbe is incomplete, if it
carries the same statistical relationships as a compbate twould, then our method should
still be effective. For the issue of timing problems, [73psls that the drift between AP

clock and sniffer clock is significantly large even withiniagle beacon interval of 50ms.
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Inaccuracy in timestamps can significantly affect our méthas will be apparent later.
However, we expect that each sniffer would have a large numbanique APs it can
hear beacons from. The frequency of occurrence of such canfimacons between traces
would be much higher than once every beacon interval, andespdcket timestamps will
be synchronized at much smaller time scales. This shoulsceethe timing errors as the
clock would be adjusted before the clock drift becomes togela

Regardless, it is indeed a challenging problem to createasorebly complete and
accurate unified trace for analysis. In [73], a metric hasmb@®posed to measure the
quality of a unified trace in terms of its completeness. Ita@our method as it is possible

to choose only parts of the trace for analysis that has a lugtedor this metric.

LIGHTLY LOADED NETWORK

Typical hotspots and WLANs are usually lightly loaded onrage. Note that several
measurement-based papers [40, 72, 39] that have highdigigformance artifacts in
802.11, have specifically chosen highly congested perieds, conference and meetings)
to perform the study. However, a monitoring framework cdrdepend on the use of such
selective periods. For example, it is appropriate to meratdepartmental WLAN during
regular usage, so that interference information can bergdethat can help design a better
resource management strategy for periods when it could hgested, for example. This
is in contrast to waiting until a heavy usage period occuke, & large meeting, to learn
the interference behavior. Short lived TCP flows (for webeasg for example) are typical
in WLANSs. There could be only few instances when flows are #immeously active for a
given link pair. It is important for the inference mechanisnbe robust even when a small

number of such samples are available in the collected trace.
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UNKNOWN LOAD

The monitoring infrastructure cannot look at the packeugseof the transmitters and does
not know when a packet captured in trace was indeed readyafiosrission. Interference
modeling is fundamentally hard if the offered load is not\wnoTo see this, assume that
frames from two senders alternate in the merged trace danngpservation period, and
no two frames overlap in time. This could indicate that thedees interfere. However, it is
also possible that they do not interfere and just happeratsinit in an alternate fashion
following a specific packet arrival pattern from the upperela Analysis of inter-packet
times, however, can provide certain confidence — a strategyiutilize. For example, if
the inter-packet times are such that they could be produgdxhtkoffs, this increases the
confidence that the two transmitters indeed interfere aadtarrying saturated loads for
the period of observation. But this requires accurate tinainalysis.

On the other hand, simpler methods are possible if satupggadds can be correctly
identified. For example, one can use a moving time window @nntterged trace and
look for window positions where two transmitting nodes ghtire available bandwidth
within the window to the same extent that two saturated feterg senders would. If such
instances are found, then the two nodes can be declaretknmgr However, choosing the
correct window size is a difficult problem. A large window lwéirely get saturated, while

a small window will contain too few frames to provide enoutgtistical confidence.

USE OF STRAIGHTFORWARD HEURISTICS

Straightforward heuristics have limited ability in infemg interference from packet traces.
The argument in the previous subsection points out one ssciej as offered load is typi-
cally unknown and searching for saturated portions in theetican be hard. Similar other
heuristics are hard to design as well. For example, two gackesmissions overlapping
in time may indicate that the two respective senders do rtetfare. However, concluding

that these senders are non-interfering from few such ineamay be inaccurate. This is
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because the reason of this packet overlap may be due to baderf/als counting down
to zero at the same instance. Another reason could be thattdréerence between such

senders is probabilistic. Thus, sufficient statistics edweel to develop an accurate estimate.

4.3.3 APPROACH

Thus, to determine interference relationships in the ngtiwoks, one needs a rigorous sta-
tistical modeling approach, instead of relying on hewisi@sed trace analysis. In the next
section we develop such a rigorous approach based on thékmalin Hidden Markov
Model (HMM) [68]. The basic idea is to model the sender-sifi¢he interacting node
pairs in the network via a Markov process based on the MACrlaperation of 802.11.
The parameters of this process (essentially the stataticangrobabilities) depend on their
interference relationship (specifically, deferral prabst). These parameters are deter-
mined from the observed trace using standard methods. Tinés® estimate the deferral
probabilities.

It turns out that rigorous modeling is only needed to detearihe sender-side inter-
ference. The receiver-side interference results in ¢olisthat are easily detectable, as
they result in retransmissioARetransmitted packets are identified by the set ‘retransmit
bit’ in the frame header. A retransmitted frame, ggycan be correlated back to the prior
frame, sayP, that has not been received correctly. Any frathéom a different sender
overlapping withP must be the cause of collision. If no suéhexists, the packet loss is
due to wireless channel errors rather than collisions. Bszaf the probabilistic nature
of packet capture, sufficient statistics need to be builtaugdatermine receiver-side inter-
ference. This is because frames likeand P even when overlapping, may not result in a
collision sometimes. Thus, the fraction of times they dalivould determine the proba-

bility of receivers-side interference.

3For unicast transmissions only. But unicasts are much meggiént relative to broadcasts in a
real network packet trace.
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Figure 4.1: State transition diagram for a single sender=05(CS=1) means that the
carrier is sensed idle (busy). Q = 0 (Q =1) means that thefatempacket queue is empty
(non-empty).

Prior measurements have, however, shown that collisiomsaae even in congested
environments [61], indicating perfect or overly consematarrier sensing in most WiFi
hardware as well as lack of synchronized transmissionso@uarexperience has also been
similar. Since receiver-side interference is easier teaeind also rare, we discuss only

the sender-side interference in the rest of this chapter.

4.4 HDDEN MARKOV MODEL FOR802.11 MAC NTERACTIONS

A hidden Markov model (HMM) [68] consists of a system modedesda Markov process
with unknown parameters, where the states of the Markovgs®are not directly vis-
ible, but some observation symbols influenced by the staéegisible. There are standard
methods [68, 25, 15] to learn the unknown parameters (sutieastate transition proba-
bilities of the Markov process) using the observation sylmbldMMs have been used in

various machine learning fields such as pattern, speech amdinniting recognition. We

65



will be using the HMM approach for inferring sender-sidesifiérence relations between

pairs of senders in an 802.11 network.

4.4.1 MARKOV CHAIN

The 802.11 MAC protocol can be modeled as a Markov chain fon eander [16, 49]. An
802.11 sender, sa¥, resides in one of the following four states - ‘idle, ‘ba¢kddefer,

and ‘transmit.’ In the idle state, the sender does not hayeanket to transmit (interface
packet queue empty). In all other states the sender hassablea packet to transmit. In the
backoff state, the sender is backing off, waiting for itskedtcountdown timer to expire.

In the defer state, the sender is sensing carrier to be buky isrthus ‘defering’ to another
transmission. In this state, the backoff timer, if alreathrted, is frozen. In the transmit
state, the sender is actually transmitting a frame. Thesesiates captures the essence of
the 802.11 MAC protocol. We are intentionally ignoring DItekeep the chain description
simple.

Let us call the 4 stategl, bk, de, andtz, respectively for brevity. At a high level, the
802.11 MAC works as follows. The sender remains indhstate until it has a packet to
transmit. When it has a packet to transmit, it senses calfrarrier is idle, it enters ther
state. See Figure 4.1. If carrier is busy, it entersihstate. It comes out afe when carrier
is turned idle. It then goes to thé state, chooses a random backoff interval, and then goes
to thetx state once the countdown of the backoff timer is completthdfsender senses
carrier busy while in thék state, it must defer the transmission. It then goes intalthe
state, from which it comes back to the state once the carrier is idle again. The backoff
countdown timer is frozen while in thé: state. Thus, the sender completes the remaining
backoff time when it comes back to the state.

After the transmission completes in the state, the sender goes back to tliestate,
if it has no other packet to transmit. Otherwise, it goes ladkebk state after choosing

another random backoff interval. The state transition pbiliiies betweernvk and de
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Figure 4.2: Markov chain modeling the combined MAC Layer dabr of two nodes
(sender side only). Note that some arrows are bidirectional

depend on the state of other nodes (i.e., transmitting oy inothe network, and the
deferral probabilities between the sender and these n8dagar argument applies for the
transition probability fromd to de andtz, and transition probability from to de andbk.
Since the transmissions from other nodes impact the statsitions for a given node,
a combined Markov model needs to be considered to get a ctenptture of the network
behavior. Here, each state is a tuple consisting of stateslividual nodes. Such a Markov
chain would lead to a state space explosion with exponemti@ber of states, and would
thus be intractable. Since our focus in this work is on deitr@img the pairwise interference
relationships, we can restrict ourselves to the consiaerat a combined Markov chain for
only a pair of nodes, sayY andY. Each state in this Markov chain is a 2-tuple consisting

of the states ofX andY. For example, the state whepé transmits and” defers would
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be [Zk, de[1There could be 16 possible states in theory. However, Savhtare not legal
(e.g.,dk, de[dlde, bk Cétc?), leaving 11 possible states. See Figure 4.2 for the cordbine
Markoc Process.

In this Markov chain, the state transition probability beem certain states depends on
deferral probabilities betweeXi andY . For example, from staték, bk (b statelit, de[dr
[ZE, bk Would depend on deferral probability &f with respect taX. To see this, assume
that Y carrier sensex perfectly. Then whenX moves frombk to tx state (i.e., starts
transmitting as soon as the backoff interval is ov&r)nust also move fromk from de as
it defers toX’s transmission by freezing its backoff countdown timerngteadY” never
carrier sensed, it will remain in thebk state.

Note again that this combined Markov chain is specified foo@epair only, as we are
interested in pair-wise interference. This chain can beatgd for all pairs to determine
the sender-side interference between all node pairs. Winesidering a particular pair, we
filter out the packets of just the two senders for analysid,ignore the other packets. This
may cause an active node to appear idle for certain periotisiefif the node defers for a
third node’s transmission. While this may result in our negtimissing out on an opportu-
nity to interpret the interaction between the particular pa interfering or non-interfering,
it is important to note that this does not create any incoirgerpretation. Recent studies
[61] show that instances of 3 or more nodes simultaneoushgleetive is much less than
instances of only a pair of nodes being active. Thus, we shget enough instances of
just a pair of nodes being active in a long trace. An alteriatecomputationally inten-
sive method could try to identify portions of the trace wherdy the senders in a node
pair being considered are active. Another important olzgem is that the Markov Process
assumes that both nodes strictly follow the 802.11 proto&ay MAC layer misbehavior

may cause the Markov chain to change and may induce errots ismnalysis.

“Note that this Markov chain assumes only two noeandY interact. Thus, for example, the
statelde, delik not possible as both nodes cannot defer at the same time.
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4.4.2 (OBSERVATION SYMBOLS

As we do not know the interference relation yet, the statesiteon probabilities of the

combined Markov chain is unknown. Also, the states of thiskda chain are not directly

visible in the packet trace. We thus need to map each statesiMarkov chain to an obser-
vation symbol obtained from the trace that can be used to i@ state transition proba-
bilities. There are four possible observation symbols ettace depending on wheth&r

orY transmits:
7. neitherX, norY transmitting.
x: X transmitting.
y: Y transmitting.
xy: bothX andY transmitting.

Each state in the Markov chain can be mapped to one of the foubals above. This
mapping is not unique as more than one state can map to theoksm®evation symbol. For
example, both statdsd, id Cand [bk, bk Cinap to the symbal. Similarly, both[bk, tz Cand
[dk, tx[nap to symboly. The difficulty here is that backoff cannot be distinguislfren
defer or idle periods. This ambiguity can be reduced by uaihguristic that exploits the
time duration of various observation symbols. This is etatexd below.

A backoff interval in 802.11 comes from a random process ardlast for integral
number of slots (2Q:s in 802.11b). Also, the maximum backoff interval is boundgad
slots in the first backoff stage While notimpossible, it is very unlikely that a defer oldd
period will be within this bounded interval and also last éss@actly an integral number of

slots.

50Only the first backoff stage is relevant, as we are only caremrbout the sender-side interfer-
ence here. In any case, the backoff stage can be identifiedsgrnong the number of retransmis-
sions in the merged trace.
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Figure 4.3: CDF of observed inter-frame times in a recordadet for a single saturated
sender.

This strategy to distinguish between backoff and idle/dgkeriods requires highly
accurate clocks (within few microseconds). Without anycsgdezed technique the experi-
mentally observed accuracy is not sufficient. See Figurdot.8 CDF of observed inter-
frame times in a recorded trace for a single saturated seludaily, one would expect a
perfect staircase pattern (vertical risers and horizategds) with 32 steps. While 32 steps
are visible, the pattern is wavy due to clock errors.

We thus use a weaker heuristic in this work that does not regtriong clock accuracy.
We assume that defer/idle periods are always longer thafo&land backoffs are always
equal or shorter. This, however, introduces errors wheimarof an 802.11 frame is less
than 31 slots (62(s for 802.11B). This also introduces errors for very small idle times.
With these sources of error, the results in the next sectiovige only a lower bound on the
accuracy obtainable by the base technique. In our futur& waer will explore possibilities
of using accurate timing information to remove these saioéénaccuracies.

With the above weaker heuristic, each observation symbolbeaof two types. The

symboli can be eitheis or i, corresponding to shortg 31 slots) and long$ 31 slots)

6This means TCP packets with payload less than 400 bytes il B9#o give the reader an idea.
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respectively. According to the heuristig,is most likely output bylak, bk [$tate, whilei,

is most likely output bylzd, id[State, for example. Similarly, the symbalsandy can be
eitherzs andx), andys andy,, respectively. Figure 4.2 shows the observation symbaols fo
each state.

Each packet in the merged packet trace consists of a timpdiamvhen the packet
was received at the sniffer, the id of the sender, size of Huket, and the rate at which
it was transmitted. This information is parsed to obtaindbguence of above observation
symbols from the trace. Based on this sequence, we use tbeifog technique to learn the
state transition probabilities of the Markov chain, thatum will provide the probability

of interference between the senders.

4.4.3 FORMAL SPECIFICATION AND LEARNING

We now provide the complete formal specification of the HMMngsstandard nota-

tions [68]. The HMM consists of the following:

e SetS of N states, wheré/ = 11. S is given by:

S = {Si} = {[d, id(1bk, id 1Tk, id [ 1id, bk ]

Gdl, to 1Bk, bk [IEF, de (1T, bk [1de, to [
(bk, tx L1k, to (3

e SetV of M observation symbols, wherd = 7.V isgiven by:V = {is, i), zs, 1, ys, Y1, TY}.

= Matrix A of state transition probabilities, indicated By = [aj;], wherea;; is the
transition probability from staté; to Sj. This matrix is unknown at the outset and
will be determined. Note that some state transitions aralithand such;; is set to

0. Such transitions are absent in Figure 4.2.

= Matrix B of observation symbol probabilities, indicated By= [bj«], wherebjy is

the probability that the observation symbolisfor stateS;. In our case, observation

71



symbols are deterministic for each state. But they are nigiuen The mapping from

states to symbols are shown in a table within Figure 4.2.

= Vectorr of the initial state distribution, indicated by= [], wherer; is the proba-

bility of initial state beingS;. We userj = 1/N forall i,1 <i < N.

The above defines the HMM\ = (A, B, ). The packet trace provides the observation
sequenc&) = Oq,0,,--Ot, where each observatian, [, andT is the number of
observations in the sequence.

Given the above HMM\ and the observation sequen@ewe wish to learn the model
parameters\. = (A, B, 7) that maximizeP(O|\). This is a difficult problem, and there is
no optimal algorithm for it. We can, however, use the exgemamodification (EM) algo-
rithm, which is an iterative method to determikesuch that”?(O|\) is locally maximized.
The EM algorithm alternates between an expectation (E) stejgch computes the model
parameters most likely to produce the observation, and aficatibn (M) step, which com-
putes the maximum likelihood of model parameters acrossiphelE steps [25]. We use
the Baum-Welch method, which is a type of EM algorithm, basethe forward-backward
algorithm developed by Bauet. al.[15]. The method insures that in every estimation step,
we find a model which is more likely to produce the observatidhus, if we estimate the
parameters of the modgalto get), thenP(O|\) = P(O|)).

While using the Baum-Welch method, we do not readjust tharpatersB andr in
the model\. We initalize the state transition probabilities such thqtial probability is
assigned to all the outgoing valid transitions from eachest@his ensures that there is
no initial bias in the model towards interfering or non-nféging pair of nodes. This aids
in quick convergence of the method. We also need to use tHmgdachnique in the
procedure [59]. This is needed as we deal with very long sezpeeof observations. and

continued multiplications of certain fractions createsiiems with numeric accuracies.
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4.4.4 LEARNING DEFERRAL PROBABILITY

Transitions into any state with a defer component (i.etestauch asde, [TBnd (T de)]
indicate interference. Thus, our task is to evaluate tha fwbbability of transition into
such states. Let us denote the set of these statBs abereD [S1 Let us denote by

the set of states that have transitions into the staté$, iaccording to the state transition
diagram in Figure 4.2. Ifl = [II;] is the stationary (steady state) distribution of the states
then the deferral probability is the conditional probdpithat the chain enters a statelin

given that the chain is in a state ih Thus, the deferral probability is given by,

I 11 1
Qij Hi.
Oslt.S; [P104.t.S; D]

Once the transition probabilitied = [a;;] are learntll = [II;] can be determined as
IT = limp_  mA". The convergence is guaranteed/Ass a stochastic matrix. The above
expression to compute deferral probability assumes a syruntiak between a node pair.
Links may be asymmetric in reality, and the above expressambe easily modified to
consider a one-directional deferral probability. Howeuethis work, we evaluate only the

bi-directional, and hence symmetric deferral probability

4.5 BEVALUATION

We evaluate the effectiveness of the HMM-based approackmsrenents and simulations.
The first set of experiments serves as micro-benchmarkiwg. Senders and broadcast
traffic are used to specifically evaluate the sender-sidaference using carefully con-
trolled load. The degree of interference is varied by repwsng the senders. The second
set of experiments are used to study the real-life behamiaur departmental WLAN.
Here, realistic TCP download traffic was used to drive theeexrpents. More elaborate,
network-scale evaluation is done using an ‘extended’ nisa2lator [7]. This extension is
meant to impart realism in the physical layer and interfagealyior in ns-2. This extension

is based on our recent work and has been validated by relabteskperiments [44].
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451 OOMPARISONPOINTS

For performance comparison, we use two other methods toimtExference.

Profile based method (PROFILE) This technique is specifidadsed on [71, 49]. This
involves understanding the relation between the receilggubk strength (RSS) and the
probability of deferral. This is done by using a pair of nottesollect a lot of measurements
for the above two variables and then creating a profile fosffexific interface card used.
This needs to be repeated for all different cards used in\&ankt Once the profile for

a specific card is known, the probability of deferral betwéga nodes can be obtained
by measuring the average RSS values between them and dooww@plon the profile.

Note that this technique is based on active measurements dmas expected to be quite

accurate. We use this technique as a benchmark.

Moving window based method (WINDOW)] This technique is an example of a simple
heuristically based approach that may not perform well @tlextensive parameter tuning.
See the discussions in Section 4.3.2 in this regard. Thimtqae involves using a moving
time window of size seconds to scan the combined packet trace, such that weleoasly
the packets in the window at a time. For each window positiairy to infer if the nodes
interfere or they do not by analyzing their throughputs grihe window (see below).
Finally, we use the ratio of the number of window instancegmgtthe nodes interfere and
the number of window instances where they do not to obtairptbbability of deferral.

Specifically, we use the following technique:

e Throughput of each node in the window being considered isutated. If the
throughput is equal to or greater than half the capacity ebibrate of the sender
for both nodes, then the window is considered saturate@netee the window is

considered unsaturated.
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Figure 4.4: Combined performance results for 11 chosenasiwenfor two node experi-
ments.

e Interference can be inferred only for saturated time winsloi saturated time
window is marked non-interfering if the throughput of atdeane of the senders is

equal to or greater than half the capacity. It is marked faterg otherwise.

« Probability of deferral is the fraction of saturated timendows that are marked

interfering.

4.5.2 MCRO-BENCHMARKING WITH TwO NODES

We use a two-sender, two-sniffer scenario here. Each sisffm-located with a sender to
guarantee that all frames are received. In fact, we usevigstrtachines are used for these
experiments, each with two 802.11 radios, where one radsoesdhe sender, the other acts

as the sniffef.

"We use a desktop machine running Linux with two PCI basedl80@ards, and a laptop run-
ning Linux with a miniPCl and a PC based 802.11 card. All thelsare based on Atheros chipsets
and we run the popular MadWiFi [4] driver on both the machines
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For the experiments, all the four radios are put on the samaareh. The choice of
channel is immaterial. The sender radio is configured in ‘ad mode. All experiments
are done for 802.11b and by setting the PHY-layer data ratéMbps.

We keep one machine fixed at one location, and relocate tlee ttlvarious locations
in the building to create a range of interference scenarfe@ithe two senders either inter-
fere or do not interfere, or interfere partially. For eachrsario, we perform the following
measurements. First, we measure the actual probabilitgfefiil between the nodes using
the method described in [65]. We let each sender broadcastldyte UDP packets as fast
as it can in isolation for a minute, and measure their thrpugghin isolation. We then let
them broadcast together as fast as they can, and measuritbeghputs again. The ratio
of the sum of throughputs when the senders broadcast tagethiee sum of throughputs
when the senders broadcast in isolation is define# B8, or the broadcast interference
ratio. The ‘measured’ probability of deferral is estimasesd /BT R — 1.

We also measure the RSS values at each sender when the otber beoadcasts in
isolation. This is again done for each scenario. This is ugagstimate the probability of
deferral using the? ROF'I LE method described above. The interface card profiles have
been independently done using a method similar to [49].

Now, we do a series of experiments to capture live networiidrao that H M M
andWINDOW (t) methods can be applied. We generate traffic in the followasiion
for each scenario. The senders broadcast 1400 byte UDPtpatkailtaneously for one
minute. The offered load is varied from 0.1 Mbps to 6 Mbps irsfi€ps. The inter-packet
times are chosen from a Poisson distribution. The PHY-ldjerate is chosen to be
11 Mbps; thus, 6 Mbps for each node means saturated load.visdaneach sniffer cap-
tures all the packets it hears in that duration. The packeetfrom each sniffer is merged
using the techniques described earlier, and this combraed ts used to estimate the prob-
ability of deferral using théf A/ M and thelV IN DOW (t) methods. The later is repeated

for three different window sizes%£ 0.01s, 0.1s, 1s).
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We make such measurements for 11 different locations ofapp, creating 11 dif-
ferent scenarios. The distribution of the measured prdibabf deferral at different loca-
tions is presented in Figure 4.4(a). For each scenario, fi€reit values of offered load
are used between 0.1 Mbps and 6 Mbps, thus creating 110 neeasots forH M M and
the WINDOW (t) methods, and 11 measurements (one for each scenario onlif)efo
PROFILFE method. The distribution (CDF) of errors (‘estimated’ — ‘asered’ proba-
bility of deferral) is plotted for all three methods in Figu#.4(b). Note that thél M M
approach is quite competitive with thteRO F' 1 LE method (actually it is slightly better
overall for the particular distribution of deferral proli#kes). The root mean square error
(RMSE) values are 0.165 and 0.208 fé1\/ M and PROF I LE, respectively. The RMSE
values forlW IN DOW (t) methods is 0.385, 0.408, and 0.402 for 0.01s, 0.1s, and 1s
respectively. We have noted before, however, that the PRORIethod is impractical for
analyzing live network traffic and it also requires accegh#onetwork nodes.

Overall, H M M is quite competitive withP ROF'I LE, but requires only passive mea-
surements. The experience with the window-based methadtes epriable. It is also quite

sensitive to choice of window size.

4.5.3 EXPERIMENTS ONDEPARTMENTAL WLAN

These experiments are done on a departmental WLAN with 7 ARs WLAN is spread
over two floors of a building. See Figure 4.5 for a layout. Taptbps are used as clients.
They fetch several large files sequentially via HTTP dowdlé@ about 20 mins. This
simulates real network traffic that are sniffed using 9 endf(Soekris [74] single board
computers with 802.11 miniPCI cards with Atheros chipset aith external USB flash
memory to store packet traces). The sniffers are deployseddban convenience, i.e., near a
power outlet and in the rooms that we have regular access.tBet an attempt was made
to keep them as close to the APs as possible. The client lspi@moved around among

7 possible locations, using one location pair at a time. (b@ation pairs are tested.) The
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Figure 4.5: Locations of APs, sniffers and clients showrjemt@d on 2D. The nodes are
distributed actually over two floors — APs on ceilings, sm$fon floors and clients on floors
or on tables.

Figure 4.5 shows all nodes projected on the layout of the dst for brevity. However, the
nodes are actually distributed in a 3D space over two floors.

For each location pair, the two laptops associate with twiterdint APs and then
simultaneously perform the HTTP download as mentioned reefdnlike the micro-
benchmarking experiments, the default auto-rate contithl 802.11b is used. Also, the
802.11 frames are now unicast with ACK. RTS/CTS are switatféd~or each case, the
probability of interference between the pair of downloaukd (AP to client) is ‘estimated’
using equation 4.1. First the probability of deferra)(is estimated using the HMM-based
method using the merged sniffed traffic traces from all ensff Second, the probability of

collisions () are estimated by observing the retransmissions for queel packets as
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Figure 4.6: Estimated and measured probabilities of daféor the 16 test cases with the
departmental WLAN.

described in Section 4.1.1. However, in all cases retrassons were rare, typically less
than 1% of frames were retransmitted. This is consistert pritor experimental observa-
tions [61]. Thusp. could be safely ignored withy alone determining the probability of
interference.

For validation,pq is ‘measured’ via the BIR method described in the previolrsso-
tion. For these measurements, simultaneous saturated taiest on the downlinks are
used for about 2 mins. The validation results are shown inr€ig.6 as a scatterplot. Note
the high degree of predictability of the estimation in thaalrlife experiment. The straight
line is the least square fit with the condition that that the lpasses through 0. Note that it

is very close to thg = x line. The R? value for this line is 0.88 showing a good fit.
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A careful reader will notice a slight bias at the low end of thederral probabilities.
The HMM method consistently overestimates deferral proiglbwhen the probability is
very small. We have also observed this in our micro-benckimgthough it does not show
up in the CDF plots. The reason for this is the heuristic weduseour modeling (Sec-
tion 4.4.2) that defer/idle periods are always assumeddotigan 31 slots. When there is
little interference, often idle periods could be shorterrtiackoffs. If they are misclassi-
fied as backoffs, the possibility of misclassifying somesidtates as defer increases. As
discussed in Section 4.4.2, a stronger heuristic using macarate clocks could address
this issue.

We have only reported experiments in a WLAN environment. E\asy, there is nothing
specific in the technique related to one-hop network, asttteiique estimates interference
between link pairs. Thus, it is as applicable to a multihopwoek as it is for a one-hop

network.

4.5.4 SMULATIONS

To evaluate the performance of HMM technique in a realistivvork setting (beyond two
node experiments that we did in the previous section) we makeof simulations. Sim-
ulations let us create arbitrary topologies and henceferemnce conditions easily. How-
ever, one problem with using simulations is that the phydeyger (including interface
behavior for carrier sense and packet capture) implementitoften idealized or unreal-
istic. In our prior work [46] we addressed this issue by edteg the popular ns2 simulator
with realistic measurement-based models. The models heem\alidated by experiments
showing excellent accuracy. Thus, we are confident thatalokat traces generated by the
extended simulator is reflective of packet traces obtaineal ieal network experiments,
except missing packets and clock synchronization err@slbsent in simulations.

For the sake of completeness, we note here that in [46] thaneeiments are done

specifically in the following physical layer components }+édio propagation model, (ii)
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deferral or carrier sense model, and (iii) packet receptiodel. For (i), models are derived
from real measurements in a testbed. For (ii), a measurebased profile of a testbed
is created where every value of RSS is mapped to a deferrbbpiidy. Erstwhile, the
deferral model in ns-2 consisted of having a carrier sensstiold, which in presence of
a constant signal strength would always produce binaryfarence. For (iii), a similar
measurement-based profile is used at the receiver-side delrtitee packet capture prob-
ability with respect to the SINR. These profiles make therfatence relations between
links non-binary.

We consider 3 scenarios, where 20 nodes are uniformly ardbnaly distributed in
a 200m<200m area, a 150m150m area, and a 100x100m. These 3 scenarios produce
different topologies ranging from sparse to dense. We geaéraffic by creating one-hop
TCP flows on random feasible links. A link is considered felesif the delivery ratio
on the link is greater than 50%. The difference between tnt stnes of successive flows
comes from the Poisson distribution. The duration of eashdllso comes from the Poisson
distribution. We vary the ratio of the duration and the irdenival time of flows to change
the load on the network.

We run the simulation long enough to give the opportunity ltgairs of nodes and
links to be potentially active together. As the traffic isdam, this may not happen for
some pairs. For the results presented here (See Figuréde73jmulations were run for
180s, the average duration of each flow was 5s, and the avistagarrival time between
flows was varied from 2.5s to 1s, such that the average lodekindtwork varies from 2 to
5 flows.

In Figure 4.7 the results are shown in rows, one row for eatWwaor& density — low
(200nM»<200m), medium (200m200m) and high (200m200m) density. The first plot in
each row shows the ‘measured’ probability of deferral fodegairs. The next two plots
show the CDF of error performancesi@f\/ M andWW I N DOW (t) methods similar to the

previous experiments. The lightest and heaviest loadsareeshown separately as we now

81



know that the load impacts the performances of these methbaés® RO F'I LE approach
is not shown here as it would be perfectly accurate in the lsitou(as the simulator’s
deferral model itself uses the same profile model). From kbis pote that HMM performs
significantly better than the window-based method. AvelMSE value for the HMM
method is about 0.09, while the average RMSE value for theavirbased method is about
0.5. As expected, the accuracy of HMM is better with morerfetence (dense network).
Also, heavier traffic load works slightly better than lighteaffic. Overall, HMM performs

within 10% error at least 90% of the times.

4.6 CONCLUSIONS

We have investigated a novel machine learning approacHitoas interference in a WiFi
network. The technique uses a merged packet trace colle@edistributed sniffing. It
then recreates the MAC layer interactions between netwodes via a machine learning
approach using the Hidden Markov Model. This is finally helph inferring interference
relationships. The advantage is that the proposed techmqourely passive and thus can
work with a live network without any access to the networknedats. We have demon-
strated via experiments and simulations that the HMM-baselahique can provide accu-
racy similar to existing methods that uses profiling andvactheasurements directly on
network nodes. Simpler, heuristically based passive nasthave been shown to perform
very poorly.

While the HMM-based technique is able to estimate non-pingerference relations,
one shortcoming at this point is that it can infer only pagsinterference and not phys-
ical interference. However, this is more of a limitation afr@urrent study and not of the
basic approach. The Markov model can be extended from nadetpanode triplets, node
guadruplets, and so on. In each step, the number of statesag®s making the learning
process computationally more intensive. However, for ediciical scenarios, we do not

expect this needs to be extended beyond a handful of nodesma.arlhis is because it is
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unlikely that a large group of nodes will actually transnogéther in a live network. Our
future work will extend our approach to physical interfexepand will also perform more

performance studies with live networks.
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CHAPTER S5

VOIP ON WIRELESSMESH NETWORKS

In the previous chapters, we presented various methods telmiterference, and its
impact on the network capacity. In Chapters 2 and 3, we bugithods to estimate the
capacity of a link in a 802.11-based network in presence dfiphel interferers, first by
analytical methods, and then using measurement-basedasorsu In Chapter 4, we pre-
sented a machine learning approach to estimate interfeft@tween links. We now present
an application of having a capacity model.

We study the problem of supporting VoIP calls in a wirelessimeetwork. Specifi-
cally, we propose solutions for call admission control (GA@d route selection for VolP
calls. Call admission decisions must evaluate how the apaicthe mesh network is uti-
lized by the existing calls. We address this issue via a measent-based modeling effort
to model mutual interference between wireless links. Thelefing approach evaluates
whether capacity constraints (or, required QoS metricH)hei satisfied if a new call is

admitted with a given route.

5.1 INTRODUCTION

\oice over IP (VolP) applications have seen tremendoustjirowthe recent years. This has
led to the emergence of VoIP applications, e.g., Skype, andcg providers, e.g., Vonage,
Packet8, etc. Recently, with the advent of dual interfadiploenes with WiFi interfaces
and ubiquitous availability of wireless LANs, the VoIP ow&iLAN is gaining popularity.
In typical scenarios, the footprint of each Access Point)(APa WLAN is limited to

250 meters outdoors, and up to 100 meters indoors. For pngvidide area coverage
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such as in a shopping mall or campus area, the deployment aimemance of this wired
backplane required for connecting a large number of APsrhesa fairly arduous task.
This is where the emergingireless mesh networf&0] can be useful. Mesh networks
add routing functionalities to the APs of WLAN, thus elimiimg the wired backplane,
making them easier to deploy. Because of their potentiadvgjgread use, it is of paramount

importance to study methods to implement VoIP services oalass mesh networks.

SUPPORTINGVOIP OVER MESHES

In this chapter, we focus on quality of service (QoS) prangig issues for supporting
\VOIP over mesh networks. Specifically, we address two rélgteestions: a) How can we
maintain the QoS of WoIP calls over a mesh network and b) Howwa improve the
capacity of the mesh network in terms of the number of Volsdahkt can be supported?
We answer the above questions by solving ¢hé admission contro(CAC) androute
selectionproblems for VoIP calls in the mesh network.

The role of CAC is to determine whether to accept or rejectraxorning VoIP call
based on the available capacity of the mesh network. CAC exassary component of a
VoIP service in order to maintain QoS of the ongoing callslvlensuring that calls are
not rejected when network capacity is available to acconatethe call. Accuracy of the
CAC depends upon how well the mesh network capacity is iaferhis is inherently
difficult because of wireless interference: two wireleskdi in the vicinity interfere to
some extent. Interference also leads to MAC protocol inefiicy: two interfering links
when active simultaneously often provides less aggregateighput than when only one
of them is active. A result of all these is that any new VoIR cah reduce throughputs (and
hence QoS) of many existing calls even without directly stgaany link with them in the
chosen route. Thus, call admission decisions must somelmelnwireless interferences

accurately and must be able to predict the available capdatits is a hard problem.
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Further, routing decisions are closely coupled with adimmsgontrol. For efficient
route selection, one not only has to look for a feasible r@uge one that has enough avail-
able capacity), but also one must ensure that the choiceitédsatill leaves enough residual
capacity to be able to admit future calls for a given callirajt@rn statistics. Because
of wireless interference, checking for feasibility itsedn be computationally intensive.
This is because there are exponentially many paths betwseuaree-destination pair, and
because of wireless interference, each one of them mustduketh in its entirety for fea-

sibility. Thus, practical and effective heuristics areigssfor the route selection problem.

CONTRIBUTIONS

With this background we make the following contributionghis work.

A. In order to develop an effective call admission decisiga,develop aneasurement-
basedcapacity utilization model for 802.11-based mesh netwdtks model pro-
vides the current view of every node’s available capaciat tteeds to be met when
admitting a new VoIP call. Using a 802.11a-based testbe@xperimentally demon-

strate the effectiveness of this modeling approach in ngpatl admission decisions.

B. We address the problem of finding a feasible route for a \@P while meeting
any capacity constraint. We develop a polynomial time sofuthat can always find
a feasible route if one exists. We show via simulations tlyadiscovering feasible
routes, we can increase the call acceptance rate by 20% cednmathe traditional

shortest path routing using hop count metric.

C. Finally, we demonstrate that if a distribution of callipgttern is known, it is possible
to find routes that can improve the VoIP call acceptance Végpresent an algorithm
that creates routes by avoiding critical links and resulticreasing the acceptance
of future calls. We show via simulations that using this nogitapproach, we can

achieve up to 40% increase in call acceptance rate.
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5.2 RELATED WORK

Studies focussing specifically on VoIP over 802.11 have idened the delay and loss
characteristics under the PCF and DCF modes [81, 36, 82]céntenvork on VoIP over
WLAN [33] presents analytical studies on the number of ctit can be supported in
a single hop WLAN. The study reports that increasing the gaylper frame increases
the number of supported calls. Various methods for imprvire performance of VolP
in wireless mesh networks have been proposed in [63, 30k€é heethods include using
path diversity and packet aggregation. Our work addressasra challenging problem of
determining the capacity of a call along a path in a multi-hegsh network.

Several models have been proposed to compute the capadtywvokless network.
Bianchi proposed a model for determining the capacity of.8D2n a single cell [16]
which has been followed by other similar models as in [80]mlunlti-hop wireless mesh
networks with given interference and traffic models, theksan [37, 53, 57] formulate a
linear program to solve the joint routing and schedulingofgm to maximize the capacity
of the network. The work in [77] addresses capacity issuesiipally for VoIP calls, but
itassumes a TDMA based MAC layer. All these works assume gomreof scheduling at
the MAC layer that is not available with 802.11. An analyticeodel to compute the end-
to-end throughput capacity of a multi-hop path in 802.1&dobnetwork has been proposed
in [31]. The capacity models proposed above use a somewsiahaband idealized model
of interference, that assumes that interference is binadyig between link pairs only.
Further, interference is assumed to be based on physit¢ahdes between the transmit-
ters and receivers, simplified radio propagation modeéslided transmitter and receiver
characteristics, and so on. In practice, interference isnaptex phenomenon as demon-
strated in experimental studies in [65, 71], where praktiveasurement-based methods
are promoted to estimate the interference between 8021#4. li

For multihop wireless networks, several modifications tedemand routing protocols

have been proposed to support QoS for real-time applica{fo®, 83, 19, 78]. In spirit,
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Figure 5.1: Architectural block diagram for the approactiegeloped in this chapter. The
number in the parantheses in each block indicates the segtiere it is discussed.

these techniques propose or modify an on-demand routirtigquicto support QoS. These
techniques cannot guarantee that a feasible path will bedfdwne exists as the proposed
protocols perform only neighborhood checks to verify céyamonstraints. Furthermore,

the above on-demand protocols require exchange of multinegsages to find the route

and result in significant call set up time.

5.3 ARCHITECTURE OVERVIEW

In a typical mesh network deployment for supporting VolPvesss, a person can make
VoIP calls using WiFi enabled phones. Any “internal callalls made between clients
inside the network), or “external call” (calls made to orrfrelients outside the network)
goes through a central Session Initiation Protocol (SIRjeseThe SIP server authorizes
the calls and resolves IP addresses and phone numbers,eanthéhroute is established

between the clients.
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Figure 5.1 shows various system components in our archrecAn interference map
is created based on the measurements reported by each nugshrhe interference map
models the interference for the given mesh topology. A listaive calls along with their
respective routes is maintained. From the list, the curodiered load at each node is
obtained. The capacity utilization model is constructexrfrper-node traffic load along
with the interference map. This model is updated every tincalbarrives or departs, or
a new measurement report is received. Using this capadliyation model, a route for
the new arriving call is computed, and the call admissiongi@e is made depending on
whether a feasible route is found.

Upon call arrival, the call setup must be done within a fewosels. The call setup
consists of SIP authorization, route computation, call isdimn control, and the actual
route setup. SIP authorization and route setup are notestuwlithis work.

The entire system apart from the node-based measuremeteplsyed on a central
server. Such aentralizedarchitecture has several benefits: a) a central server iy ea
interact with the SIP server, b) minimum functionality atshenodes paves the way for
deployment of commodity hardware and software platfornas i also easy to upgrade.
Many commercial WLAN and mesh network platforms [27, 62alty have a central
manager node where the CAC and routing software can be dapldye centralized view
is also consistent with one of the deployment scenario®ntlyrbeing standardized by the

CAPWAP working group [64].

5.4 VOIP CALL ADMISSION CONTROL

A good call admission control design must look at a VoIP dpeQoS metric and under-
stand the effect of the network performance parametersasidielay and loss on this QoS
metric. A capacity model can then be built based on this wstdeding.

VoIP QoS Measure:For G.729a encoder, VoIP sends 50 packets per second of 80 byt

each. TheR-factor, or R-score, proposed in [22] is a popularly used QoS metric fdPVo
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calls. R-score takes into account one-way delay, loss rate, angpesof the encoder. For

example, for the G.729a encoder [29],

R = 94.2—0.024d — 0.11(d — 177.3)H (d — 177.3)

—11 — 401log(1 + 10e),

where

* d = 25 + djitter buffer + dnetwork IS the total one-way delay in ms comprising of 25

ms voice encoder delay, delay in the de-jitter buffer (5Qras)l network delay;

* e = enetwork + (1 — enetwork)€jitter IS the total loss rate including network and jitter

losses;

e H(x) = 1if x = 0, else0. R-score should be larger than 70 for acceptable call

quality.

Meeting the target VoIP QoS: The quality of a VoIP call is sensitive to delay and loss.

The exact dependence is non-linear as given byrHseore formulation above. In order to
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maintain a good call quality = 70), the one-way delay should be less than 200ms and
the packet loss rate along the path should be less than 5%etRass rate can be reduced
by choosing a path consisting of links with a high delivetyaaPacket transmission delays
at each hop is typically within a few millisec. However, qeeg delays can add up.

From elementary queueing theory, the average queueing mel@ases with load, but
really becomes large when the average load reaches cldse tapacity. We demonstrate
this in connection with VoIP and mesh networks using an erpant with a 2-hop segment
of a 802.11a-based mesh testbed (testbed described I&ection VII). The 802.11a links
are operated at 6 Mbps (and thus in theory each link indivigean support 42 calls using
calculations of [33]). In the experiments we keep adding?adlls to this 2-hop segment
and record averagR-score and total one-way delay. See Figure 5.2. Notice tllaégoint
the queueing delay starts increasing abruptly (around RB§) c&-score also falls rapidly
from around 60-70.This experiment demonstrates that the 2-hop segment caouD
maximum of about 20 call&a limit admission control protocols must understand a prior
Capacity utilization: Based on the above observation, we conclude that in ordee&t m
the QoS for a given set of active calls, the load on each nodleeirmesh network must
meet a capacity bound. In order to ensure the above congitierdetermine the capacity
utilization at every node for a given set of active calls. Sipeally, we solve the following
problem:For a mesh network of. nodes, modeled as a gragh = (V, F), and a set
of paths fork active calls,P = {p1, p2, ..., px}, find the normalized capacity utilization
¢i,0 < ¢i < 1, for each node in the networkHere, a path is defined as a sequence of
nodes. Normalized capacity utilization of a node is theltbits/sec traffic transmitted,
received or heard by the node (i.e., the total busy time ferrtidio medium as perceived

by the node), normalized to the nominal link capacity.

lWe relax the acceptabl@-score limit to 60 to account for unavoidable errors causes to
random losses on the wireless link.
2|deally, we should get half of the theoretical capacity ofrake link, which is 42 calls.
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Call admission decision:The call admission controller is invoked once route comaa
is attempted for a new call. The route computation is desdrib the section VI. The route
must ensure that the capacity constraint at all the noddseimétwork is satisfied (i.e.,
c¢i < 1) with this new call admitted on this route, i.e., the routéeissible If no such route
is found, the call is rejected. If a feasible route is fouiha, ¢all is added to the set of active

calls and the capacity utilization is recomputed for futuse.

5.5 MODELING CAPACITY UTILIZATION

Capacity utilization is modeled by first measuring the antafminterference between
nodes and creating an interference map. The individual \@llPs contribution to any

node’s capacity utilization can be inferred from the irteehce map.

5.5.1 INTERFERENCEMAP

Following our recent work on measurement-based interéer@modeling [48], we charac-
terize interference between a node pair in terms otHreer sense factoor cst For two
nodesr andy, csfy (carrier sense factor of™ with respect to %) is defined as the ratio
of the actual transmission rate .ofwvhen bothz andy attempt to transmit at the maximum
possible rate, to the transmission rate:pivhenz transmits alone at its maximum possible
rate.csfY thus denotes the “normalized transmission rate’xfar presence oj.

Typically, csf) takes values between 0.5 and 1. A value of 0.5 implies ithamd y
are perfectly within carrier sensing range of each othertt@nother hand, a value of 1
implies thatz andy cannot hear each othekf between a pair of nodes can be indirectly
estimated by using the correlation with the delivery rafiohe link y to x, as well as the
signal strength and noise of received packets on theyfittkz [71, 48]. This requires just
O(n) measurements in a mesh network, where each node takes tunweiticasting at the
maximum possible rate, and the other nodes measure thegdgurameters, i.e., delivery

ratio and signal strength from received packets: can also be explicitly measured by
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doing pairwise experiments for all pairs of nodes in the wekwln each experiment, two
nodes broadcast at the maximum possible rate, and the nwhpackets sent out can be
measured at each node to gettk¢ values. This, however, requir€§n?) measurements.
This strategy is somewhat similar to techniques describ¢g5].

csf estimates (or measurements) between all node pairs deéimetéinference map for

the network.

5.5.2 QRRENT OFFEREDLOAD

The offered loadij at each node is normalized with respect to the link capacitige node.
As pointed out before, the maximum number of calls that casupported on an 802.11a
link at 6Mbps is 42. Thus, for a single two-way call on a lirtke bffered load on each node
is 1/84. For a two-hop call on path A-B-C, the offered load oamdl C is 1/84, while the
offered load on the middle node is 2/84, because it has todi@htvaffic in both directions.
Thus, for any call with a given path, the offered load on therse and destination of the
call is 1/84, while at the intermediate nodes, it is 2/84.&axeh node, the offered load due

to all active calls can be added to compute the total offevadil, 0 < [; < 1.

5.5.3 (QPACITY UTILIZATION AT NODES

The normalized capacity utilization at any node has beemek@fin the previous section.
For brevity, we may not always use the term “normalized.”é\tbiat if capacity utilization
of a node iscj, it means that the unutilized (or residual) capacity of thdeisl — ;.
Capacity utilization can be modeled by the following fastor

Actual traffic load on the node: One of the components of the capacity utilization
of a node is the actual traffic the node is transmitting. Alctraffic load ¢;) at a node
(v) is greater than the offered loaf)( It is equal to the offered load plus the extra traffic
the node has to transmit due to retransmissions caused kgtpaallisions. Packets will

collide at the receiver if the receiver has another trartemit its carrier sensing range
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that is outside the carrier sensing range of the transnffitdden terminal phenomenoh).
Thus, a nodg is a hidden terminal foi, if for the receiverk, csfi = 1 andesfl <

1. The fraction of;% traffic reachingk is 2 - (1 — csfli). Let the amount of traffic sent
by i to £ be denoted a%y, such that %‘ = [j. Since the packet transmissions are
uniformly distributed over time, the probability of colii of a packet at the receiver can
be approximated &g/ -2- (1—csf|£ ). This amount of traffic must be retransmittedibyhe
retransmitted packets may collide again with a smaller @odly. So, if we approximate
the number of MAC layer retransmissions to just one, and hddektra traffic generated
due to all such hidden terminalg)(and all the neighborg at i, we get the expression,

ili-2-(1 —csf))), if esfl = 1andesf) < 1.

ti = Iﬁ' (1+

Amount of traffic overheard: The amount of traffic the node can overhear is also
included in the capacity utilization of the node. This is d&ese the node is unable to
transmit during that time, and hence the capacity is utllifmr that moment. A node
can hear the traffic of all the nod;*s\/\/herecsfij <1.If csfij = 0.5, the node can listen to
all the packets from. When0.5 < csfij < 1, the amount of traffic the node can listen to is
2-(1— csfij). Thus the amount of traffic overheard at nadsayo;, can be approximated

1 _
asoj = jgitj-2-(1— csfl).

Consideration of residual capacity The residual capacity is given by— tj — o;.
The residual “usable” capacity is in fact less than this heeaof possible collision and
retransmissions due to hidden terminals. We model thistiffielirectly. Assume that the
residual capacity i$ — ¢;. Thus, the node can generate an extra ¢; amount of traffic.

The extra traffic generated due to retransmissions of thifidy sayr;, can be given ag =

i-2-(1—csf)) if esfl = 1andesfi < 1, over all

maximum of(1 —¢;) - (1 +

neighborst. This is similar to the method in the first step.

3Note that the RTS/CTS is not useful in VoIP. This is becaud® yayloads are small (20 bytes),
and relatively RTS/CTS would be a significant overhead.
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To determinecj, we add up all these components and equate it to 1. This gmes t
equationitj + oj + ri = 1. This equation is solved faf; to get the capacity utilization at

each node in the network.

5.6 ROUTE COMPUTATION

For a new call, if a feasible path is found that meets the dagpacnstraint for all nodes
(i.,e., ¢ < 1, [1)) we can accept the call and use the path to route the call.eAtmun of
routing metric arises if there are more than one feasiblesp@@onventional link quality
based metrics like ETX [23] is not appropriate in this cott@&ke assumption is that only
good links are chosen and the interference map-based appiro&ection V has already
modeled the effect of interference. Instead our goal hete @hoose feasible paths that
increase the number of supported calls and minimize futallegections. We first focus
on studying the feasibility aspect.

Typically, a feasible route can be constructed by increalnincluding links from
the network graph and forming a path that connects the sdordee destination (note
that we are not trying to optimize any path metric here). Amyrémental strategy usually
results in a fast polynomial time algorithm for discoveredeasible path. However, such
an incremental strategy works only if the following conadlitiis true:when more than one
links are determined to be feasible in isolation to carry atam amount of traffic, they
remain feasible when considered togethercase of wired networks, the above condition
is true. Thus, if links are determined feasible, any pathhi $ubgraph containing only
the feasible links is also feasible. However, in wirelessvwoeks, the above condition is
generally not true.

For call admission, we need a fast heuristic to discover la. & cannot exhaustively
explore all paths and check for feasibility, as there areoagptially many of them. We
take a different approach. Instead of checking for feasybdn a link basis, we check

for feasibility on a sequence of links (path segment) and 8teng these path segments
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Figure 5.3: Transmission range)(= carrier sense rang8&)( In the worst case scenario, two
nodesA andE' 4 hops apart in a path do not share any node in their carrisesamges.

together. A sequence of links is able to capture the capatiltyation of a larger area that

reflects the interference region of the intermediate nodélse sequence. Essentially, our
goal is to find the length of the path segments such that ividdal path segments are
determined to be feasible, so is the path comprising of thaesegments. If we consider
a unit disk model, we can show that this length depends upmratio of carrier sense range
(S) to the transmission rang&). We assume that and R are circular regions around a
node, which define the area where a packet transmission hyoithe can be sensed and
received respectively.

We start with the simplest case, whefe= R. See Figure 5.3. It can be argued using
geometry that the nodes such Asnd E' that are 4 hop away must be at leagt = 25
distance away from each other in the worst case, whefistance of A-B) tends to 0. If
they are any closer than this, the number of hops will deeraasvell.

NodesA and E that are at least 4 hops apart are guaranteed not to shar@dayhat
are within both of their carrier sense ranges. Clearly, ithiglies that if a path segment
S1: (AB, BC,CD) is feasible and path segmesit : (BC,CD, DE) is feasible, so is
Sy [S1. Therefore, if one just considers feasible 3 hop path setgaem finds a path using
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these segments, one can discover a feasible path. In ordeeftihis approach, we need to
mark all infeasible path segments from the original graphy path using the unmarked
path segments is then feasible. Checking for feasibilitgaifh path segment can be done
in O(k + 1) time, wherek + 1 is the number of nodes in the path segment. The number of
suchk hop segments in the network can be estimated @sl®), wheren is the number of
nodes in the network andithe average node degree.

We can similarly show that for the case of carrier sense range the transmission
range (i.e.,5 = 2R), the hop-wise length of the path segments to be consider&d i
We note that with higher length, the marking of the path segmean become a slower
process as the number bfhop path segments grows @$nd*). However, it still remains
polynomial time.

For fast computation of route, we consider only 2 hop patmsegs (i.e., edge pairs)
as a heuristic in our evaluations. The penalty we pay forghmglicity is that, occasion-
ally routing may determine routes that are actually inflel@siHowever the call admission
controller determines the infeasibility of such routes agjdcts them. In experiments (as
reported in the next section), we have found that the chah&ieding infeasible routes
using this2 hop technique is negligible. We next present the algoritncbmputing fea-

sible paths using this approach.

5.6.1 EDGE-PAIR ALGORITHM

From the given original grapty = (V, E'), we construct an edge graghe = (Vg, Eg)
where an edge iy is represented as a unique node&-ia. There is an edge between two
nodes(z,y) in Ge only if (x,y) represents a feasible edge pair in the original gréph
For example, ifa - b), (b - c¢) are two edges il forming a feasible edge pair, then the
corresponding nodes: (e« — b) andy : (b - ¢) in Ge have an edge between them.

In order to find a feasible route between nodemndb in G, we consider the node set

X andY in Gg such thatr X,y [ represent edges incident fromand tob in G
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FeasibleRoute(G, a, b)
[* First compute the edge graph containing only feasibleequigjrs. */
ComputeGg, whereV [Gg] = E[G] and
E[Ge] = {((a,b), (x,y)) : (a,b) LHIG],
(x,y) CH[G], b = X, and
Check_Feasibility((a,b), (x,y)) = TRUE}.
Find setX [V]Gg]wherex [X is edge incident frona.
Find setY [V[Gg]wherey [Ylis edge incident oh.
Add nodes to V [Geg] and edges to X in E[GE].
Add noded to V [Gg] and edge¥ tod in E[GE].
Find shortest patR fromstodin Gg.
ConvertP = {s, (a, by), (by,b2)...(bj,b),d} to
P = {a, b]_, bz, b}
ReturnP

Figure 5.4: Fast heuristic algorithm to find a feasible patthe graphG.

respectively. The set of patiidfrom x [CX toy [Y for all =, y forms the feasible path
set froma to b. The algorithm is presented in Figure 5.4.

In the above algorithm, the feasibility of an edge pair issd®ined by using the tech-
nique described for CAC in Section IV and V. The current atetoad on the nodes in
the edge pair is increased assuming the edge pair will lie patla of an incoming call.
The increase in offered load depends on the position of tige @eir in an end-to-end
path, because end points generate traffic only in one direetnd do not relay traffic. The
capacity utilization at all nodes is then recomputed andhéf ¢apacity constraint at any
node is violated, the edge pair is marked infeasible.

In order to select a path iz, we add two virtual nodes andd to Vg with edges
from s to X and edges fronY” to d. We compute shortest path frosto d in Gg. This
gives us theshortest feasible patfiom « to b in original graphG. In order to choose less
loaded paths, we can also assign a weight to each link th&drigxample, proportional
to the current load along that link and use this metric to cai@mphe shortest path. In the

evaluation section, we refer to this extensionres residual feasible path.
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Note that the above algorithm can be extended to 3 hop or itquegd segments. For
example, in case of 3 hops, we need to first créatewith 2 hop segments or edge pairs.
FromGg, we constructz2 (a graph with edge pairs as vertices and links between fleasib
edge triplets as edges) by repeating the same process a®ugd'es from G. This tech-
nique is quite efficient, because, before considering tasilidity of a 3 hop path segment,
we check the feasibility of 2 hop segments and thus reduceuh®er of 3 hop segments

to be checked.

5.6.2 PROUTING USING CALL STATISTICS

So far, we have restricted our attention to finding feasildthg efficiently and focused
less on which of the many feasible paths that might exist lshbe selected for routing

the incoming call. We indeed have provided two simple meshiod selection — shortest
feasible path and max residual feasible path. However, engiatly better approach for
path selection could be to allow more calls to be supportddtire. Such an approach is
important to VOIP service providers that are interestedipp®rting as large a call volume
as possible while maintaining call quality. The exact segeef future call arrivals may be
unknown; however, an approach can be designed simply basledg@-term call statistics,

specified in terms of the probabilipya, b) of a mesh node paiw, b) to be the source and
destination of a new call. Such statistics may be availabtbe service providers collected
via long term measurements. Hot-spot nature of certain magers or regions of mesh
networks can generate quite skewed distributions that eaxploited in this approach.

A similar idea calledMlinimum interference routing algorithm (MIRA%2] has been
proposed for traffic engineering work in wireline network$ie basic principle behind
MIRA is to define a notion of criticality for a given link andlset a route that best avoids
critical links. For a given source and destinatiom, a link is critical if it belongs to the

min-cut [28] betweer andb. The level of criticality is determined hy(a, b).
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Loosely based on MIRA, we propose a route computation dlgarifor VolP calls
over mesh network using call statistics. A weight is asgilgizeeach link based on link
criticality. The notion of criticality is explained beloWeights are defined such that a route
computation becomes as simple as finding a shortest patreamdighted graph after the
feasibility has been ascertained. In order to capture tieeference properties in a wireless
mesh network, we initialize all link weights to zero, andrtltevelop the following weight

assignment rule when a new call arrives between nedesld.

» Assign weights to links based on their criticaktyn the first phase, the set of critical
links for each node pair exceft, d) is determined. In wired networks, a critical link
for a node pair is one which belongs to any one of the min-cut$hfat node pair.
All the critical links for a node pair can be found by runnirtgetFord-Fulkerson
max-flow algorithm [28] just once. This constitutes a cHtitink set for a node pair
(a,b) and is denoted aS'(a, b). Since we have a wireless medium, any link which
interferes with the critical link should also be a criticadd, because adding traffic
on that link reduces the maximum flow between the node pairedls 80, we add all
the links which have any node which interferes with any ofritbees in the critical
links, (csf < 1), to the critical link seC(a, b).

Then at this stage, the weight of each link given as
L 1
wo(l) = p(a,b).
(ah):(a,0)E(s,d), [C{a,b)
» Add capacity utilization constrairt In the next phase, the weight of each link calcu-
lated in the first phase is multiplied with the capacity atlion at the link. Capacity
utilization of a link is the maximum of the capacity utiliza at the nodes of the

link. The revised weights are
wy (1) = wo(l) * max(cy, cy), Wherel = (u,v).

« Make weights non zere In the final phase, all links which still have a zero weight

are assigned a very small weight,such that this weight is not significant enough

101



Route_Using Call_Statistics(G, a, b)
Collect call statistics to get(x,y), x]y [VI[G].

0= (u,v) I1_:EI_{G|]
Wol) = (yyxy)san . cixy) P Y), where
C(x,Yy) is the set of critical links for node pafK, y).
wi(l) = wo(l) Cohax(cy, cv).
w(l) = wy(l), if wi(l) >0, LIf wy(l) = 0.
ComputeGg from G as in Figure 5.4.
Assign weights to links ilE[Gg],
we ((u, V), (v,w)) =w(u,Vv) +w(v,w).
Find shortest patP in G and convert it td® Uin G.
ReturnP ©

Figure 5.5: Algorithm for routing using call statistics inet network grapltz for a call

between nodes andb.

to make the weight of the link comparable to a critical link,a0link with some

capacity utilization. A non zero weight is required becatree path weight is the

sum of link weights, and smaller paths are desired. We chesgalue of 0.001 for

our experiments. The final link weights are

w(l) = wa(l),if wi(l) > 0; otherwisew(l) = e.

With the above link weight assignment, we compute the shbpi&th on the edge graph

(Gg) proposed in the previous subsection. Formal descriptidhepalgorithm is given in

Figure 5.5.

5.7 PERFORMANCE EVALUATION

Here, we present the results of the evaluation of the capatiiization model and routing.

The capacity utilization model and call admission decisiare evaluated on an experi-

mental testbed. Routing is evaluated on the ns-2 simula&jr s this evaluation requires

a large number of nodes.
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5.7.1 EPERIMENTAL TESTBED

We evaluate our capacity model using a testbed consistirggxafientical Dell laptops
runing Linux 2.6.15, and using Atheros 802.11a/b/g cards$ madwifi driver [4]. The
laptops are located at different locations in one floor of MieC Labs building (150’ X
120’) to create various topologies. 802.11a is used at 6 Mdpall experiments. Using
802.11a provides us with shorter links so that interestipglogies can be created within a
small area. As indicated before, each such link can sup@afo¥P calls. For each topology,
an initial experiment is run to generate the interference mameasuringsf values, and
to find the delivery ratio on each link of the network graphatistroutes are setup between
nodes using only those links which have a close to 100% dglietio. Calls are generated
as a Poisson process with a mean rate\ @alls/sec. The average duration of a call is
exponentially distributed with the mean ratsec. Calls originate between random source-
destination pairs. Since there is no waiting time for théscahe system can be modeled
like an M /M /oo queue, and the average number of calls in the system at aaydigiven
by A/u. In our experiments, we fix to 0.2 calls/sec, and vapyto increase the load in the
system. Also, we check the-score of all the active calls for 2 sec intervals and recbrd i
for later analysis.

We use three different mesh topologies for the experimastshown in Figure 5.6.
The solid lines indicate the good links which are used ininguYolP calls. “Topology 1”
is a linear chain where every node can hear nodes only onesap. Thus, a node 2-hop
away would be a hidden terminal for a node. “Topology 2” is asgemesh network, while

“Topology 3” is a sparse mesh network.

5.7.2 B/ALUATION OF CAPACITY UTILIZATION MODEL

We compare our model of creating the capacity utilizaticapgrwith a naive model that
simply reserves capacity based on the traffic the node geseand the traffic it receives or

overhears. In the experiment, we use “Topology 1” (lineaighthat measures the number
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#Calls predicted by| #Calls predicted by Actual #calls
Path length| naive capacity model our capacity mode| supported
1 42 42 42
2 21 19 18
3 17 14 14
4 14 11 10
5 14 10 9

Table 5.1: Number of calls supported in a linear network

of calls that can be supported on a path as we increase thdepafth from 1 to 5. We

then predict the number of calls that can be supported usingapacity model as well

as the naive capacity model. Table 5.1 shows that our motielass the number of calls
that can be supported much better. The supported numbellofccaeparately determined
by observing beyond how many calls the averdtyecore drops below 70. As the path
length increases, the naive model keeps overestimatingapacity because it does not
consider collisions due to hidden terminals. Our model islmmore accurate and predicts

the capacity within 10% of the obtained capacity.

5.7.3 B/ALUATION OF CALL ADMISSION CONTROL

We use the random calling patterns as described in subsécsibove to evaluate the effec-
tiveness of CAC. All three topologies are considered. 103 eae used for each experi-
ment with a) CAC enabled, and b) CAC disabled. We increaséoted (\ /) on the net-
work from 5 calls to 30 calls. This range includes very lowdda very high load (much
beyond network capacity). The results for the three topekagre shown in Figure 5.6. For
all topologies, mediariR-scores for all calls and the number of calls that are rejeate
plotted against network load (1.).

Note that for all cases, in absence of CAC, the medtascore gets poorer for higher
load. However, in the presence of CAC, tRescore is relatively stable independent of load.

Also, note that since “Topology 2” is relatively denser, CAg2lly kicks in at a higher load
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Figure 5.6: Evaluation of CAC for various topologies.

and rejects less number of calls. Also, for any topology CAfedkick pretty much at
the same load where we would haktescore degradation without CAC. It does, however,
seem that the CAC is slightly aggressive. The reason forighisat for the current model
link delivery fractions are assumed to be ideal (100%). Whie indeed chose very good
links to route packets in these experiments, we still hadbt@cfor less than perfect link

gualities by being slightly conservative in accepting €all

5.7.4 SMULATION SETUP

The simulation experiments are performed on ns-2 [26] u8DfRy11b 11Mbps links. The

radio propagation model uses the two-ray ground reflectaih |[mss model for the large-
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scale propagation model, augmented by a small-scale Rfedary model [66]. We also
patched ns-2 with a realistic packet capture model.

We use two separate topologies for our evaluation. The $iest3 > 13 grid in a4000 %
4000 square meter area. The radio models are such that the tissiemiange is about 250
meters and the carrier sense range is set to 550 meters.eMaug non-boundary node has
four neighbors at a distance of 250 meters in each direckach vertical or horizontal
edge in the grid represents a link and every node can listemitgptwo-hop neighbors.
The links have no network losses and th¢ between nodes is either 0.5 or 1. The second
topology contains 169 nodes randomly placed i20a0 % 2000 square meter area. For
call pattern, we consider two scenarios: uniform and skeWweduniform, the source and
destination pair for a call is selected with a fixed prob&pilFor skewed scenario, the
source destination pair is chosen based on a weight folpttia zipf distribution.

A centralized program runs various routing algorithms aatednines the routes for
the calls. These routes are then fed as static routes inrthéegor. If a feasible route is not
found, the call is rejected. Calls arrive as a Poisson peokesl/6 calls/sec, and we vapy
to increase the load in the system. Also, we checkithecore of all the active calls every
5 seconds, and drop the calls for which the R score is lessAa@awe run a single long

simulation for every scenario, which stops when 2000 calisetbeen completed.

5.7.5 HASIBLE ROUTE CALCULATION EVALUATION

We first show that using feasible routes, we can support medle io the network. Figure
5.7 shows the maximum number of calls that can be supporteeé igrid as we choose node
pairs further away from each other. The metrics used ardestqrath (SP) and shortest
feasible path (SFP) . We observe that while lesser numbealtsf can be supported for
calls with larger path length, there are more opportunfoeéinding non-interfering paths,

and hence the network can support 10-15% extra calls aiasiator
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Next, we evaluate two routing strategies: a) shortestliéapiath (SFP) routing and b)
max residual feasible path (MRFP) routing. Figure 5.8(a) Rigure 5.8(b) show the per-
centage of calls rejected or dropped for each routing schegréd and random topologies.
For grid topology, drops or rejections by using MRFP redumesbout 30% for large loads

when compared to SFP. For random topology, this factor carpbeabout 50%.

5.7.6 B/ALUATING ROUTING USING CALL STATISTICS

Here, we compare routing using call statistics (RCS) witR 8Rd MRFP routing. To gen-
erate interesting calling patterns where the RCS techriqui be beneficial, we assume
calls are generated only at hot-spot routers and only aidraci routers in the network
are such hot-spots. This information is provided to the R@&fogol. It is intuitive to see
that RCS should perform better when the VoIP traffic is hgasllewed. When the traffic
is fairly balanced, all the node pairs have the same weigthtifathe network topology is
also uniform, all the links in the graph get similar weightsed on the criticality. RCS
degenerates to MRFP routing in such cases.

We present results on a random topology. A grid is not faverédd RCS due to its
uniformity. We present results for two cases — 2% and 10%shots, representing a
heavily skewed and a lightly skewed traffic pattern shownigufes 5.9(a) and 5.9(b). As
expected, RCS drops lesser number of calls in a heavily sk&aéic pattern, but similar

to MRFP routing in lightly skewed traffic.

5.8 CONCLUSIONS

We have addressed two important questions in running VolRiogless mesh networks.
First, maintaining QoS means that call admission contrastnine performed. However,
without any reasonable model of multihop capacity of thevoek, the admission deci-
sions cannot be taken. We have shown how a simple, measurbéamed model can

fairly accurately model the available capacity and thusguside call admission decisions.
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Second, because of the wireless interference, looking feasible route to accommodate
an incoming call can be computationally hard. We have sifeplihis issue by introducing
the assumption of the knowledge of the ratio of interferemice carrier sensing ranges.
This ensures that path segments of constant length can heatg separately to deter-
mine feasibility in polynomial time. We have also introddaeuting metrics such as max
residual feasible path and new strategies like routinggusal! statistics. Both improve
performance significantly compared to naive methods.

Our modeling work is general enough that it can be extendeddwer architectures
such as directional antenna or multi-radio/multi-charsystem — something that we will
address in our future work. We have not explicitly accourfteddata traffic in our eval-
uation, as our methods can always be used to set aside sonuataoficapacity for data

traffic.

109



CHAPTER 6

CONCLUSIONS

In this dissertation, we have proposed several methods tiehaterference and its impact
on capacity. We have relied on measurements rather thag asilytical or theoretical
methods, which makes our models realistic and practicaktoded for deployed Wi-Fi
networks. We demonstrate the application of such modelsigguthe example of sup-
porting VOIP calls over a wireless mesh network. Specificate have made the following

contributions —

« We first develop a link capacity model based on the physidalfierence model,
which uses measurements on the target network. The methedesoposed are prac-
tical. The profiling measurements used to model the physagalr can be kept in
a library and reused. The measurements on the target netwerkimple and take
O(N) steps. The model solutions using analytical and simulab@sed methods

compare favorably with experiments done on a real network.

* We then demonstrated that measurements from a real neta@orkecused to accu-
rately model the physical layer of a wireless network sirtarlda\Ve create two ver-
sions of the ns-2 simulator with different levels of fidelagd measurement require-
ments to model deferral, reception, and propagation belssi the physical layer.
We show excellent accuracy of this modified simulator whemgared with experi-

ments on a real network.

« We propose a novel machine learning approach to estimatdentnce in a Wi-Fi

network. The technique uses a merged packet trace collectelistributed sniffing.
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It then recreates the MAC layer interactions between ndtwiodes via a machine
learning approach using the Hidden Markov Model. This idfyrteelpful in inferring
pair-wise interference relationships. The advantageisfbproach is that it is purely
passive and thus can work with a live network without any asde the network
elements. We have demonstrated via experiments and siongdahat this technique
estimates interference with accuracy similar to methodsguseasurement-based

profiling and active measurements directly on the network.

We finally show an application of the capacity model we haeatad. We address
two important questions in running VoIP on wireless meshwoéts. First, main-
taining QoS means that call admission control must be peédr However, without
any reasonable model of multihop capacity of the networ atimission decisions
cannot be taken. We have shown how a simple, measuremesd-tvexiel can fairly
accurately model the available capacity and thus can gaill@dmission decisions.
Second, because of the wireless interference, looking feasible route to accom-
modate an incoming call can be computationally hard. We bawglified this issue
by introducing the assumption of the knowledge of the rafionterference and
carrier sensing ranges. This ensures that path segmentnstaat length can be
evaluated separately to determine feasibility in polyredrime. We have also intro-
duced routing metrics such as max residual feasible pathnamdstrategies like
routing using call statistics. Both improve performanogngficantly compared to

naive methods.

111



BIBLIOGRAPHY

[1] AirMagnet. http://airmagnet.com.
[2] AirPatrol. http://airpatrolcorp.com.
[3] Mathematica 5.2. http://www.wolfram.com/.

[4] Multiband Atheros Driver for WiFi

http://sourceforge.net/projects/madwifi/.
[5] OpNet. http://opnet.com.
[6] QualNet. http://scalable-networks.com.

[7] The Network Simulator - ns-2. http://www.isi.edu/nsmas.

(MADWIFI).

[8] HFA3863 Data Sheet: Direct Sequence Spread SpectrurebBasd Processor with

Rake Receiver and Equalizer. Intersil Corporation, 2000.

[9] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Juddj &obert Morris. Link-

level measurements from an 802.11b mesh netwSiacCOMM Comput. Commun.

Rev, 34(4), 2004.

[10] lan F. Akyildiz, Xudong Wang, and Weilin Wang. Wirelesgsh networks: a survey.

Computer Networks and ISDN Syste#i&4):445-487, 2005.

[11] Mansoor Alicherry, Randeep Bhatia, and Li (Erran) Lioint channel assignment

and routing for throughput optimization in multi-radio wiess mesh networks. In

MobiCom '0§ pages 58-72, 2005.

112



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

TR Andel and A. Yasinsac. On the credibility of manet slations. Computer

39(7):48-54, 2006.

Paramvir Bahl, , Jitendra Padhye, Lenin Ravindrandffanpreet Singh, Alec
Wolman, and Brian Zill. Dair: A framework for managing enggse wireless net-
works using desktop infrastructure. Amnual ACM Workshop on Hot Topics in Net-

works (HotNets)November 2005.

Paramvir Bahl, Ranveer Chandra, Jitendra Padhye,nLBavindranath, Manpreet
Singh, Alec Wolman, and Brian Zill. Enhancing the securitycorporate wi-fi net-
works using dair. IrlMobiSys '06: Proceedings of the 4th international confessan
Mobile systems, applications and serviceages 1-14, New York, NY, USA, 2006.
ACM.

Leonard E. Baum and J. A. Eagon. An inequality with apggiions to statistical
estimation for probabilistic functions of markov procesaad to a model for ecology.

Bull. Amer. Math. Soc.73:360-363, 1967.

G. Bianchi. Performance analysis of the IEEE 802.11ribisted Coordination Func-
tion. JISAGC 2000.

Joseph Camp, Joshua Robinson, Christopher StegeEdmdrd Knightly. Measure-
ment driven deployment of a two-tier urban mesh access mktvio MobiSys 2006

2006.

Hoon Chang, Vishal Misra, and Dan Rubenstein. A Gendiadlel and Analysis of
Physical Layer Capture in 802.11 Networks.Aroc. IEEE Infocom2006.

Lei Chen and Wendi Heinzelman. Qos-aware routing basdohndwidth estimation
for mobile ad hoc networksIEEE Journal of Selected Areas in Communicatjons

2005.

113



[20] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkailgter Benko, Jennifer Chiang,
Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker.odatting cross-layer

diagnosis of enterprise wireless networR&€M SIGCOMM 2007.

[21] Yu-Chung Cheng, John Bellardo, Péter Benko, Alex@e&en, Geoffrey M. Voelker,
and Stefan Savage. Jigsaw: solving the puzzle of enterfigel 1 analysisACM

SIGCOMM 2006.

[22] R. Cle and J. Rosenbluth. Voice over IP performance moong. ACM Computer
Communication Reviev@1(2), April 2001.

[23] D. De Couto and D. Aguayo and J. Bicket and R. Morris. Ahatgroughput path
metric for multi-hop wireless routing. IRroc. of ACM MOBICOM2003.

[24] S. Das, D. Koutsonikolas, Y. Hu, and D. Peroulis. Cheeazing multi-way interfer-

ence in wireless mesh networks. ACM Wintech2005.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeood from incom-
plete data via the em algorithmJournal of the Royal Statistical Society. Series B

(Methodological) 39(1):1-38, 1977.

[26] K. Fall and K. Varadhan. ns notes and documentatiom:Mitww.isi.edu/nsnam/ns,

Nov 1997.
[27] Firetide. Wireless instant networks. http://www.fide.com.
[28] L. R. Ford and D. R. Fulkerson. Flows in networksinceton University Pres4962.

[29] ITU-T Recommendation G.729a. Coding of speech at &khising conjugate-

structure algebraic-code-excited linear-prediction-&TELP), March 1996.

[30] Samrat Ganguly, Vishnu Navda, Kyungtae Kim, Anand Kagh Dragos Niculescu,

Rauf Izmailov, S. Hong, and Samir R Das. Performance Opétiaas for Deploying

114



VoIP Services in Mesh NetworkdEEE Journal on Selected Areas in Communica-

tions 24(11):2147-2158, Nov. 2006.

[31] Yan Gao, Dah-Ming Chiu, and John C.S. Lui. Determining ¢nd-to-end throughput
capacity in multi-hop networks: methodology and applmas. SIGMETRICS Per-
form. Eval. Rev.34(1):39-50, 2006.

[32] Michele Garetto, Theodoros Salonidis, and Edward WgKtty. Modeling per-flow
throughput and capturing starvation in csma multi-hop l@se networks. IProc. of

IEEE INFOCOM Barcelona, April 2006.
[33] S. Garg and M. Kappes. Can | add a VoIP callPiroceedings of IEEE IC003.

[34] P. Gupta and P. R. Kumar. The capacity of wireless nédk&tdEEE Transactions on

Information Theory46(2):388—404, March 2000.

[35] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat,LKEn, Y. Xu, W. Ye,
D. Estrin, and R. Govindan. Effects of detail in wirelesswak simulation. In

Proceedings of the SCS Multiconference on Distributed ithom, 2001.

[36] D. Hole and F. Tobagi. Capacity of an IEEE 802.11b WislEAN supporting VOIP.
In In Proceedings of IEEE ICC004.

[37] Kamal Jain, Jitendra Padhye, Venkata N. Padmanabmah @i Qiu. Impact of

interference on multi-hop wireless network performancavibbiCom 2003.

[38] Kyle Jamieson, Bret Hull, Allen K. Miu, and Hari Balakhinan. Understanding the
Real-World Performance of Carrier Sense. BAWIND, Philadelphia, PA, August
2005.

[39] Amit P. Jardosh, Kimaya Mittal, Krishna N. Ramachamgrg&lizabeth M. Belding,
and Kevin C. Almeroth. Iqu: practical queue-based user@ason management for

wlans. INACM MobiCom 2006.

115



[40] Amit P. Jardosh, Krishna N. Ramachandran, Kevin C. Abittg and Elizabeth M.
Belding-Royer. Understanding congestion in ieee 802.1ikbless networks. In

ACM IMC, 2005.

[41] D. Johnson. Validation of wireless and mobile networtidals and simulation. In
Proceedings of the DARPA/NIST Network Simulation ValaaWorkshop, Fairfax,
Virginia, USA 1999.

[42] Glenn Judd and Peter Steenkiste. Repeatable andtiealieless experimentation

through physical emulatiorSIGCOMM Comput. Commun. Re®4(1):63—68, 2004.

[43] Glenn Judd and Peter Steenkiste. Understanding éw&t 802.11 behavior:

Replacing convention with measurementWicon 2007.

[44] Anand Kashyap, Samir R. Das, and Samrat Ganguly. Measemt-based approaches
for accurate simulation of 802.11-based wireless netwdrshnical Reportt t p:
/I wwww. Wi ngs. cs. sunysb. edu/ fahand/ paper s/ si mul ati on. pdf,

2008.

[45] Anand Kashyap, Samrat Ganguly, and Samir Das. A measntbased approach
to modeling link capacity in 802.11-based wireless networkn ACM MobiCom

Montreal, September 2007.

[46] Anand Kashyap, Samrat Ganguly, and Samir Das. Measntbased approaches
for accurate simulation of 802.11-based wireless netwolkdMSWIM Vancouver,

October 2008.

[47] Anand Kashyap, Samrat Ganguly, Samir Das, and Sumaarfgen Voip on wireless
meshses: Models, algorithms and evaluationlHEE Infocom Anchorage, Alaska,

May 2007.

116



[48] Anand Kashyap, Samrat Ganguly, and Samir R. Das. Char-
acterizing interference in  802.11-based wireless mesh wanks.

http://www.wings.cs.sunysb.edu/"anand/interferguatfe 2006.

[49] Anand Kashyap, Samrat Ganguly, and Samir R. Das. A measnt-based approach
to modeling link capacity in 802.11-based wireless networkn ACM MobiCom
2007.

[50] C. T. Kelley. Solving nonlinear equations with newtemethod. IFFundamentals of

Algorithms, SIAM2003.

[51] Kyu-Han Kim and Kang G. Shin. On accurate measuremehnkiuality in multi-

hop wireless mesh networks. MobiCom 06 pages 38-49, 2006.

[52] M. Kodialam and T. V. Lakshman. Minimum Interferenceu®ag with Applications

to MPLS Traffic Engineering. IiProc. of IEEE INFOCOM2000.

[53] Murali Kodialam and Thyaga Nandagopal. Charactegachievable rates in multi-
hop wireless networks: the joint routing and schedulindfam. InMobiCom pages

42-54, 2003.

[54] D. Kotz, C. Newport, R.S. Gray, J. Liu, Y. Yuan, and C.i&ll. Experimental eval-
uation of wireless simulation assumptionBroc. ACM MSWiM Symposiymages

78-82, 2004.

[55] Anurag Kumar, Eitan Altman, Daniele Miorandi, and MsihiGoyal. New insights
from a fixed point analysis of single cell ieee 802.11 wirgleANs. InProceedings

IEEE Infocom 2005.

[56] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Partirashy, and Aravind Srini-
vasan. Algorithmic aspects of capacity in wireless netwo8tGMETRICS Perform.

Eval. Rev.33(1):133-144, 2005.

117



[57] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Partuaghy, and Aravind Srini-
vasan. Algorithmic aspects of capacity in wireless netwo8tIGMETRICS Perform.

Eval. Rev.33(1):133-144, 2005.

[58] Seoung-Bum Lee, Gahng-Seop Ahn, Xiaowei Zhang, andréwdT. Capbell.
INSIGNIA: an IP-based quality of service framework for miebad hoc networks.

J. Parallel Distrib. Comput.60(4):374—-406, 2000.

[59] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An intnation to the applica-
tion of the theory of probabilistic functions of a markov pess to automatic speech

recognition.Bell Syst. Tech. ,J62(4):1035-1074, 1983.

[60] J. Liu, Y. Yuan, D.M. Nicol, R.S. Gray, C.C. Newport, Dok, and L.F. Perrone.
Simulation validation using direct execution of wirelesg-Boc routing protocols. In

Proc. PADS Workshqppages 7-16, 2004.

[61] Ratul Mahajan, Maya Rodrig, David Wetherall, and Jolah&@rjan. Analyzing the

mac-level behavior of wireless networks in the wild. AGM SIGCOMM 2006.
[62] Meru Networks. http://www.merunetworks.com.

[63] D Niculescu, S Ganguly, K Kim, and R Izmailov. Perfornsarof VoIP in a 802.11
Wireless Mesh Network. IRroc. of IEEE INFOCOM 200@arcelona, 2006.

[64] B. O’Hara, P. Calhoun, and J. Kempf. Configuration anovjgioning for wireless
access points (CAPWAP). RFC 3990, February 2005.

[65] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rad,EarZill. Estimation of

link interference in static multi-hop wireless networks.IMC, 2005.

[66] R.J. Punnoose, P.V. Nikitin, and D.D. Stancil. Effidisimulation of ricean fading
within a packet simulator. IRProceedings of IEEE Vehicular Technology Conference

(VTC 2000) pages 764—767, 2000.

118



[67] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung Han, and Ratul kigan. A general

model of wireless interference. ACM MobiCom 2007.

[68] Lawrence R. Rabiner. A tutorial on hidden markov modeid selected applications

in speech recognitiorReadings in speech recognitigmages 267—-296, 1990.

[69] Ashish Raniwala, Kartik Gopalan, and T. Chiueh. Cdizeal channel assignment
and routing algorithms for multi-channel wireless meshwoeks. SIGMOBILE Mob.
Comput. Commun. Re®(2):50-65, 2004.

[70] Theodore S. RappaporiVireless Communications: Principles and PractidEEE

Press, Piscataway, NJ, USA, 1996.

[71] Charles Reis, Ratul Mahajan, Maya Rodrig, David Wedheand John Zahorjan.
Measurement-based models of delivery and interferenctatit svireless networks.

In SIGCOMM 2006.

[72] Maya Rodrig, Charles Reis, Ratul Mahajan, David Wedheand John Zahorjan.
Measurement-based characterization of 802.11 in a hagsgtotg. INACM E-WIND
2005.

[73] Aaraon Schulman, Dave Levin, and Neil Spring. On thelifigef 802.11 packet
traces. INPAM, 2008.

[74] Soekris Engineering. http://www.soekris.com.

[75] D. Son, B. Krishnamachari, and J. Heidemann. Expertaiestudy of concurrent

transmission in wireless sensor networksPhoc. ACM SenSy2006.

[76] Dongjin Son, Bhaskar Krishnamachari, and John HeidemaExperimental study
of concurrent transmission in wireless sensor networkssenSys '06: Proceedings
of the 4th international conference on Embedded networked@ systemgpages

237-250, New York, NY, USA, 2006. ACM Press.

119



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

S. Sriram, T. Bheemarjuna Reddy, B. S. Manoj, and C. &aa Murthy. On the
end-to-end call acceptance and the possibility of detastiingos guarantees in ad
hoc wireless networks. IMobiHoc '05: Proceedings of the 6th ACM international

symposium on Mobile ad hoc networking and compufiagies 169-180, 2005.

Yuan Sun, Elizabeth Belding-Royer, Xia Gao, and Jamespf. A priority-based
distributed call admission protocol for multi-hop wiredesd hoc networks. UCSB

Technical Report, 2004.

Mineo Takai, Jay Martin, and Rajive Bagrodia. Effecfsworeless physical layer
modeling in mobile ad hoc networks. FProc. ACM MobiHoc Symposiynpages

87-94, 2001.

Y. C. Tay and K. C. Chua. A capacity analysis for the IEER81 MAC protocol.
Wirel. Netw, 7(2):159-171, 2001.

M. Veeraraghavan, N. Cocker, and T. Moors. Support afe/services in ieee 802.11

wireless lans. Inn Proceedings of IEEE Infocor2001.

Hung-Yu Wei, KyungTae Kim, Anand Kashyap, and Samrah@ady. On Admission
of VoIP Calls over Wireless Mesh Network. In Proceedings of IEEE ICC006.

Qi Xue and Aura Ganz. Ad hoc qos on-demand routing (agomobile ad hoc

networks.J. Parallel Distrib. Comput.63(2):154-165, 2003.

Jihwang Yeo, Moustafa Youssef, and Ashok Agrawala. akfework for wireless lan

monitoring and its applications. lKKCM WiSe2004.

Jihwang Yeo, Moustafa Youssef, Tristan Henderson,Astibk Agrawala. An accu-
rate technique for measuring the wireless side of wireleswarks. InWiTMeMa

USENIX Association, 2005.

120



[86] J. Zhou, Z. Ji, M. Varshney, Z. Xu, Y. Yang, M. Marina, aRdBagrodia. WHYNET:
a hybrid testbed for large-scale, heterogeneous and adapiieless networks. In

Proc. WINTECH pages 111-112, 2006.

121



